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The relationship between the size and the variance of firm growth
rates is known to follow an approximate power-law behavior
�(S) � S��(S) where S is the firm size and �(S) � 0.2 is an exponent
that weakly depends on S. Here, we show how a model of
proportional growth, which treats firms as classes composed of
various numbers of units of variable size, can explain this size-
variance dependence. In general, the model predicts that �(S) must
exhibit a crossover from �(0) � 0 to �(�) � 1/2. For a realistic set
of parameters, �(S) is approximately constant and can vary from
0.14 to 0.2 depending on the average number of units in the firm.
We test the model with a unique industry-specific database in
which firm sales are given in terms of the sum of the sales of all
their products. We find that the model is consistent with the
empirically observed size-variance relationship.

preferential attachment � pharmaceutical industry � distributions

G ibrat was probably the first who noticed the skew size
distribution of business firms (1). As a simple candidate

explanation he postulated the ‘‘Law of Proportionate Effect’’
according to which the expected value of the growth rate of a
business firm is proportional to the current size of the firm (2).
Several models of proportional growth have subsequently been
introduced in economics (3–6). In particular, Simon and col-
leagues (7, 8) examined a stochastic process for Bose–Einstein
statistics similar to the one originally proposed by Yule (9) to
explain the distribution of sizes of genera. The Law of Propor-
tionate Effect implies that the variance �2 of firm growth rates
is independent of size, whereas, according to the Simon model,
it is inversely proportional to the size of business firms. The two
predictions have not been confirmed empirically and, following
Stanley and colleagues (10), several scholars (11, 12) have
recently found a nontrivial relationship between the size of
the firm S and the variance �2 of its growth rate � � S��

with � � 0.2.
Numerous attempts have been made to explain this puzzling

evidence by considering firms as collections of independent units
of uneven size (10, 12–18) but existing models do not provide a
unifying explanation for the probability density functions of the
growth and size of firms as well as the size-variance relationship.
Thus, the scaling of the variance of firm growth rates is still an
unsolved problem in economics (19, 20). Recent papers (21–25)
provide a general framework for the growth and size of business
firms based on the number and size distribution of their con-
stituent parts (12–15, 21, 26–29). Specifically, Fu and colleagues
(21) present a model of proportional growth in both the number
of units and their size, drawing some general implications on the
mechanisms which sustain business firm growth. The model in
ref. 21 accurately predicts the shape of the distribution of the
growth rates (21, 22) and the size distribution of firms (23). In
this article, we derive the implications of the model in ref. 21 on
the size-variance relationship. The main conclusion is that the
size-variance relationship is not a true power law with a single
well-defined exponent � but undergoes a slow crossover from

� � 0 for S 3 0 to � � 1/2 for S 3 �. The predictions of the
model are tested in both real-world and simulation settings.

The Model
In the model presented in ref. 21 and summarized in the
supporting information (SI) Text, firms consist of a random
number of units of variable size. The number of units K is defined
as in the Simon model. The size of the units � evolves according
to a multiplicative brownian motion (Gibrat process). Thus, both
the growth distribution, P�, and the size distribution, P�, of the
units are lognormal.

To derive the size-variance relationship we must compute the
conditional probability density of the growth rate P(g�S, K), of
a firm with K units and size S. For K 3 � the conditional
probability density function P(g�S, K) develops a tent-shape
functional form, because in the center it converges to a Gaussian
distribution with the width decreasing in inverse proportion to
�K, whereas the tails are governed by the behavior of the growth
distribution of a single unit that remains to be wide indepen-
dently of K.

We can also compute the conditional probability P(S�K),
which is the convolution of K unit size distributions P�. In case
of lognormal P� with a large logarithmic variance V� and mean
m�, the convergence of P(S�K) to a Gaussian is very slow (23).
Because P(S, K) � P(S�K)P(K), we can find

P�g�S� � �P�g�S, K�P�S�K�P�K�, [1]

where all of the distributions P(g�S, K), P(S�K), P(K) can be
found from the parameters of the model. P(S�K) has a sharp
maximum near S � SK � K��

, where �� � exp(m� 	 V�/2) is the
mean of the lognormal distribution of the unit sizes. Conversely,
P(S �K) as a function of K has a sharp maximum near KS � S/��.
For the values of S such that P(KS) 

 0, P(g�S) � P(g�KS),
because P(S�K) serves as a �(K � KS) so that only terms with K �
KS make a dominant contribution to the sum of Eq. 1. Accord-
ingly, one can approximate P(g�S) by P(g�KS) and �(S) by �(KS).
However, all firms with S � S1 � �� consist essentially of only
one unit and thus

��S� � �V� [2]

for S � ��. For large S, if P(KS) 
 0
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��S� � ��KS� � �V�KS �
exp(3V��4 � m��2) �exp(V�) 	 1

�S

[3]

where m� and V� are the logarithmic mean and variance of the
unit growth distributions P� and V � exp(V�)[exp(V�) � 1], as
in ref. 21. Thus, one expects to have a crossover from � � 0 for
S � �� to � � 1/2 for S 

 S*, where

S* � exp(3V��2 � m�)�exp(V�� 	 1)�V� [4]

is the value of S for which Eqs. 2 and 3 give the same value of
�(S). Note that for small V� � 1, S* � exp(3V�/2 	 m�).
The range of crossover extends from S1 to S*, with S*/S1 �
exp(V�)3 � for V�3 �. Thus, in the double-logarithmic plot of
� vs. S one can find a wide region in which the slope � slowly
varies from 0 to 1/2 (� � 0.2) in agreement with many empirical
observations.

The crossover to � � 1/2 will be observed only if K* � S*/�� �
exp(V�) is such that P(K*) is significantly larger than zero. For
the distribution P(K) with a sharp exponential cutoff K � K0, the
crossover will be observed only if K0 

 exp(V�).

Two scenarios are possible for S 
 S0 � K0��. In the first, there
will be no firms with S 

 S0. In the second, if the distribution
of the size of units P� is very broad, large firms can exist just
because the size of a unit can be larger than S0. In this case,
exceptionally large firms might consist of one extremely large
unit �max, whose fluctuations dominate the fluctuations of the
entire firm.

One can introduce the effective number of units in a firm
Ke � S/�max, where �max is the largest unit of the firm. If Ke � 2,
we would expect that �(S) will again become equal to its value
for small S given by Eq. 2, which means that under certain
conditions �(S) will start to increase for very large firms and
eventually becomes the same as for small firms.

Whether such a scenario is possible depends on the complex
interplay of V� and P(K). The crossover to � � 1/2 will be seen
only if P(K 
 K*) 
 P(� 
 S*), which means that such large
firms predominantly consist of a large number of units. Taking
into account the equation of P�, one can see that P(� 
 S*) �
exp(�9/8V�).

On the one hand, for an exponential P(K), this implies that
exp(�exp(V�)/K0) 
 exp(�9/8V�) or

V� 
 8 exp(V�)��9K0� . [5]

This condition is easily violated if V� 

 ln K0. Thus, for the
distributions P(K) with exponential cutoff we will never see the
crossover to � � 1/2 if V� 

 ln K0.

On the other hand, for a power-law distribution P(K) � K��,
the condition of the crossover becomes exp(V�)1�� 
 exp(�9/
8V�), or (� � 1)V� � 9/8V� which is rigorously satisfied for

� � 17�8 [6]

but even for larger � values this condition is not dramatically
violated. Thus, for power-law distributions, we expect a cross-
over to � � 1/2 for large S and a significantly large number N
of firms: NP(K*) 
 1. The sharpness of the crossover mostly
depends on V�. For power-law distributions we expect a sharper
crossover than for exponential ones because the majority of firms
in a power-law distribution have a small number of products K,
and hence � � 0 almost up to S*, the size at which the crossover
is observed. For exponential distributions we expect a slow
crossover that is interrupted if V� is comparable to ln K0. For S


 S1 this crossover is well represented by the behavior of �(KS).

We confirm these heuristic arguments by means of computer
simulations (see Figs. S1–S4).

Figs. 1 and 2 illustrate the importance of the effective number
of units Ke. When KS becomes larger than K0, �(S) starts to
follow �(Ke). Accordingly, for very large firms �(S) becomes
almost the same as for small firms. The maximal negative value
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Fig. 1. Simulation results for the size variance relationship and the effective
number of units. (A) Simulation results for �(S) according to Eq. 1 for expo-
nential P(K) � exp(�K/K0)/K0 with K0 � 10,102,103,104,105 and lognormal P�

and P� with V� � 5.13, m� � 3.44, V� � 0.36, �� � 0.016 computed for the
pharmaceutical database. One can see that, for small enough S and for
different K0, �(S) follows a universal curve that can be well approximated with
�(KS), with KS � S/�� � S/405. For KS 
 K0, �(S) departs from the universal
behavior and starts to increase. This increase can be explained by the decrease
of the effective number of units Ke(S) for the extremely large firms. The
maximal negative slope �max increases as K0 increases in agreement with the
predictions of the central limit theorem. (B) One can see, that Ke(S) reaches its
maximum at approximately S � K��. The positions of maxima in Ke(S) coincide
with the positions of minima in �(S).
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Fig. 2. The standard deviation of firm growth rates (�) (circles), and the share
of the largest products (1/Ke) (squares) versus the size of the firms in the
pharmaceutical industry (S). As predicted by our model for S � S1 � �� � 3.44,
� � 0. For S 
 S1 � increases but never reaches 1/2 because of the slow growth
of the effective number of products (Ke). The flattening of the upper tail is due
to some large companies with unusually large products.
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of the slope �max of the double-logarithmic graphs presented in
Fig. 1 A correspond to the inflection points of these graphs, and
can be identified as approximate values of � for different values
of K0. One can see that �max increases as K0 increases from a
small value close to 0 for K0 � 10 to a value close to 1/2 for
K0 � 105 in agreement with the predictions of the central limit
theorem.

To further explore the effect of the P(K) on the size-variance
relationship we select P(K) to be a pure power law P(K) � K�2

(Fig. 3A). Moreover, we consider a realistic P(K) where K is the
number of products by firms in the pharmaceutical industry (Fig.
3B). This distribution can be well approximated by a Yule
distribution with � � 2 and an exponential cutoff for large K. Fig.
3 shows that, for a scale-free power-law distribution P(K), the
size-variance relationship depicts a steep crossover from � �
�V� given by Eq. 2 for small S to � � �V/KS given by Eq. 3 for
large S, for any value of V�.

As we see, the size-variance relationship of firms �(S) can be
well approximated by the behavior of �(KS) (Fig. 1 A). It was
shown in ref. 24 that, for realistic V�, �2(K) can be approximated
in a wide range of K as �(K) � K�� with � � 0.2, which
eventually crosses over to K�1/2 for large K. In other words, one
can write �(K) � K��(K), where �(K), defined as the slope of
�(K) on a double-logarithmic plot, increases from a small value
dependent on V� at small K to 1/2 for K 3 �. Accordingly, one
can expect the same behavior for �(S) for KS � K0.

Thus, it would be desirable to derive an exact analytical
expression for �(K) in case of lognormal and independent P� and
P�. Unfortunately the radius of convergence of the expansion of
a logarithmic growth rate in inverse powers of K is equal to zero,
and these expansions have only a formal asymptotic meaning for
K 3 �. However, these expansions are useful because they

demonstrate that � and � do not depend on m� and m� except
for the leading term in �: m0 � m� 	 V�/2. Not being able to
derive close-form expressions for � (see SI Text), we perform
extensive computer simulations, where � and � are independent
random variables taken from lognormal distributions P� and P�

with different V� and V�. The numerical results (Fig. 4) suggest
that

ln �2(K)K�C � F� ln(K� 	 f� V�,V��], [7]

where F�(z) is a universal scaling function describing a crossover
from F�(z)3 0 for z 3 � to F�(z)/z 3 1 for z 3 �� and
f(V�,V�) � f�(V�)	f�(V�) are functions of V� and V� that have
linear asymptotes for V� 3 � and V� 3 � (Fig. 4B).

Accordingly, we can try to define �(z) � (1 � dF�/dz)/2 (Fig.
5A). The main curve �(z) can be approximated by an inverse
linear function of z, when z3�� and by a stretched exponential
as it approaches the asymptotic value 1/2 for z 3 	�. The
particular analytical shapes for these asymptotes are not known
and derived solely from least-square fitting of the numerical
data. The scaling for �(z) is only approximate with significant
deviations from a universal curve for small K. The minimal value
for � practically does not depend on V� and is approximately
inverse proportional to a linear function of V�:

�min �
1

pV� � q
[8]

where P � 0.54 and q � 2.66 are universal values. (Fig. 5B). This
finding is significant for our study, because it indicates that near
its minimum, �(K) has a region of approximate constancy with
the value �min between 0.14 and 0.2 for V� between 4 and 8. These
values of V� are quite realistic and correspond to the distribution
of unit sizes spanning over from roughly 2 to 3 orders of
magnitude (68% of all units), which is the case in the majority
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Fig. 3. Size-variance relationship �(S) for various V� with P(K) � K�2 (A) and
real P(K) (B). A sharp crossover from � � 0 to � � 1/2 is seen for the power-law
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of the economic and ecological systems. Thus our study provides
a reasonable explanation for the abundance of value of � � 0.2.

The above analysis shows that �(S) is not a true power-law
function, but undergoes a crossover from � � �min(V�) for small
firms to � � 1/2 for large firms. However, this crossover is
expected only for very broad distributions P(K). If it is very
unlikely to find a firm with K 
 K0, �(S) will start to grow for
S 
 K0��. Empirical data do not show such an increase (Fig. 6),
because in reality few giant firms rely on a few extremely large
units. These firms are extremely volatile and hence unstable.

Therefore, for real data we do see neither a crossover to � � 1/2
nor an increase of � for large companies.

Empirical Evidence
Because the size-variance relationship depends on the parti-
tion of firms into their constituent components, to properly
test our model one must decompose an industrial system into
parts. In this section we analyze a unique database, kindly
provided by the European Pharmaceutical Regulation and
Innovation Systems (EPRIS) program, which has recorded the
sales figures of 916,036 pharmaceutical products commercial-
ized by 7,184 firms worldwide from 1994 to 2004. The database
covers the whole size distribution for products and firms and
monitors f lows of entry and exit at every level of aggregation.
Products are classified by companies, markets, and interna-
tional brand names, with different distributions P(K) with
�K� � K0 ranging from 5.8 for international products to almost
1,600 for markets (Table 1). If firms have on average K0
products and V� �� ln K0, the scaling variable z � K0 is positive
and we expect � 3 1/2. On the contrary, if V� 

 ln K0, z �
0 and we expect � 3 0. These considerations work only for a
broad distribution of P(K) with mild skewness, such as an
exponential distribution. At the opposite extreme, if all com-
panies have the same number of products, the distribution of
S is narrowly concentrated near the most probable value S0 �
��K and there is no reason to define �(S). Only very rarely S


 S0, because of a low probability of observing an extremely
large product that dominates the f luctuation of a firm. Such a
firm is more volatile than other firms of equal size. This would
imply negative �. If P(K) is power-law distributed, there is a
wide range of values of K, so that there are always firms for
which ln K 

 V� and we can expect a slow crossover from � �
0 for small firms to � � 1/2 for large firms. In this case, for a
wide range of empirically plausible V�, � is far from 1/2 and
statistically different from 0. The estimated value of the
size-variance scaling coefficient � goes from 0.123 for products
to 0.243 for therapeutic markets with companies in the middle
(0.188) (Table 1, Fig. 2).

The model in ref. 21 relies on general assumptions of inde-
pendence of the growth of products from each other and from
the number of products K. However, these assumptions could be
violated and other reasons for the scaling of the size-variance
relationship such as units interdependence, size and time de-
pendence must be considered (see the SI Text for a discussion of
candidate explanations). To discriminate among different plau-
sible explanations we run a set of simulations in which we keep
the real P(K) and randomly reassign products to firms. In the
first simulation we randomly reassign products by keeping the
real-world relationship between the size, �, and growth, �, of
products. In the second simulation we also reassign �. Finally, in
the last simulation, we generate elementary units according to a
multiplicative brownian motion (Gibrat process) with empiri-
cally estimated values of the mean and variance of � and �. Table
1 summarizes the results of our simulations.

The first simulation allows us to check for the size dependence
and unit interdependence hypotheses by randomly reassigning
elementary units to firms and markets. In doing that, we keep the
number of the products in each class and the history of the
fluctuation of each product sales unchanged. As for the size
dependence, our analysis shows that there is indeed strong
correlation between the number of products in the company and
their average size defined as ��(K)� � �1/K ¥i � 1

K �i�, where � �
indicates averaging over all companies with K products. We
observe an approximate power-law dependence ��(K)� � K,
where  � 0.38. If this would be a true asymptotic power law
holding for K 3 � then the average size of the company of K
products would be proportional to �(K)K � K1	. Accordingly,
the average number of products in the company of size S would
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scale as K0(S) � S1/(1	) and consequently, due to central limit
theorem, � � 1/(2 	 2). In our database, this would mean that
the asymptotic value of � � 0.36. Similar logic was used to
explain � in refs. 11 and 15. Another effect of random
redistribution of units will be the removal of possible corre-
lations among �i in a single firm (unit interdependence).
Removal of positive correlations would decrease �, whereas
removal of negative correlations would increase �. The mean
correlation coefficient of the product growth rates at the firm
level ��(K)� also has an approximate power-law dependence
��(K)� � K�, where � � �0.36. Because larger firms have bigger
products and are more diversified than small firms, the size
dependence and unit interdependence cancel out and � prac-
tically does not change if products are randomly reassigned to
firms.

To control the effect of time dependence, we keep the sizes of
products �i and their number K� at year t for each firm �
unchanged, so St � ¥i�1

K� �i is the same as in the empirical data.
However, to compute the sales of a firm in the following year
S̃t	1 � ¥i�1

K� ��i, we assume that ��i � �i�i, where �i is an annual
growth rate of a randomly selected product. The surrogate

growth rate g̃ � ln
� S̃t	1)
(St)

obtained in this way does not display any

size-variance relationship at the level of products (�*2 � 0).
However, we still observe a size-variance relationship at higher
levels of aggregation. This test demonstrates that 1/3 of the
size-variance relationship depends on the growth process at the
level of elementary units which is not a pure Gibrat process.
However, asynchronous product life cycles are washed out on
aggregation and there is a persistent size-variance relationship
that is not due to product autocorrelation.

Finally we reproduced the model in ref. 21 with the empirically
observed P(K) and the estimated moments of the lognormal
distribution of products (m� � 7.58, V� � 4.41). We generate N
random products according to our model (Gibrat process) with
the empirically observed values of V� and m�. As we can see in
Table 1, the model in ref. 21 closely reproduce the values of �
at any level of aggregation. We conclude that the model in ref.
21 correctly predicts the size-variance relationship and the way
it scales under aggregation.

The variance of the size of the constituent units of the firm V�

and the distribution of units into firms are both relevant to
explain the size-variance relationship of firm growth rates.

Simulations results in Fig. 6 reveal that if elementary units are
of the same size (V� � 0) the central limit theorem will work
properly and � � 1/2. As predicted by our model, by increasing
the value of V� we observe at any level of aggregation the
crossover of � form 1/2 to 0. The crossover is faster at the level
of markets than at the level of products due to the higher average
number of units per class K0. However, in real-world settings the
central limit theorem never applies because firms have a small
number of components of variable size (V� 
 0). For empirically
plausible values of V� and K0 � � 0.2.

Discussion
Firms grow over time as the economic system expands and new
investment opportunities become available. To capture new
business opportunities firms open new plants and launch new
products, but the revenues and return to the investments are
uncertain. If revenues were independent random variables
drawn from a Gaussian distribution with mean me and variance
Ve one should expect that the standard deviation of the sales
growth rate of a firm with K products will be �(S) � S��(S) with
� � 1/2 and S � meK. On the contrary, if the size of business
opportunities is given by a multiplicative brownian motion
(Gibrat process) and revenues are independent random vari-
ables drawn from a lognormal distribution with mean m� and
variance V�, the central limit theorem does not work effectively
and �(S) exhibits a crossover from � � 0 for S3 0 to � � 1/2
for S 3 �. For realistic distributions of the number and size
of business opportunities, �(S) is approximately constant, as it
varies in the range from 0.14 to 0.2 depending on the average
number of units in the firm K0 and the variance of the size of
business opportunities V�. This implies that a firm of size S is
expected to be riskier than the sum of S firms of size 1, even
in the case of constant returns to scale and independent
business opportunities.
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