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Here we propose a new method, detrended cross-correlation analysis, which is a generalization of
detrended fluctuation analysis and is based on detrended covariance. This method is designed to
investigate power-law cross correlations between different simultaneously recorded time series in the
presence of nonstationarity. We illustrate the method by selected examples from physics, physiology, and
finance.
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There are a number of situations where different signals
exhibit cross correlation. In seismology, the degree of cross
correlation among noise signals taken at different antennas
of detector arrays is an alert signaling earthquakes and
volcanic eruptions [1]. In finance, risk is estimated on the
basis of cross-correlation matrices .for different assets and
investment portfolios [2]. In nanodevices for quantum
information processing, electronic entanglement motivates
the computation of current noise cross correlations, to see
whether the sign of this signal would be reversed compared
to the standard devices [3].

Consider two time series fyig and fy0ig, where i �
1; 2; . . . ; N. Each series can be represented as a random
walk of k steps, and we can define Rk � y1 � y2 � . . .�
yk and R0k � y01 � y

0
2 � . . .� y0k, where k � N. Series fyig

has a mean � � �yi � �1=N�
PN
i�1 yi and a variance �2 �

�yi ���
2, while series fy0ig has a mean �0 � �y0i and a

variance �02 � �y0i ��
0�2. We assume that the autocorre-

lation functions A�n� � �yk ����yk�n ���=�
2 and

A0�n� � �y0k ��
0��y0k�n ��

0�=�02 scale as power laws
A�n� � n�� and A0�n� � n��

0
, with 0< �, �0 < 1. We

further assume that for the cross-correlation function
X�n� � �yk ����y0k�n ��

0�=���0� between the time se-
ries fyig and fy0ig

 X�n� � n��	 ; (1)

with 0< �	 < 1, where, e.g., since X�n� is in general not
even, X�n� � Cn��	 for positive n
 1 and X�n� �
D��n���	 for negative n (�n
 1), where C and D are
constants. However, this definition in Eq. assumes statio-
narity of both time series, and one can question its appli-
cability to real-world data typically characterized by a high
degree of nonstationarity.

Currently there is no method to quantify the cross-
correlations exponent �	 between two correlated time

series in the presence of nonstationarity [4]. Here we
propose such a method, and we illustrate the method by
selected examples from physics, physiology and finance.
To this end, for two stationary processes yk and y0k we
calculate the expected covariance
 

h�Rn � hRni��R0n � hR0ni�i � nX�0� �
Xn�1

k�1

�n� k�

	 �X�k� � X��k��; (2)

where X�0� � h�yk ����y0k ��
0�i=��0. The sums with

X�k� of Eq. (2) can be approximated by integrals:Pn�1
k�1 X�k� 


Pn
k�1 k

��	 

R
n
1 dxx

��	 / n1��	 , andPn�1
k�1 kX�k� 


Pn
k�1 k

1��	 

R
n
1 dxx

1��	 / n2��	 , and
similar for sums with X��k�. Asymptotically Eq. (2) scales
as

 h�Rn � hRni��R0n � hR0ni�i � n2�; (3)

where the scaling exponents � and �	—respectively re-
lated to the covariance and the cross-correlation func-
tion—are not independent, since � � 1� 0:5�	 [5]. For
self-similar processes fyig � fy0ig, the covariance of
Eqs. (2) and (3) becomes the variance that for n
 1 scales
as n2H, so � � H, where H is the Hurst exponent.

In order to quantify long-range cross correlations when
nonstationarities are present, we propose a modification of
the above covariance analysis which we call detrended
cross-correlation analysis (DCCA). We consider two
long-range cross-correlated time series fyig and fy0ig of
equal length N, compute two integrated signals Rk �Pk
i�1 yi and R0k �

Pk
i�1 y

0
i, where k � 1; . . . ; N. We divide

the entire time series into N � n overlapping boxes, each
containing n� 1 values. For both time series, in each box
that starts at i and ends at i� n, we define the ‘‘local
trend’’, ~Rk;i and ~R0k;i (i � k � i� n), to be the ordinate
of a linear least-squares fit. We define the ‘‘detrended
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walk’’ as the difference between the original walk and the
local trend. Next we calculate the covariance of the resid-
uals in each box f2

DCCA�n; i� � 1=�n� 1�
Pi�n
k�i�Rk �

~Rk;i��R0k � ~R0k;i�. Finally, we calculate the detrended co-
variance by summing over all overlapping N � n boxes
of size n,

 F2
DCCA�n� � �N � n�

�1
XN�n

i�1

f2
DCCA�n; i�: (4)

When only one random walk is analyzed (Rk � R0k), the
detrended covariance F2

DCCA�n� reduces to the detrended
variance F2

DFA�n� used in the DFA method [6].
In order to test the utility of the proposed DCCA

method, power-law autocorrelated time series yi and y0i
are generated by using a stationary linear ‘‘ARFIMA’’
process [7]: yi �

P
1
j�1 aj���yi�j � �i [8], where 0< �<

0:5 is a free parameter, aj��� are weights defined by
aj��� � ��j� ��=��������1� j��, ��j� denotes the
Gamma function, and �i denotes an independent and
identically distributed (i.i.d) Gaussian variable. The pa-
rameter � is related to the Hurst exponent, H � 0:5� �
[7]. We generate two time series: fyigwith � � 0:1 and fy0ig
with �0 � 0:4. Since both fyig and fy0ig are generated with
the same error term �i, X�n� � 0 [9]. In Fig. 1(a) we show
that each time series exhibits the power-law autocorrela-
tions expected for ARFIMA, and that the root mean square
(rms) of the detrended covariance vs. n also follows ap-
proximately a power law, consistent with the fact that fyig
and fy0ig are power-law cross correlated. For different pairs
of power-law autocorrelated time series fyig and fy0ig, char-
acterized by Hurst exponents H and H0, we find the time
series are also power-law cross correlated, where the ex-
ponent � of Eq. (3) is approximately equal to the average of
the Hurst exponents: � 
 �H �H0�=2.

The power-law cross correlations between fyig and fy0ig
may exist only if A�n� � n�� for both processes. We gen-
erate two time series by using two uncoupled ARFIMA
processes: fyig with � � 0:1 and fy0ig with �0 � 0:4. In
Fig. 1(b) we find that, even though both fyig and fy0ig are
power-law autocorrelated, the detrended covariance vs n of
Eq. (4) fluctuates around zero which indicates that no
power-law cross-correlations are present. The same result
we show for uncoupled ARFIMA processes fyig and fy0ig
defined by � � 0:2 and �0 � 0:3, respectively. Generally,
if the detrended covariance vs n oscillates around zero,
there are no power-law cross correlations with an unique
exponent, but either no cross correlations or only short-
range cross correlations exist between fyig and fy0ig.

To further exemplify the potential utility of the DCCA
method for analyzing real-world data, we study two time
series, both of which can be considered as two outputs of a
complex system: the air humidity and the air temperature
[10]. We analyze absolute values of the successive differ-
ences of air humidity (denoted by fjyijg) and air tempera-
ture (denoted by fjy0ijg). Figure 2 shows that each of two

time series fjyijg and fjy0ijg exhibits power-law autocorre-
lations with similar scaling exponents. Figure 2 also shows
that cross-correlations between fjyijg and fjy0ijg exist and
can be fit a power law n� with exponent � � 0:75, practi-
cally equal to the exponent calculated for the temperature
differences. We also analyze time series fyig and fy0ig, and
we find that the DFA and DCCA analyses exhibit the corre-
latedbehavior,where F2

DCCA�n� is negative for every n [11].
As a second example of real-world data, we analyze the

Sleep Heart Health Study (SHHS) database which is de-
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FIG. 1. (a) rms of detrended variance FDFA�n� and detrended
covariance, FDCCA�n�, where n is a scale. For two time series
generated by two ARFIMA processes: fyig with � � 0:1 and fy0ig
with �0 � 0:4 we show the DFA curves FDFA�n� for both fyig and
fy0ig, which can be fitted by power laws FDFA � n

H. Cross
correlations are generated since we choose the error term to be
equal for both time series: �i � �0i, where �i corresponds to fyig
and �0i corresponds to fy0ig. When cross correlations are present,
the same weights are responsible for power-law cross correla-
tions between fyig and fy0ig. For n
 1 we find FDCCA�n� 
 n�

[see Eq. (4)], where � � 0:73. This example illustrates the
relation: � 
 �H�H0�=2. If we choose the error terms �0i �
��i, then F2

DCCA�n� becomes negative for every n. For that case
the cross-correlation function X�n� becomes also negative.
(b) Detrended covariance F2

DCCA�n� of Eq. (4). We generate
two pairs of two ARFIMA processes, where for each pair the
time series are power-law autocorrelated, but not cross corre-
lated, since each ARFIMA is generated by its own error term.
The fluctuations, both positive and negative, indicate that two
time series are not power-law cross correlated with an unique
exponent, but either short-range cross correlated or not at all
cross correlated.
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signed to clarify the relationship between sleep disordered
breathing and cardiovascular disease [12]. For a single
patient [12,13], we analyze correlations behavior of five
variables: two electroencephalography (EEG) variables,
where EEG is the neuro-physiological measurement of
the electrical activity of the brain recorded by electrodes
commonly placed on the scalp; heart rate (HR) describing
the frequency of the cardiac cycle, derived from the elec-
trocardiogram (ECG) which records the electrical activity
of the heart over time; and for both left and right eye the
electrooculograms, obtained by measuring the resting po-
tential of the retina.

We analyze the time series of two EEG variables simul-
taneously recorded every second, and find that each of
them is short-range autocorrelated. For the absolute values
of two EEG variables, the DFA curves in Fig. 3 show that
each time series of the magnitudes exhibits power-law
autocorrelated behavior, indicating that a large increment
is more likely to be followed by a large increment. Figure 3
also shows that, besides autocorrelations, the time series of
magnitudes exhibit power-law cross-correlations indicat-
ing that a large increment in one variable is more likely to
be followed by large increment in the other variable. We
also find that power-law magnitude cross correlations exist
between the two time series of magnitudes of two EOG
variables. We also find nonvanishing cross correlations
between ECG time series and C3=A2 time series. In
cross-sectional studies where many different physiological
time series are recorded, an analysis based on the DCCA
method should add diagnostic power to existing clinical
methods employed to discriminate healthy from pathologi-
cal behavior.

As a third example we analyze the daily closing values
of the Dow Jones and the Nasdaq financial indices together
with their corresponding trading volumes (the number of
shares traded each day). For both price and trading vol-
umes, we analyze the time series of absolute values of the
differences of logarithms for successive days. In Figs. 4(a)
and 4(c) we show their integrated signals I�n� �Pn
i�1�jyij � j �yij�. In Figs. 4(b) and 4(d) we see that each

of the four time series is power-law autocorrelated, and we
also see both for absolute values of price changes (‘‘vola-
tility’’) and trading volume that the time series for Nasdaq
and Dow Jones indices are power-law cross correlated.

We obtain similar results by analyzing cross-correlations
between Microsoft and IBM stock prices and trading vol-
umes, consistent with the interesting possibility that the
above results may hold not only for indices, but also for
individual companies. This result is especially interesting
during volatile periods. Long-range cross correlations be-
tween two stocks imply that each stock separately has long
memory of its own previous values and, additionally, has a
long memory of previous values of the other stock.

In conclusion, we propose a new method to quantify the
cross correlations between the simultaneously recorded
time series. In cross-sectional studies where many different
time series are recorded, the DCCA method based on local
detrending together with other methods based on global
oscillatory detrending may add diagnostic power to exist-
ing statistical methods. It is possible that the DCCA meth-
ods can be of use in areas where there are multiple
correlated time series, such as in physiology where time
series analysis is used as a clinical method to discriminate
healthy from pathological behavior. In areas where perio-
dicities are important aspect of stochastic processes, our
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FIG. 2. Power-law autocorrelations and cross correlations in
successive differences of air humidity fyig and air temperature
fy0ig, recorded each 10 minutes. For time series of their absolute
values, fjyijg and fjy0ijg, we find that both time series show sudden
bursts of large changes. We show the rms of detrended variance
FDFA�n� together with detrended covariance FDCCA�n�. We find
that DFA curves of fjyijg and fjy0ijg and DCCA curve are very
similar, and can be approximated with power laws FDFA�n� � n

H

with scaling exponents H � 0:72 and H0 � 0:76, and
FDCCA�n� � n� with � � 0:75.
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method can be used together with power spectrum in order
to capture the frequency content of stochastic processes.
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FIG. 4. Long-range autocorrelations and cross correlations in absolute values of price changes and trading volume for both Dow
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