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High-temperature series expansions are used to examine the dependence of critical-point ex-
ponents upon the presence of second-neighbor interactions. We consider the Hamiltonian
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where the first and second sums are over pairs of nearest-neighbor (nn) and next-nearest-
neighbor (nnn) sites, and where the spins §'?) are D-dimensional unit vectors. The two-spin
correlation function, Cz(?), is calculated to tenth, ninth, and eighth order in1/kgT forthe

Ising (D=1), classical-planar (D=2), and classical-Heisenberg (D =3) models, respectively,
for various values of the parameter R’=J,/J; and for various cubic lattices (fcc, bec, and
sample cubic). These represent the first series expansions of the spin correlation function
for nnn interactions. From C,(¥) we obtain series for the specific heat, susceptibility, and
second moment. Analysis of these series and detailed comparisons with the exactly soluble
spherical model (D=«) lead us to conclude that the exponents y (susceptibility) and v (correla-
tion length) may be independent of R’; this suggestion is consistent with the universality hy-.

pothesis.

I. INTRODUCTION

In this work we present evidence from series
expansions germane to the question “Do critical-
point exponents depend upon the range of the ex-
change interaction?”

One motivation for considering this question is
that almost all materials in nature involve interac-
tions that are greater than “nearest neighbors
only” in range, while the great majority of theo-
retical calculations are restricted to the simplest,
nearest-neighbors-only case, A second motivation
is provided by our desire to test the universality
hypothesis, ! which predicts that for systems with
interaction strengths that are finite in range? all
critical-point exponents should assume the same
values as for the case of nearest-neighbor interac-
tions only.

To this end we consider a system with both near-
est-neighbor (nn) and next-nearest-neighbor (nnn)
interactions:
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where R’ =J,/dJ, and Jy, J, denote, respectively,
the nn and nnn exchange interactions. Here g
and §;D ) denote isotropically interacting D-dimen-
sional classical spins situated on sites ¢ and j of a
regular three-dimensional (d = 3) lattice, where
D=1, 2, 3, and « correspond, respectively, to the
Ising, plane-rotator (or classical-planar), class-
ical-Heisenberg, and spherical models.

len

A. Previous Work

One can show rigorously that for D= (the
spherical model) critical-point exponents are in-
dependent of the parameter R’ for all values of R’
(cf. Appendix A of Paper I°), However, aside from
certain one-dimensional (d = 1) models, there exist
no exact results for finite D.

Moreover, previous approximation procedures
leave this an open question. In fact, the most re-
cent calculations? using the method of high-tem-
perature series expansions suggest that the sus-
ceptibility critical-point exponent y for the S=%
Heisenberg model actually varies continuously
with R’, at least for R’ in the range -0.2<R'< 2,
As the authors emphasized, however, these results
were based upon the calculation of rather short
series and therefore the rather marked dependence
of ¥ upon R’ might be spurious.

Indeed, a large literature does exist concerning
the application of series-expansion techniques to
the problem of further neighbor interactions, *-*
and previous workers who had noticed a possible
dependence of exponents upon R " were generally in-
clined todismiss their results as spurious, although
their reasons given were not always convincing.

Using both high- and low-temperature series ex-
pansions, Dalton and Wood!? have extensively ana-
lyzed the Ising model (D=1) on two- and three-
dimensional lattices (d=2, 3). Analysis of the low-
temperature series yielded estimates for the ex-
ponents 7' and B consistent with the universality
hypothesis.

From high-temperature series, Dalton and Wood
concluded that, for d= 2,3,y remains unchanged
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when second and third neighbors are introduced.
However, these conclusions were based only on
analysis of the special case of equivalent bonds
(e.g., Jy=dsor Jy=Jdy=dJ;). Although it is quite
plausible that invariance of exponents for this spe-
cial case implies invariance for all values of the
interaction strengths, this is by no means obvious.
Furthermore, the conclusions reached were based
on the following observation: Although a series of
estimates, {y,,}, for y are consistently lower than
the nearest-neighbor (R'=0) values, the {y,,} are
very slightly increasing—apparently toward the
nearest-neighbor values. It would be interesting
to see if this trend (toward the R’ =0 values of y)
continued with the introduction of more coefficients
of the series. More importantly, it would be de-
sirable to calculate the series for arbitrary J, and
J, and hence study y=y(R").

High-temperature series expansions for the next-
nearest-neighbor classical Heisenberg model (D= 3)
have been analyzed by Bowers and Woolf, !* who also
treated only the case of “equivalent bonds,” R’ =1,
We feel that their analysis, which concluded that
YR =1)=y(R = 0), was not a valid test of the uni-
versality hypothesis. Bowers and Woolf proceeded
as follows. They first obtained an estimate of the
critical temperature T,(R' = 1) by assuming that
y(R'=1)=y(R' =0). They then argued that since
this critical temperature yielded consistent esti-
mates for y(R' = 1) equal to y(R' =0) the exponent
must be independent of R'. There are two possible
pitfalls in this type of argument: (i) It is not clear
that there is a unique pair (T,, v) which yield con-
sistent results and (ii) consistency in itself is not
sufficient to justify the choice of a pair (7., ¥).
With regard to this second point we note that be-
cause of correction terms to pure power-low be-
havior a given series may yield estimates for an
exponent which, while not constant, may extrapolate
to the correct value for the exponent. An attempt
to choose T, so as to make the series more con-
sistent may result in incorrect conclusions. !’

The S =3 Heisenberg model with next-nearest-
neighbor interactions of arbitrary strength has been
considered by Dalton and Wood, ® who obtained five
terms in the expansion of the zero-field suscepti-
bility. They analyzed the series for 0< R'< 1 and
concluded that for this range of R’, y=1.33. This
value of ¥ was consistent with the work of earlier
authors who had estimated y(R' = 0)=1.33, though
more recent analysis of longer series has indicated
larger values for y(R'=0).®

B. Relevant Experimental Results

EuO is an insulating ferromagnet which can be
represented by a S=- Heisenberg model with first-
and second-neighbor interactions. Early experi-
mental investigation of this material led certain
authors to conclude that J,/J;= ~0.1 with J, posi-
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tive.” On the other hand, the recent work of
Menyuk, Dwight, and Reed* indicated J,/J,=0.5.
Furthermore, Menyuk ef al. concluded from their
measurements (using a vibrating-coil magnetome -
ter) that y=1.29. This value disagrees both with
the estimates of y(R' =0) from high-temperature
series expansions and with the very recent work

of Als-Nielsen, Dietrich, Kunnmann, and Passell,'
who studied EuO and also EuS (J,/J;20.4, S=%)
using neutron scattering. These authcrs concluded
that for both EuO and EuS, y=1.39 in agreement
with series-expansion results for y(R'=0).

We feel that the present work may shed some
light on the disagreements noted above. In partic-
ular, a conclusion that universality holds would
support the results for y of Als-Nielsen et al. while
a conclusion that universality breaks down would
support the result for y of Menyuk et al. 19

The longer series we obtain will also be useful
because the value J,/J,= 0.5 estimated by Menyuk
el al. was obtained by comparison of their experi-
mental data with predictions of high-temperature
series which were rather short.

In Sec. III we will give a possible explanation
for experimentally observed low values of y, con-
sistent with universality but based upon some pe-
culiar features of the next-nearest-neighbor series
we obtain,

C. Present Work

Using the methods described in Sec. ID of I we
have calculated the coefficients in the high-tem-
perature series expansion for the two-spin correla-
tion function“

Cz(f)=§)g,,(?)x"

through order g0, g9, and gy, respectively, for
D=1, 2, and 3 (Ising, planar, and Heisenberg
models) for 5C,,, for various values of the param-
eter R'. Here x=1/kzT. From the coefficients
g,(T), series of corresponding lengths were cal-
culated for the reduced isothermal susceptibility
Xr, for the “second moment” ,, and for the re-
duced specific heat Cy. Series for X, s and Cy
are available upon request from the authors.

We also calculated 20 terms in the high-tempera-
ture series expansion of X and u, for the exactly
soluble spherical model (D=) (cf. Appendix).
This calculation will be found to play an important
role in the analysis which follows.

As far as we know this is the first calculation
for 3C,,, of Co(T) and hence p, Our work also
significantly extends the number of known coeffi-
cients in the series for X and Cy (cf. Table I).

In the limits R'~ 0 and R'~ =, series for the
corresponding nearest-neighbor problems were
generated, thereby providing a strong check on
the calculation. Additional checks were carried
out, and of course agreement with previous cal-

(1.2)
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TABLE I. Comparison of number of expansion coefficients in the series obtained in the present workfor 3¢ . and the

longest previously published series. An asterisk indicates that series were obtained only for special case, R’ =1. The
quantities Cy, ¥, C,@), and p,(¥) are defined in I in Eqgs. (1.4)—(1.7).
Cy X C,(¥) (and thus py)

Previous Present Previous Present Previous Present

Ising 8 (Ref, 14, 10 7* (Ref, 8) 10 10
fce only) 5 (Ref, 9)

6% (Ref. 8)

5 (Ref. 9)
Classical 9 9 9
planar
Classical 5 (Ref. 9) 8 7* (Ref. 13) 8 8
Heisenberg 6 (Ref, 11)
Spherical 20 20 20

culations was obtained in the regions of overlap.

II. ANALYSIS OF SERIES FOR ISING, PLANAR,
HEISENBERG, AND SPHERICAL MODELS

We will see below that support for the universal-
ity predictions for 3C,,, is less direct than the sup-
port for the predictions for ¥¢; 4,s..° In particular,

our arguments will depend heavily upon a compari-
son between the series analysis for the Ising (D=1),
planar (D= 2), and Heisenberg (D= 3) models, and
the analysis for the spherical model (D=«). In
fact, without this compavison there is little to
counter strong (but we think misleading) evidence
for the failure of universality (i.e., for v and v

TABLE II. Estimates (in units of 107) for the critical-point exponent ¥ from PA’s to (d/dx) Inx(x) for the Ising model

on the sc lattice.

Here and in all PA tables which follow, the notation “0” indicates that either the singularity closest to

the origin was not on the positive real axis or that there were two singularities on the positive real axis very close to each

other, thereby making determination of an estimate of the exponent difficult.

For all three cubic lattices the estimates

are decreasing with R’, at leastfor R’< 10, and for certain R’ there is a remarkable consistency in the estimates.

Y: Ising, sc, R=1.00

Y: Ising, sc, R'=2.00

N 1 2 3 4 5 6 7 D N 1 2 3 4 5 6 7
2 125 122 122 122 123 123 123 2 117 121 126 131 124 122 122
3 122 122 123 123 123 131 3 121 128 134 127 119 122
4 122 123 123 123 123 4 126 135 128 123 122
(a) 5 122 123 123 123 (b) 5 131 127 123 122
6 123 123 123 6 124 119 122
7 123 125 7 122 122
8 123 8 122
¥: Ising, sc, R=5.00 v: Ising, sc, R'=10,00
IXN 1 2 3 4 5 6 7 D\N 1 2 3 4 5 6 7
2 117 113 114 115 115 115 0 2 120 0 0 115 115 115 115
3 114 114 113 116 116 130 3 0 0 0 116 115 115
4 114 114 116 116 116 4 0 0 116 115 115
(c) 5 115 116 116 116 (d) 5 115 116 115 115
6 115 116 116 6 115 115 115
7 115 150 7 115 115
8 174 8 115
Y: Ising, sc, R’=20,00

;\N 1 2 3 4 5 6 7

2 122 123 121 116 117 115 113

3 122 121 123 118 117 110

4 121 122 118 115 116

(e) 5 116 118 115 116

6 117 117 116

7 115 112

8 113
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dependent on R').
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A. Pad€ Approximants

As with 3C, ..., the Padé approximants (PA’s)
for ¥C,,, consistently indicated ferromagnetic and
antiferromagnetic singularities at x, and x,;, re-

spectively. With the introduction of second-neigh-

bor interactions, Eq. (3.1) of I holds only in the
limit of loose-packed lattices, i.e., for R =0 (sc

and bee) and for R’ =« (bce and fce). Thus in gen-
Furthermore, when

eral | x| should not equal «,.
Jy, Jjare both negative the interactions are com-
peting in determining the ordered state. 2 Thus,

it follows that T,,< T,, or

’xafiixc

for all R'.

analysis.

(2.1)

Equation (2.1) was verified by the PA
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alone it would appear that y (Ising, fcc, R’ =10)
=1.10, so that ¥ —1 has decreased to less than half
of the R'=0 value, 0.25.

On the other hand, consider the PA’s for the
spherical model [cf. Table VIII and Table V(a) of I]
for which ¥(R")= 2 for all R'. I only 11 coefficients
were known in the susceptibility series for the
spherical model (so that N+D< 10 in Table VIII),
we would be led to conclude from the PA analysis
that for R’ =10, ¥=1.31, On examination of high-
er-order PA’s (10<N+D<19), however, we see
that the residues become much less consistent and
are generally increasing, although on the basis of
20 coefficients it is hard to tell for sure whether
the residues are in fact converging to 2. The be-
havior of the spherical-model PA’s clearly illus-
trates the possibility that we do not have enough
coefficients to see asymptotic behavior for the

D=1, 2, and 3 models. In Sec. II B we present
stronger evidence for this possibility.

A sample or “cross section” of the PA estimates
for y and 2v for the D=1, 2, and 3 models is pre-
sented in Tables II-VII. We note that the estimates
for y(R') and 2v(R’) are decreasing with R’ at least
untilR'=10. We point out especially the consistency
at R'=5-10 [cf. Tables II(d), III(d), IV(d), V(c),
VI(c), and VII(c)]. For example, from the PA’s

B. Park’s Method and ‘7, Renormalization”

We have applied Park’s method to the series for
X, W2/X, and y,. For R'>1 on the sc lattice ap-
plication of a transformation [of the type Eq. (3. 26)

TABLE III. Estimates (in units of 107%) for the critical-point exponent ¥ from PA’s to (d/dx) In (x) for the Ising model
on the bcc lattice,

y: Ising, bee, R’ =1.00 7v: Ising, bee, R'=2.00

D N1 2 3 4 5 6 7 N 1 2 3 4 5 6 7
2 128 125 124 124 124 124 124 2 118 123 123 124 124 124 124
3 125 125 124 124 124 124 3 123 124 124 124 124 125
4 124 124 124 124 124 4 123 124 124 124 125
(a) 5 125 124 124 124 (b) 5 124 124 124 124
6 124 124 124 6 124 124 124
7 124 124 7 124 144
8 124 8 124
7v: Ising, bee, R’=5.00 7v: Ising, bee, R’ =10,00
D N 1 2 3 4 5 6 7 D N 1 2 3 4 5 6 7
2 116 117 118 120 121 121 122 2 117 115 116 117 117 118 118
3 117 118 124 121 123 124 3 115 116 116 117 117 117
4 118 124 120 122 124 4 116 115 117 117 117
(c) 5 120 121 122 122 d) 5 117 117 118 0
6 121 123 125 6 117 117 117
7 121 124 7 118 117
8 122 8 118
v: Ising, bece, R’ =20.00

D N1 2 3 4 5 6 7

2 119 117 117 117 116 115 116

3 117 117 117 117 115 116

4 117 117 117 117 116

(e) 5 117 117 117 115

6 116 115 116

7 116 116

8 116
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of I] is not necessary because |, |> x, (the sc lat-
tice reduces to an fcc lattice for R’ ~ ), Trans-
formations were performed on the series for the
bc,c and fcc lattices for which | x,/| = x, for large
R .
Consider first the exponent y and the sc lattice
for which no transformation need be performed
[cf. Figs. 1(a)-1(c)]. For R'=1, 2, the estimates
¥, have an upward trend, possibly extrapolating to
the R'= 0 values at =, For R'=10, 20, however,
there is a downward trend with no indication that
the series will bend up again. The only positive
statement we can make is that whatever is happen-
ing for D=1 is clearly happening for D=2 and 3.
Similar behavior is observed for other lattices
even after transforming the original series (cf.
Fig. 2), for the exponent v [cf. Figs. 3(a) and 3(b)]
and using other methods of analysis [cf. Figs. 3(b)
and 3(c)].
Consider now the spherical model [Fig. 1(d)].
The general behavior of the first 8—-10 estimates
is exactly the same as for the Ising, planar, and
Heisenberg models.? The only quantitive differ-
ence in the behavior of the series for the D=1, 2, 3,
and © models seems to be the actual value of the
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exponents., We now discuss what can be inferred
from this similarity.

C. Conclusions about y(R') and »(R')

We have seen above a striking similarity between
the series analyses for the D=1, 2, 3, and < mod-
els.® On the basis of this similarity and the fact
that Ygpneriear (R') = const, we speculate that the pre-
dictions of universality hold for 3C,,, for D=1, 2, 3
(and probably for all D). That is, we suggest that
the series which indicated a downward trend in the
estimates for y and v will eventually show a bending
up to the R'=0 values upon the introduction of a
sufficient number of higher-order coefficients.

What does puzzle us is why the series should
show such great curvature for R’ > 1 in light of the
fact that as R’ -« each cubic-type lattice reduces
to another cubic-type lattice, all of which are be-
lieved to have equal exponents. If any curvature
should be present at all, we might have expected it
to be greatest near the “symmetrical point” R '=1.2

III. SUMMARY
A. Conclusions for Exponents

We have generated what we believe are the first

TABLE IV. Estimates (in units of 10~2) for the critical-point exponent y from PA’s to (d/dx)Iny (x) for the Ising model
on the fcc lattice.

7v: Ising, fcc, R’ =1,00

v: Ising, fcc, R’ =2,00

6 4
D N1 2 3 4 5 7 D N 1 2 3 5 6 7
2 125 121 123 122 122 122 123 2 113 116 116 119 118 120 126
3 121 122 122 122 123 122 3 116 123 121 120 121 121
4 123 122 122 124 123 4 116 121 120 120 120
(a) 5 122 122 124 123 5 119 120 120 121
6 122 123 123 6 142 120 120
7 123 122 7 120 121
8 123 8 123
v: Ising, fce, R'=5,00 v: Ising, fce, R’ =10.00
14
D N1 2 3 4 5 6 7 D N 1 2 3 4 5 6 7
2 111 110 111 113 113 114 115 2 113 111 110 110 110 111 111
3 110 111 0 117 119 119 3 111 110 110 110 110 110
4 111 121 114 118 119 4 110 110 110 110 110
(c) 5 113 117 119 119 (d) 5 110 110 110 110
6 113 119 119 6 110 110 110
7 115 119 7 111 110
8 115 8 111
v: Ising, fce, R'=20,00
N 1 2 3 4 5 6 7
2 116 113 112 112 111 110 110
3 109 112 112 113 109 110
4 112 112 112 0 110
(e) 5 112 113 0 109
6 111 109 110
7 110 110
8 110
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high-temperature series expansions for the two-
spin correlation function for the Ising, classical-
planar, classical-Heisenberg, and spherical mod-
els of magnetism (D=1, 2, 3, and «) with next-
nearest-neighbor interactions. We have also sig-
nificantly extended the series for the zero-field

{a) Ising 125 + y(R'=0)

R'=20
10 —1.20 n
5

!
e 1 I | 115
!

1
]
5 io —1.35
«—— y(R'=0)

(b) Planar —1.30

Hi1es n
R'=20
10
—1.20
5
1
2 Lt 1.15

I
3 1.40 « ¥ (R'=0)

o= —

L Ll
L L
5 10

(c) Heisenberg

n

| 1.15

|
L
5 i0

(d) Spherical

7(R'= 0)
= 2.00

—1.60

"n

FIG., 1, Estimates for vy from Park’s method for the

(a) Ising [Y(R’ =0) = 125], (b) classical-planar [y(R’ =0) = 133],

(c) classical-Heisenberg [Y(R’ =0) =1, 40], and (d) spherical
[y(R’ =0) =2. 00] models on the sc lattice. We note the sim-
ilar behavior for all four models. The reader should note
that later terms of the series for R’ =1, 2, and 5 indicate
a “turning up” to larger values of y. Moreover, this bend-
ing occurs at lavger order n for lavger values of R, sug-
gesting that perhaps a similar turning up might occur for
very large R’(R’ =20, for example) if a sufficiently large
number of terms in the series were available. This must
occur in the spherical model for which vy is rigorously in-
dependent of R’.
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(a) Ising

1
[N
o

x

>

(b) Ising y(R'=0)+—1.25

FIG. 2. Estimates for v from Park’s method applied
to Ising model series for the (a) bce and (b) fec lattices.
The series were first transformed to reduce the effects
of antiferromagnetic singularities., By comparison with
Fig. 1(a) we see that the behavior of the estimates appears
to be lattice independent.

isothermal susceptibility and the specific heat for
these models.

Straightforward analyses using a number of dif-
ferent techniques indicate that the exponents y and
v are decreasing with the parameter R’ at least for
R'<10. However, comparison with similar anal-

(a) Ising
—1.25
R'=20
10 —1.20 2w,
5
2 115
(b) Isin
9 .25
R'=20
10
? —1.20 2wp
2 s
(c)Ising Y (R'=0)+—1.25
R'=20
10 —1.20 ¥y,
5
5 1 +.15

|- —
ENE o
af= -
= =
~i-
®|- -
al-

FIG. 3. Ising model, sc lattice. (a) and (b) Estimates
of 2y from application of Park’ s method and “T,renor-
malization, ” respectively; (c) estimates for vy from a vari-
ation [H. E. Stanley, Phys. Rev. 158, 546 (1967)] of the
ratio method in which v ,=1=n[1 = p,(x,),] [cf. Eq. (2.8) of
1], where (x),is found from Eq. (2.7) of I. The similar
behavior for the estimates in (a)— (c) andin Figs. 1 and 2
indicates that the general behavior noted in Fig. 1 is not
confined to the exponent v, to a specific lattice, or to a
specific method of analysis.
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TABLE V. Estimates (in units of 10"?) for the critical-point exponent y from PA’s to (d/dx) Inx(x) for the planar model
on the sc lattice. We see the same decrease with R’ in the estimates for y as seen for the estimates for the Ising model.

y: Planar, sc, R'=1,00 v: Planar, sc, R’ =2,00

AN 1 2 3 4 5 6 D\N 1 2 3 4 5 6

2 132 125 127 127 128 128 2 120 122 130 134 12y 127
3 125 126 127 128 128 3 122 0 135 132 121
4 127 127 128 128 4 131 135 126 126
(a) 5 127 128 128 (b) 5 134 132 126
6 128 128 6 129 122
7 128 7 127
v: Planar, sc, R’=5.00 v: Planar, sc, R'=10.00

AN 1 2 3 4 5 6 D\N 1 2 3 4 5 6

2 119 119 107 118 118 118 2 122 122 122 116 118 118
3 119 115 118 118 119 3 122 122 120 118 118
(c) 4 110 118 118 118 @ ¢4 122 120 119 117
5 118 118 118 5 117 118 117
6 118 119 6 118 118
7 118 7 118

v: Planar, sc, R’ =20.00

D\N 1 2 3 4 5 6

2 125 125 125 111 120 118
3 125 125 123 121 119
(e) 4 125 123 121 109
5 115 121 112
6 120 119
7 118

TABLE VI. Estimates (in units of 10-% for the critical-point exponent y from PA’s to (d/dx) Iny(x) for the classical-
Heisenberg model.

v: Heisenberg, sc, R’ =1,00 v : Heisenberg, sc, R’ =2.00

1 2
D\N 1 2 3 4 5 D\N 3 4 5

2 138 128 131 131 132 2 122 124 135 138 134
3 128 130 131 0 3 124 124 139 136

(a) 4 131 131 132 (b) 4 135 139 133
5 131 0 5 139 136
6 132 6 134

v: Heisenberg, sc, R'=5,00 v: Heisenberg, sc, R’ =10, 00

D\N 1 2 3 4 5 D\N 1 2 3 4 5
2 120 120 120 119 120 2 124 123 124 114 120
3 120 116 120 120 3 123 124 122 120

(c) 4 120 120 120 (d) 4 124 122 121
5 119 120 5 117 120
6 120 6 120

v: Heisenberg, sc, R’ =20, 00

ANl 2 3 4 5

128 127 127 127 121
127 128 125 123
127 125 124
0 123
122

(e)

DU W N
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TABLE VIL. Estimates (in units of 107?) for the critical-point exponent 2v from the PA’s to (d/dx) [Inx~! p, &x) /X x)] for

the Ising model on the sc lattice.

These estimates show the same decrease with R’ as the estimates for v.

2v: Ising, sc, R’=1,00

2v: Ising, sec, R’ =2,00

D\N 1 2 3 4 5 6 D\N 1 2 3 4 5 6
2 130 122 124 124 124 124 2 120 119 125 124 124 123
3 122 124 124 124 124 3 119 120 124 124 124
(a) 4 124 124 124 127 (b) 4 125 124 124 124
5 124 124 127 5 124 124 125
6 124 125 6 124 125
7 124 7 123
2v: Ising, sc, R'=5.00 2v: Ising, sc, R’ =10,00
D N1 2 3 4 5 6 D N 1 2 3 4 5 6
2 119 118 20 117 117 117 2 122 121 122 116 116 117
3 118 117 118 118 118 3 121 118 119 116 116
(c) 4 85 118 118 118 (d) 4 122 119 118 117
5 117 118 118 5 117 116 117
6 117 117 6 116 116
7 117 7 117
2v: Ising, sc, R’ =20.00

D\N 1 2 3 4 5 6

2 125 124 124 115 115 116

3 124 120 121 115 115

(e) 4 124 121 121 116

5 118 115 116

6 115 116

7

116

yses for the exactly soluble spherical model [for
which y(R")=2 for all R'] leads us to put forth the

hypothesis that this decrease is probably spurious

were known.
evidence that the predictions of universality are

and would disappear if more terms in the series

We thus conclude from this indivect

TABLE VIII, Estimates (in units of 10~) for the critical-point exponent y from PA’s to (d/dx) [InX(x)] for the spherical
For larger values of N+D

the estimates are generally increasing although it is not clear that the estimates are converging to the known exact value

model on the sc lattice with R’ =10,

For N+D < 10 the estimates for v are consistently ~ 1, 3.

of y, 2.0.
v: Spherical model, sc lattice, R’ =10, 00
D\N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 125 130 132 133 133 133 133 132 132 132 132 133 134 135 136 137 139 134
2 137 135 134 133 133 0 131 132 132 132 131 131 130 138 0 0 0
3 135 126 132 130 131 132 132 133 134 136 140 146 153 159 165 170
4 134 132 132 131 130 133 136 158 165 166 171 175 177 179 181
5 133 131 131 131 133 135 0 165 166 165 184 181 182 185
6 134 131 130 133 138 143 160 166 165 0 180 181 0
7 127 132 133 135 144 0 169 178 179 181 181 248
8 131 132 136 0 161 169 173 179 178 212 0
9 132 133 162 171 167 180 179 182 162 0
10 132 135 170 168 169 179 178 193 89
11 132 138 168 169 166 182 1756 144
12 131 144 171 198 180 182 133
13 131 151 175 181 179 206
14 131 158 178 182 0
15 143 164 180 185
16 0 169 181
17 0 173
18 0
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correct for the Ising, classical-planar, and classi-
cal-Heisenberg models. This conclusion is in
agreement with the conclusions of most other
authors (cf. Sec. I B) who analyzed X, using
shorter series, primarily for the special case
R'=1, Furthermore, assuming the spin indepen-
dence of exponents our work would indicate that the
decrease in y observed by Menyuk ef al. * for the
S =7 Heisenberg model is also spurious and is re-
lated to the shortness of the series that they ana-
lyzed.

The series for Cy were not regular enough to
permit reliable predictions for the exponent «.

B. Relation with Experiment

In Sec. I B and in I we discussed certain experi-
ments, the results of which would indicate a possi-
ble breakdown in universality. While our high-
temperature series analysis leads us to believe
that universality is obeyed, it also gives us one
possible reason for the disagreements between
theory and experiment noted above. We note that
for 3C; apys, and ¥, there were ranges of values
for the parameters R and R', respectively, for
which the series exhibited considerable curvature;
there was so much curvature, in fact, that a super-
ficial analysis might lead to incorrect predictions
for exponents. We feel that a similar phenomenon
may be affecting experiments to determine expo-
nents,

Because experiments cannot actually get to tem-
peratures arbitrarily close to T,, what is actually
measured is a temperature-dependent exponent y*
defined through®

7*E(T—Tc)c—l£zf Inx™, (3.1)

|
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which has the property that

limy*(T)=v .
T

(3.2)
T-T¢

If the series expansion for X exhibits much curva-
ture, then the experimentally measured y*(T) will
do so also. This can be seen, for example, by
calculating y*(7T) for the model function in Eq.
(2.40) of I. Here we find

y¥(T)=a - Z% €’ + (higher-order terms in €) .

(3.3)
In order to measure the correct value for y we
must have
b

aAr <1

(3.4)
which implies for »~1 that € must be 10 times as
small for R=0.1 as for R=1.0 (cf. Sec. II F of I).

We thus see that when there is considerable
curvature in a series, not only are the series anal-
yses likely to yield incorrect estimates but experi-
mental investigations are likely to do so also. We
are by no means claiming that this is ke reason
for the disagreement between theory and experi-
ment; we present it only as one possibility.
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APPENDIX: SELECTED SERIES FOR THE SPHERICAL MODEL

Coefficients in the spherical-model susceptibility series for selected values of R's J,/Jy are listed below;

shown are the first 20 terms for R =0, 1, 2, 5, 10, and 20. An arbitrary number of terms

can be straight-

forwardly calculated using methods explained in Appendix A of Paper I.°

Spherical Model on sc Lattice: Susceptibility

Jy=1.00, J,=0,00

Jy=1,00, J,=1,00

(=

1=0.50, J,=1,00

0.1000000000D 01
0.6000000000D 01
0.3000000000D 02
0.144 0000000D 03
0,666 0000000D 03
0,302 4000000D 04
0.1347600000D 05
0,.5932800000D 05
0.258354 0000D 06
0,1115856000D 07
0,4784508000D 07

S W30 U hxWN RO

[y

0,1000000000D 01
0.1800000000D 02
0,306 0000000D 03
0.5064000000D 04
0,8235000000D 05
0,1322496000D 07
0,2103663600D 08
0,3320978400D 09
0,5210355942D 10
0.8132508182D 11
0.1263789920D 13

.1000000000D 01
150 0000000D 02
.2115000000D 03
.2904000000D 04
.3924562500D 05
.5246595000D 06
.6957477562D 07
.9167579325D 08
.1201675465D 10
.156 823 7264D 11
.2038934212D 12

S R e o = = = =
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TABLE.

(Continued)

STANLEY

|

Spherical Model on sc Lattice: Susceptibility

J1=1.00, J2=1.00

J1=0.50, J2:1.00

Ji=1.00, J,=0.00
11 0.203 938560 0D 08 0.1956508114D 14 0.2642269074D 13
12 0.864 735480 0D 08 0.3018939415D 15 0.3414337579D 14
13 0.365 034 816 0D 09 0.464 475 8296D 16 0.4400816557D 15
14 0.153 482 796 0D 10 0.7127674544D 17 0.5659463750D 16
15 0.6431000832D 10 0.1091253240D 19 0.7263260097D 17
16 0.2686222845D 11 0.166 722 7783D 20 0.9304358135D 18
17 0.1118919705D 12 0.2542379190D 21 0.118990413 7D 20
18 0.4649022634D 12 0.3870207843D 22 0.1519395094D 21
19 0.1927243552D 13 0.5882200742D 23 0.193739003 7D 22
20 0.797276 776 9D 13 0.8927134570D 24 0.246 716796 4D 23

J1=0.20, J,=1.00 J4=0.10, J,=1.00 J1=0.05, J,=1.00
0 0.100 000 0000D 01 0.1000000000D 01 0.100000000:0D 01
1 0.132 000 000 0D 02 0.126 000 000 0D 02 0.123 000 0000D 02
2 0.162 000 0000D 03 0.146 700000 0D 03 0.1392750000D 03
3 0.1925952000D 04 0.1647744000D 04 0.1517118000D 04
4 0.224 814 816 0D 05 0.181178586 0D 05 0.1614038816D 05
5 0.259340 8205D 06 0.196 448243 0D 06 0.1689987582D 06
6 0.2967204813D 07 0,210 937092 8D 07 0.1749473232D 07
7 0.3374351955D 08 0.2248889178D 08 0.1795783096D 08
8 0.3819377947D 09 0.238476 8154D 09 0.1831393189D 09
9 0.4306755273D 10 0.2518266670D 10 0.1858216014D 10
10 0.4841048962D 11 0.2650315495D 11 0.1877755356D 11
11 0.542 702 0970D 12 0.2781610856D 12 0.1891209062D 12
12 0.6069710063D 13 0.2912678065D 13 0,1899540982D 13
13 0.6774497631D 14 0.3043916270D 14 0.1903533234D 14
14 0.7547165499D 15 0.3175630678D 15 0.1903825204D 15
15 0.839394 9549D 16 0.3308056132D 16 0.1900943217D 16
16 0.9321591634D 17 0.3441374587D 17 0.1895323442D 17
17 0.1033739154D 19 0.3575728159D 18 0.1887329764D 18
18 0.1144926027D 20 0.3711228935D 19 0.1877267833D 19
19 0.1266577562D 21 0.3847966371D 20 0.1865396188D 20
20 0.139962 4086D 22 0.3986012881D 21 0.1851935094D 21

*For the values of the exact series coefficients, the
reader may order document NAPS 01762 from Asis-
National Auxiliary.Publications Service, ¢/o CCM Inform-
ation Corporation, 866 Third Ave., N. Y., N. Y. 10022,
remitting $2.00 for each microfiche or $5.00 for each
photocopy.
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and M. Wortis [Phys. Rev. B 4, 3954 (1971)] in a rather
different context, namely, in connection with their attempt
to answer the question of what is y(R’ =0) for the case
D=3, Ferer et al. conclude that y is 1.405+0.02, a value
somewhat larger than the Bowers-Woolf estimate y=1,375
+0, 002, but closer to the S=4% estimate of y=1,43 +0, 01

of Baker et al. (Ref. 16).
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Als-Nielsen value.

2When J; and J, are allowed to vary arbitrarily between
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— and +, we find domains where the competing inter-
actions affect the nature of the state to which the system
orders. This state is determined by the precise ¢ype of
lattice structure (fcc, bee, sc, . . .) as well as by the
values of Jy and J;. The ordered state has been studied
heretofore by Green’s-function methods (and, of course,
by mean-field approaches); the application of high-tem~-
perature series-expansion methods to this problem is the
subject of another work just completed. In any case, the
universality hypothesis predicts that the exponent for the
appropriate diverging staggered susceptibility would be
the same as for the case of R’ =0 and J; positive. See
G. Paul and H. F. Stanley (unpublished).

21The similarity between the series for D=1, 2, 3, and
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The configuration-interaction method is utilized to investigate the effects of weak covalency
on the crystal-field splittings, the g factors, the spin Hamiltonian, the spin-orbit factors, and

the nuclear-quadrupole splitting in the salts FeF, and KFeF;.

Recent x-ray data for FeF,

allow predictions to be made concerning the pressure dependence of the above~mentioned pa-

rameters in that salt.

In addition, predictions are made for the pressure dependence of the

Néel temperature and the saturation (7'=0) value of the magnetic-hyperfine field based upon
the calculated pressure dependence of the spin-Hamiltonian parameters for FeF,.

INTRODUCTION

The effects of weak covalency have been observed
in transition-metal salts for many years. Even in
the highly electronegative fluoride salts one ob-
serves significant charge transfers. As has been
shown previously,'~5 these covalency effects must
be taken into account if one expects to deal with
the problem of calculating atomic parameters such
as the crystal-field splittings, g factors, the spin
Hamiltonian, etc. In addition, certain nuclear
parameters (i.e., electric-quadrupole and mag-
netic-hyperfine splittings and the isomer shift)
are coupled to the charge environment of the nu-
cleus and are thereby affected by the covalent
bond.

In the ensuing sections we investigate, respec-
tively, the crystal-field splittings for KFeF; and

FeF, (ionic and covalent), the spin Hamiltonian
(including covalent reduction), and the Fe’" nuclear-
quadrupole splitting and magnetic -hyperfine field.

CRYSTAL-FIELD SPLITTINGS

The formalism utilized here (configuration in-
teraction) was developed by Hubbard, Rimmer, and
Hopgood! (HRH) in a first-principles treatment of
the crystal-field splittings and the transferred hy-
perfine field in the perovskite salts KNiF; and
KMnF;. In order to effect this variational calcula-
tion, HRH assume a trial wave function of the form

v=2u8;]i)+2220 20 af |jke) , (1)
i € § R

where the |)’s are representative of determinantal
wave functions with £; and aj, being the appropriate
mixing coefficients. Here the basis set will con-



