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Using Monte Carlo simulations, we study the distributions of the 3-block mass N3 in four-, five-, and
six-dimensional percolation systems. Because the probability of creating large 3-blocks in these dimensions is
very small, we use a ‘‘go with the winners’’ method of statistical enhancement to simulate configurations
having probability as small as 10230. In earlier work, the fractal dimensions of 3-blocks, d3, in 2D ~two
dimensional! and 3D were found to be 1.2060.1 and 1.1560.1, respectively, consistent with the possibility
that the fractal dimension might be the same in all dimensions. We find that the fractal dimension of 3-blocks
decreases rapidly in higher dimensions, and estimate d350.760.2 ~4D! and 0.560.2 ~5D!. At the upper
critical dimension of percolation, dc56, our simulations are consistent with d350 with logarithmic correc-
tions to power-law scaling.

DOI: 10.1103/PhysRevE.67.026103 PACS number~s!: 64.60.Fr, 05.45.Df, 64.60.Ak

I. INTRODUCTION

Percolation is a classic model for disorder @1–3#. It con-
tinues to be of interest both because of the application of the
model to various physical phenomena from flow in porous
media @4# to the behavior of forest fires @5# and because as a
simple geometrical model of a system with a phase transition
it provides an ideal environment for studying the properties
of critical systems @6#.

A number of years ago, it was realized that for bond per-
colation the incipient infinite cluster can be decomposed into
simply connected ‘‘links’’ and multiply connected ‘‘blobs’’
@7#. Recently, it has been recognized for bond percolation
that clusters and blobs are the k51 and k52 cases of
k-connected graphs (k-blocks!, graphs in which all vertices
are connected to every other vertex in the k-block by at least
k independent paths @8–10#. The values of the fractal dimen-
sion d3 of 3-blocks in two- and three-dimensional~2D and
3D! percolation systems at the percolation threshold were
found to be 1.2060.1 and 1.1560.1, respectively @9#.

The fact that the fractal dimensions of 3-blocks are iden-
tical within error bars is consistent with the possibility that
d3 might be independent of dimension. This independence
on dimension would be surprising because all other non-
trivial exponents depend on dimension below the upper criti-
cal dimension dc56. To investigate whether d3 is, in fact,
independent of dimension, we focus in this paper on deter-
mining d3 for d54, 5, and 6 using Monte Carlo simulations.

In the following section, we study d3 for percolation on
the Cayley tree in order to gain insight into the behavior of
3-blocks in very high dimension. In Sec. III, we discuss the
methods we use to generate large 3-blocks in 4D, 5D, and
6D. In Sec. IV, we discuss our results.

II. CAYLEY TREE RESULTS

Percolation on the Cayley tree has been used as a model
for percolation for d>6, the upper critical dimension of per-

colation. The cluster fractal dimension and blob fractal di-
mension, as well as a number of other critical exponents on
the Cayley tree, are identical to those of percolation for d
>6 @1–3#. Below, we argue that for percolation on the Cay-
ley tree dk50 for k>3 suggesting that while d3 may change
little between d52 and d53, eventually d3 decreases more
rapidly approaching zero for d56. To show that dk50 for
k>3 for percolation on the Cayley tree, we make use of the
concept of k-bone. Reference @9# generalizes the concept of
backbone by defining a k-bone as the set of all sites con-
nected to k disjoint sets of points by k independent paths.
Thus, clusters and backbones are k-bones with k51 and 2,
respectively. For a given k, the fractal dimension of k-bones
and k-blocks are equal @9#.

To see that for percolation on the Cayley tree the fractal
dimension of a 3-bone is zero, we choose any three points on
the boundary ~Fig. 1! and observe that there is only one site
which is connected to these points by independent paths.
This result is independent of the size of the tree, even if the
tree is fully populated. Hence, the fractal dimension is zero.
Clearly this argument holds for larger k and is meaningful as
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FIG. 1. Cayley tree in which each site except those on boundary
has three neighbors. We note that even when all bonds are fully
occupied, there can be only one site which is connected to three
sites on the boundary. In this example the three sites on the bound-
ary are the filled circles and the one site connected to them by
independent paths is the striped circle denoted by A.
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long as the branching factor in the Cayley tree is greater than
or equal to k, and holds independent of size.

III. SIMULATION METHOD

A. Statistical enhancement method

Randomly generated realizations in which large 3-blocks
are present become more and more rare as the system dimen-
sion increases. In fact, if traditional techniques are used to
generate realizations, for d as low as 4 the range of the val-
ues of the masses of 3-blocks created are so small that one
cannot determine d3 either by finding the best collapse of
plots of the distribution of masses or by inferring d3 from the
slope of the power-law regime of the distributions.

To overcome this problem, we use a ‘‘go with the win-
ners’’ method of statistical enhancement described in Ref.
@11#. The basic idea of this approach in the context of a
percolation cluster growth algorithm is as follows:

~i! Before we start growing a cluster, assign a value of one
to the weight W of the cluster.

~ii! We use the Leath method to grow clusters @12#. While
the cluster is growing, we calculate certain properties of the
state of the cluster after every interval of n chemical shells of
growth.

~iii! If certain criteria on the properties of the state of the
cluster that are described below are met, we ‘‘clone’’ the
state so we have m copies ~including the original! of the
state, adjust W accordingly to W/m and continue growing
each of these m clones. If these criteria are not met, simply
continue growing the noncloned cluster.

Cloning can take place multiple times during the growth
of a cluster; the result is a tree structure of realizations where
the leaves of the tree represent the completion of cluster
growth. At each of these completions of cluster growth, we
calculate the quantities being studied, in this case 3-block
masses, and with weight W update a histogram over all clus-
ters. By adding them with weight W, statistical averages are
not biased even though the ensemble is biased.

Here, m and n are parameters which can be tuned to
achieve the desired level of ‘‘rareness’’ which can be
reached. If n is large and m is small, there will be little
cloning and we will generate clusters with weights only
moderately smaller than without enhancement. If n is small
and m is large, there will be much cloning and we will gen-
erate clusters with weights very much smaller than without
enhancement. However, if n is sufficiently small and/or m is
sufficiently large, cluster growth will effectively never end
naturally, and we will not be able to extract useful informa-
tion from the simulation.

From an implementation standpoint, it is not necessary to
actually create copies of the state of the system in computer
memory to create the clones; as noted in Ref. @11# we can
effectively walk the clone tree in a ‘‘depth-first’’ manner,
completely treating a given clone before we begin treating
the next clone. What is required is that we save the state of
the system before we begin growth based on a clone so that
we can return to that state when we begin growth on the next
clone. This saving of state is accomplished naturally with a

‘‘last-in-first-out’’ stack in which we maintain information
about sites in the cluster.

We first attempted to create realizations with large
3-blocks by creating very dense clusters. We set as our cri-
teria for cloning the condition that the number of occupied
bonds actually created during the n shell interval be larger
than the number of times we determined whether a bond
should be occupied times the bond occupation probability.
While this algorithm is very effective in creating dense clus-
ters, it did not result in large 3-blocks within the clusters. We
were, however, successful in creating clusters with large
3-blocks by using a criterion which results in the creation of
large blobs: clone if the most massive blob found in the
cluster at the end of the interval is more massive than the
largest blob created before growth in the interval is begun.
That is, either an existing blob grows, one or more blobs
merge or a new blob is created which is more massive than
any existing previous to growth in the interval.

B. Incremental cluster decomposition

The decision whether to clone depends on a knowledge of
the mass of the largest blob in the cluster. It would be unac-
ceptably inefficient to decompose the entire cluster into
blobs starting from scratch each time we must make a clon-
ing decision. Instead, we use an algorithm for cluster decom-
position which allows us to incrementally decompose the
cluster into blobs. At the end of an interval of n chemical
shells of growth, we need only to consider the effect on the
cluster decomposition of the sites and bonds we have added
to the cluster during the interval. The algorithm, based on the
algorithm of Ref. @13# for determining the cluster backbone,
works as follows:

FIG. 2. P(N3uL), the distribution of 3-block mass N3 for ~from
left to right! L58, 16, 32, 64, and 128 for the case of four dimen-
sions. ~a! uncollapsed, ~b! collapsed using a value of d350.7.
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~i! During the growth of the cluster we identify ‘‘loop
sites.’’ Loop sites are sites which are reached from two or
more different growth sites simultaneously @7,13#.

~ii! At the end of an interval of growth, we use the burn-
ing algorithm @7,13# to walk back from each loop site toward
the origin of the cluster. When we reach a state during the
walk when only one site is burning, all sites traversed so far
compose a blob. If during the walk we hit an existing blob,
that blob is incorporated into the blob associated with the
loop site from which the walk started.

~iii! When we have exhausted all clones created at the end
of an interval, we must restore the system to its state at the
beginning of the interval. That is, we must ~a! destroy all
blobs created, ~b! separate any blobs which were merged,
and ~c! reduce any blobs which grew during the interval back
to their size at the beginning of the interval.

This is all accomplished by carefully maintaining the ap-
propriate state information during the growth and cluster de-
composition processes.

IV. RESULTS AND DISCUSSION

Using the methods described in the preceding section, we
generate percolation clusters on hypercubic lattices for 2D,
3D, 4D, 5D, and 6D at their respective percolation thresholds
@14,15#. To validate our use of the go with the winners ap-
proach and our incremental cluster decomposition technique,
we compared our results in 2D and 3D with previous results
@9,10# and found them to be consistent.

In Fig. 2~a!, we plot P(N3uL), the distribution of 3-block
mass N3 in a system of size L for various L for d54. In Fig.
2~b!, we plot the same distributions collapsed using the esti-

mated value d350.7 which, visually, yields the best collapse.
We show analogous plots for d55 and d56 in Figs. 3 and
4. Based on the value of d3 which yields the best collapse,
we estimate

d35H 0.760.2 ~4D!

0.560.2 ~5D!.
~1!

If we fit our results for 6D with a power law, then we find the
best collapse is obtained for d350.2560.2. However, it it
difficult to numerically distinguish between power-law scal-
ing with a small exponent and logarithmic scaling. Hence, in
Fig. 4~c!, we also collapse the distributions for 6D assuming
d350 with logarithmic corrections to scaling

N3;11Aln L ~6D!, ~2!

with A51.0. The quality of the collapses for power-law scal-
ing and logarithmic scaling seem to be comparable; however,

FIG. 3. P(N3uL), the distribution of 3-block mass N3 for ~from
left to right! L58, 16, 32, and 64 for the case of five dimensions.
~a! uncollapsed, ~b! collapsed using a value of d350.5.

FIG. 4. P(N3uL), the distribution of 3-block mass N3 for ~from
left to right! L58, 16, and 32 for the case of six dimensions. ~a!

uncollapsed, ~b! collapsed using a value of d350.25, ~c! collapsed
assuming N3;11Aln L with A51.0.
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the facts that d350 for the Cayley tree and that logarithmic
corrections to scaling are common at the upper critical di-
mension favor the conclusion that d350 for d56.

Our results, despite their limited precision, indicate that
d3 is not independent of dimension below the upper critical
dimension. The possibility of such independence in 2D and
3D is only a manifestation of the relatively low precision of
the results and the relative closeness of the actual values of
d3 for d52 and 3.

Finally, we make two observations:
~i! We note that the behavior of d3 with dimension is

qualitatively the opposite of the behavior of d2, the blob
fractal dimension, in the following sense: d2 increases sig-
nificantly between d52 and d53 but increases very slowly

between d53 and d56 @2,16–19#, while d3 is slowly de-
creasing between d52 and d53 but then decreases signifi-
cantly between d53 and d56.

~ii! Since k50 corresponds to the entire system, which
scales as Ld, we note that for k50, 1, 2, and 3, the fractal
dimensions dk for 6D are 6, 4, 2, and 0, respectively, that is,
a series of decreasing consecutive even integers.
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