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Abstract – We study long-range magnitude cross-correlations in collective modes of real-world
data from finance, physiology, and genomics using time-lag random matrix theory. We find long-
range magnitude cross-correlations i) in time series of price fluctuations, ii) in physiological time
series, both healthy and pathological, indicating scale-invariant interactions between different
physiological time series, and iii) in ChIP-seq data of the mouse genome, where we uncover a
complex interplay of different DNA-binding proteins, resulting in power-law cross-correlations in
xij , the probability that protein i binds to gene j, ranging up to 10 million base pairs. In finance,
we find that the changes in singular vectors and singular values are largest in times of crisis. We
find that the largest 500 singular values of the NYSE Composite members follow a Zipf distribution
with exponent ≈ 2. In physiology, we find statistically significant differences between alcoholic and
control subjects.

Copyright c© EPLA, 2010

Introduction. – Many complex systems are part
of even larger systems where the constituent complex
systems mutually interact1 [1–3], giving rise to the appear-
ance of “collective modes” [4–7]. Stochastic interactions
among related systems are reflected by the presence of
cross-correlations, and here we address the question of
whether these cross-correlations in the collective modes
exhibit power-law scale-invariant properties.
Zero-lag cross-correlations in the collective modes of

empirical time series were analyzed by using random
matrix theory (RMT) [6–9]. Recently, RMT became very
successful in the analysis of cross-correlations between
stock price changes, since cross-correlation matrices
and associated covariance matrices play important roles
in portfolio management [10,11]. A variety of studies
reported the properties of the cross-correlation matrix C of
price changes [6–14]. RMT enables a comparison between
the cross-correlation matrix obtained from N empirical
time series each of length T and a perfectly random
matrix W , called a Wishart matrix, obtained from N
mutually uncorrelated time series each of length T [15].
By analyzing cross-correlations between price changes
of the members of the S&P 500 index, it was found
that 98% of the eigenvalue spectrum of the correlation

1Heartbeat interval time series, e.g., is one among many time
series comprising the functioning human.

matrix C follows the Gaussian orthogonal ensemble of a
perfectly random matrix [7,8].
Recently, time-lag generalizations of RMT were

proposed [16–21]. However, only short-range cross-
correlations were found. To quantify long-range collective
movements in correlated data sets, we apply time-lag
RMT (TLRMT) to the magnitude of three selected
examples of real-world data: i) finance, ii) physiology, and
iii) genomics.
Consider the N -variable time series X = {Xi,t : i=

1, . . . , N ; t= 1, . . . , T} of length T , where i indexes
the series number, and t denotes the time. The cross-
correlation matrices for this time series and for the
magnitude time series are

Cij(∆t)≡ 〈Xi,tXj,t+∆t〉− 〈Xi,t〉〈Xj,t+∆t〉
σiσj

, (1)

C̃ij(∆t)≡ 〈|Xi,t||Xj,t+∆t|〉− 〈|Xi,t|〉〈|Xj,t+∆t|〉
σ̃iσ̃j

. (2)

Here σi, σj , σ̃i, and σ̃j denote the standard deviations of
Xi,t, Xj,t+∆t, |Xi,t|, and |Xj,t+∆t|, respectively, and 〈. . .〉
denotes the time average.
In order to quantify cross-correlations for varying lags

∆t, we compute the largest singular values λL(∆t) and
λ̃L(∆t) of the cross-correlation matrices C(∆t) and C̃(∆t)
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as functions of ∆t [20]. The squares of the non-zero
singular values of C are equal to the non-zero eigenvalues
of CC+ or C+C, where C+ denotes the transpose of C.
In a singular value decomposition C =UΣV + the diagonal
elements of Σ are equal to the singular values of C. The
columns of U and V are the left and the right singular
vectors of the corresponding singular values. Consider a
matrix C with main diagonal elements 1s and all off-
diagonal elements being identical, i.e., Cij(∆t)≡C(∆t).
Then we calculate the largest eigenvalue of CC+ (equal
to λ2L(∆t)) and obtain

λ2L(∆t) = 1+ (N − 1)2C(∆t)+ 2(N − 1)C(∆t)2. (3)

If Cij follows a power law Cij(∆t) =A(∆t)
−γ , then for

∆t� 1, λL(∆t) = 1+0.5A(N − 1)2(∆t)−γ , where A is a
constant.
We find long-range cross-correlations in the following

data series:

i) 1340 members Ii,t of the New York Stock Exchange
(NYSE) Composite. We analyze 1340 time series
with 2172 daily records in the 8.7-year period,
2 January 2001 to 24 August 2009. We focus
on the logarithmic change (“returns”) defined
by Ri,t ≡ ln(Ii,t/Ii,t−1), where i denotes the
index member [22], and t stands for time in
days. First we apply RMT to calculate λL(∆t=
0) = 392 for returns Ri,t and λ̃L(∆t= 0) = 359
for volatilities |Ri,t|, and we find that both largest
singular values are more than 100 times greater
than expected for uncorrelated time series, indicat-
ing cross-correlations for ∆t= 0. Next, we apply
TLRMT, and we plot λL(∆t) and λ̃L(∆t) as a
function of ∆t in fig. 1(a). We find long-range volatil-
ity cross-correlations, implying that |Ri,t| affects
|Rj,t+∆t| (i �= j) for ∆t > 0. Even though RMT shows
that λL(∆t= 0) and λ̃L(∆t= 0) are practically the
same as found in ref. [6] for eigenvalues, it is TLRMT
that shows that λ̃L(∆t) vs. ∆t decays more slowly
than λL(∆t), stating that volatility cross-correlations
last longer than return cross-correlations, and we find
that λ̃L(∆t) can be approximated by a power law
(∆t)−γ with a scaling exponent of γ = 0.64± 0.03.
Note that refs. [23,24] reported power-law cross-
correlations between pairs of financial time series in
magnitudes.

ii) Physiology Sleep Heart Health Study (SHHS) data-
base [25,26]. For a single patient, we study 11 time
series, Ii,t, among which are electroencephalography
(EEG), heart rate, and electrooculogram. Here,
i= 1, . . . , 11 denotes the index of the physiological
time series, and t denotes time in seconds. We
show λ̃L(∆t) and λL(∆t) in fig. 1(b), and we find
that λ̃L(∆t)∼ (∆t)−γ where γ = 0.06± 0.01. These
findings indicate that TLRMT might be useful for
distinguishing healthy from pathological behavior for
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Fig. 1: (Colour on-line) Largest singular value vs. lag for (a)
NYSE data. We find power-law volatility cross-correlations.
With increasing ∆t, λ(∆t) decays more quickly than λ̃(∆t).
(b) Physiological data composed of N = 11 time series, Ii,t,
each of 32000 data points, where i= 1, 2, . . . , 11. With increas-
ing ∆t, λ decays more quickly than λ̃(∆t), where λ̃(∆t) decays
as a power law. (c) Genomics data. For the largest mouse
chromosome, xij is the probability that protein i binds to
gene j. We find long-range power-law cross-correlations in xij .

multivariate correlated time series, the same as
detrended fluctuation analysis (DFA) [27–30] for a
single time series [5].

iii) ChIP-seq data of mouse chromosome 2 [31]. The bind-
ing affinity of 14 DNA-binding proteins to the DNA
of mouse chromosome 2 was obtained by calculating
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the probability xij that protein i binds to gene j
on mouse chromosome 2 for all i= 1, . . . , 14 and j =
1, . . . , 1544. We apply the DFA fluctuation function
F (n) [27–30] to these 14 numerical sequences (spatial
not temporal) xij of the same length, and we find
that F (n) can be approximated by a power law for
all of the 14 numerical sequences, F (n)∝ nα. This
power-law scaling of F (n) with n indicates the pres-
ence of long-range auto-correlations for the 14 indi-
vidual sequences xij , and the average DFA scaling
exponent α= 0.69> 0.5 indicates that neighboring
genes have a higher tendency to be both bound, or
to be both unbound, by the same transcription factor
than expected by chance. One possible interpreta-
tion of this finding is that there is some evolutionary
advantage for a species if its genes whose promoters
are bound by the same transcription factor are close
to each other in the genome. The power-law scaling
of F (n) with n states that this tendency does not
decay exponentially with the chromosomal distance
between the genes.

Next, we focus on nonequal-lag cross-correlations
using the TLRMT approach. We show λ̃L(∆t)
and λL(∆t) in fig. 1(c), and we find approximate
power-law cross-correlations with scaling exponents
of 0.37± 0.01 and of 0.18± 0.01, respectively, imply-
ing that the binding or unbinding of protein i to
gene j is influenced by the binding or unbinding
of other proteins i′ to gene j or neighboring genes
j′. Interestingly, the neighborhood reaches up to
|j− j′| ≈ 100 genes, corresponding to a chromosomal
distance of approximately 10 million base pairs.

In order to investigate if TLRMT might be useful for
prediction, we apply it to financial and genomics time
series.

i) 88 companies that contribute to the S&P 500 index
in 2009 during the 26-year period 1983–2009. We
apply TLRMT for each year, as in fig. 1(a), and we
show λ̃L(∆t) vs. year in fig. 2(a). We find pronounced
peaks during the largest market shocks and economic
crisis: the Black Monday, the Dot-com Bubble, and
the 2008 crash. We study different time lags ∆t,
because the presence of cross-correlations for ∆t= 0
does not imply the presence of cross-correlations for
∆t �= 0, and indeed we find interesting differences
when tuning the time lag ∆t �= 0. We investigate how
λ̃L(∆t) changes over time lags (days) for different
years, and we show λ̃L(∆t) vs. time lag in fig. 2(b).
We find that λ̃L(∆t)∼ (∆t)−γ , where γ varies from
year to year and is greatest in times of crisis.

We calculate the absolute values of the 88 compo-
nents |ui(λ̃L(∆t))| of the left-singular vectors corre-
sponding to λ̃L(∆t) of the volatility time series in
fig. 2(a). We show the mean µ and the standard
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Fig. 2: (Colour on-line) Application of TLRMT in finance. For
the longest N = 88 members of the S&P 500 index we calculate
(a) λ̃L(∆t) vs. year for lags 0, 2, 4, 8, and 16 from top to
bottom. TLRMT reveals pronounced peaks in times of crisis
for varying ∆t. (b) For each year we fit λ̃L(∆t) vs. lag (in
days) with a power law with exponent γ that is especially
increased in 2002 and 2008. (c) For each year considered,
we calculate, for the largest singular value, the 88 singular
vector components ui(λ̃L(∆t)), where ∆t= 0, 4, 16. From
the magnitudes, |ui(λ̃L(∆t))|, we calculate the mean, µ, and
standard deviation, σ. In 2002, for ∆t= 0, µ (σ) suddenly
increased (decreased). For ∆t= 4, 16 we use left-singular
vectors. (d) For ∆t= 0, sudden changes in |ui(λ̃L(∆t))| for two
adjacent years are in agreement with (c).
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Fig. 3: (Colour on-line) Zipf distributions for the largest
500 singular values λ̃(∆t) obtained from the volatility cross-
correlations among the NYSE Composite members. Zipf plots
for different time lags practically overlap and can be well fit
with a power law.

deviation σ of the 88 values of |ui(λ̃L(∆t))| for each
∆t= 0, 4, 16 in fig. 2(c), and we find that µ suddenly
increases in 2002, whereas σ suddenly decreases. This
finding can be partially explained by fig. 2(d), where
we find that |ui(λ̃L(∆t))| substantially change after
the Dot-com Bubble crash in 2001.

In addition to the largest singular value λ̃L(∆t)
shown in fig. 1(a), we calculate all singular values
λ̃(∆t) of the NYSE Composite. We show the rank-
ordered distribution of the largest 500 λ̃(∆t) for each
∆t in fig. 3. We find that the distributions for different
∆t practically overlap (power-law stability), and they
can be approximated by a power law with exponent 2.
In comparison, probability density functions of
returns exhibit power-law tails with exponent
≈ 4 [32]. The first power law is accompanied by
power-law volatility cross-correlations (fig. 1(a)),
and the latter by power-law volatility auto-
correlations [33–37].

ii) EEG time series. Reference [38] reported power-law
auto-correlations in both EEG time series and their
magnitudes, with different exponents for healthy
subjects and subjects with Alzheimer’s disease.
Reference [23] reported power-law cross-correlations
between pairs of EEG time series in magnitudes.
Reference [39] reported that cross-correlations
for ∆t= 0 calculated between pairs of EEG time
series are inversely related to dissociative symptoms
(psychometric measures) in 58 patients with paranoid
schizophrenia.

Here we analyze multiple time series of EEG record-
ings of two groups of subjects: control and alco-
holic [40]. These data arise from a study to examine
EEG correlates of a genetic predisposition to alco-
holism. Measurements were obtained from 64 elec-
trodes placed on the scalp, sampled at 256Hz (3.9ms
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Fig. 4: (Colour on-line) Diagnostic application of TLRMT
in physiology. (a) Standard deviation σ of singular value
(obtained from volatility cross-correlations) vs. lag for the EEG
Dataset for alcoholic and control subjects. For S2-M and S2-
NM conditions (explained in the text), σ for control subjects
is larger than σ for alcoholic subjects. (b) Mean µ of largest
singular values vs. lag for alcoholic and control subjects. For S2-
M and S2-NM conditions, µ for control subjects is larger than
µ for alcoholic subjects. (c) For each condition and alcoholic
and control subjects, we show the mean µ of |ui(λ̃L(∆t))| of
all right-singular vectors of the volatility time series. There is
a significant difference between alcoholic and control subjects.

epoch) for 1 second. The electrodes were placed at
standard sites (Standard Electrode Position Nomen-
clature, American Electroencephalographic Associ-
ation 1990). Each of 122 subjects completed 120
trials. Each subject was exposed either to a single
stimulus (S1) or to two stimuli (S2) which were
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different pictures of objects. If two stimuli are equal
it is called a matched (S2-M) condition, whereas if
two stimuli are different it is called a non-matched
(S2-NM) condition.

We randomly choose 15 alcoholic and 15 control
subjects. For a given time lag (∆t= 0, 5, 10, 20) and a
given condition (S1, S2-M, S2-NM), we calculate all
singular values λ̃(∆t) for each alcoholic subject and
for each control subject. We calculate the standard
deviations σ of λ̃(∆t) for each ∆t, for each condi-
tion, and for alcoholic subjects and control subjects
separately, and we show those standard deviations
in fig. 4(a). We find that σ for control subjects is
greater than σ for alcoholic subjects for each ∆t and
each condition. An F-test confirms that the differ-
ences between alcoholic subjects and control subjects
are statistically significant for the S2-M and the
S2-NM condition. We show in fig. 4(b) the mean µ
of λ̃L(∆t) for each ∆t, for each condition, and for
alcoholic subjects and control subjects separately. We
find that µ for control subjects is substantially greater
than for alcoholic subjects for the S2-M and the
S2-NM conditions.

Next, for each condition and for alcoholic subjects
and control subjects separately, we calculate the
magnitudes of components |ui(λ̃L(∆t))| of all right-
singular vectors corresponding to λ̃L(∆t) of the
volatility time series. For different conditions in
fig. 4(c) we show the mean µ of |ui(λ̃L(∆t))| for
varying ∆t. For the S2-M and the S2-NM conditions,
we find significant differences between alcoholic and
control subjects. In case of left-singular vectors for
small lags, for the same conditions, we find less
substantial differences between alcoholic and control
subjects.

In conclusion, cross-correlations are found in a number
of studies including nanodevices [41–43], atmospheric
geophysics [44], seismology [45], and finance [6,7,23,24,
46–55]. We study cross-correlations in both temporal and
spatial collective modes using time-lag RMT (TLRMT).
We find long-range cross-correlations in quite diverse
systems, ranging in size from the Earth’s atmosphere
(a volume of approximately 5× 1018m3) to microscopic
systems such DNA sequences (a volume of 5× 10−18m3),
ranging from living to non-living systems, and ranging
from physical to non-physical systems such as the financial
market.
In genomics data, we find spatial cross-correlations

corresponding to a chromosomal distance of ≈ 10 million
base pairs. In physiology, TLRMT reveals statistically
significant difference in standard deviations and means
of singular values between alcoholic and control subjects.
In finance, by analyzing cross-correlations in the magni-
tudes of price fluctuations we find that the largest
singular values and their singular vectors substantially
change after the Dot-com Bubble crash in 2001. We also

find that the largest 500 singular values of the NYSE
Composite members follow a Zipf distribution. We find
power-law decaying cross-correlations in the magnitudes
of price fluctuations implying that large-magnitude
fluctuations —commonly taken to quantify risk— created
in one stock are transferred to other stocks, and that
this impact lasts over many time scales. Such cross-
correlations are of potential interest in risk management.
TLRMT reveals that cross-correlations are strongest
during market crashes and global recessions.
Our findings are consistent with the interesting hypoth-

esis that cross-correlations are ubiquitously present in
many systems. Studying these cross-correlations is a neces-
sary prerequisite for understanding them, and a deeper
understanding of these cross-correlations enables a deeper
understanding of these systems. A deeper understanding
of these systems, in turn, enables improved clinical appli-
cations and increases our forecasting power. The TLRMT
approach developed in statistical physics may contribute
to this long-term goal and lead to potential advancements
in diverse areas of science.
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