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The incipient infinite cluster appearing at the bond percolation threshold can be decomposed into singly
connected ‘‘links’’ and multiply connected ‘‘blobs.’’ Here we decompose blobs into objects known in graph
theory as 3-blocks. A 3-block is a graph that cannot be separated into disconnected subgraphs by cutting the
graph at two or fewer vertices. Clusters, blobs, and 3-blocks are special cases of k-blocks with k51, 2, and 3,
respectively. We study bond percolation clusters at the percolation threshold on two-dimensional ~2D! square
lattices and three-dimensional cubic lattices and, using Monte Carlo simulations, determine the distribution of
the sizes of the 3-blocks into which the blobs are decomposed. We find that the 3-blocks have fractal dimension
d351.260.1 in 2D and 1.1560.1 in 3D. These fractal dimensions are significantly smaller than the fractal
dimensions of the blobs, making possible more efficient calculation of percolation properties. Additionally, the
closeness of the estimated values for d3 in 2D and 3D is consistent with the possibility that d3 is dimension
independent. Generalizing the concept of the backbone, we introduce the concept of a ‘‘k-bone,’’ which is the
set of all points in a percolation system connected to k disjoint terminal points ~or sets of disjoint terminal
points! by k disjoint paths. We argue that the fractal dimension of a k-bone is equal to the fractal dimension of
k-blocks, allowing us to discuss the relation between the fractal dimension of k-blocks and recent work on path
crossing probabilities.

DOI: 10.1103/PhysRevE.65.056126 PACS number~s!: 64.60.Fr, 05.45.Df, 64.60.Ak

I. INTRODUCTION

Percolation is the classic model for disordered systems
@1–3#. For concreteness we will study bond percolation sys-
tems in which bonds on a lattice are randomly occupied with
probability p. Clusters are defined as groups of sites and
bonds which are connected by occupied bonds. Clusters can
be decomposed into objects known as blobs. Blobs are sets
of sites and bonds which cannot be decomposed into discon-
nected sets by cutting only one bond. Equivalently blobs are
sometimes described as being multiply connected—there are
at least two disjoint paths between each point in a blob and
every other point in the blob. The decomposition of the en-
tire percolation cluster into blobs has been extensively stud-
ied @4#, as has been the distribution of sizes of blobs in the
backbone @5#. For both cluster and backbone blobs, the frac-
tal dimension of the blobs is the fractal dimension of the
backbone.

Here we address the questions of ~i! whether there are
more fundamental objects into which blobs can be decom-
posed, and ~ii! whether these objects then be further decom-
posed. To answer these questions, we employ the language of
graph theory, in which sites are the vertices and bonds are the
edges of a graph @6#.

One can define k-connected graphs ~or k-blocks! as graphs
that cannot be separated into disconnected subgraphs by cut-
ting the graph at fewer than k vertices @6,7#. Thus, clusters
are 1-blocks and blobs are 2-blocks. The natural next level of
decomposition of percolation systems is to decompose blobs
~2-blocks! into 3-blocks. By the definition above, 3-blocks

are graphs that cannot be decomposed by cutting the graphs
at fewer than three vertices. From a physicist’s point of view,
one can understand what 3-blocks are by considering a blob
as a resistor network with each bond being a resistor. Assume
one is trying to determine the resistance between two verti-
ces of the network. One can simplify the network by using
Kirchoff’s Laws to replace groups of sequential bonds and
groups of parallel bonds by single virtual bonds having re-
sistance equivalent to the bonds replaced. After this has been
done as completely as possible, what are left are 3-blocks.
We define the mass of a 3-block as the number of virtual
bonds plus the number of nonreplaced original bonds re-
maining in the 3-block. Figures 1 and 2 provide examples of
the decomposition of a blob into 3-blocks. It has been shown
@6# that the decomposition of 2-blocks into 3-blocks is
unique.

Determining the scaling of the distribution of the 3-blocks
into which the 2-blocks can be decomposed is the subject of
this paper. In graph theory, the sites are typically not con-
strained to a lattice structure, and one is only concerned with
the topology of the graphs; we will, however, work on square
and cubic lattices.

II. NOTATION

Since we deal with a number of different types of fractal
objects, we employ the following notation.

~i! The fractal dimension of an object of type X will be
denoted as dX .

~ii! The number distribution of objects of type X in space
of type Y of size L will be denoted as n(NX ,LY).

~iii! The exponent of the power-law regime of a distribu-
tion of objects of type X in space of type Y will be denoted as
tX ,Y .*Electronic address: gerryp@bu.edu
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~iv! The amplitude of a distribution of objects of type X in
space of type Y will be denoted as AX ,Y .

~v! We define dnY through the relation

^n~L !&;LdnY, ~1!

where ^n(L)& is the average number of disjoint objects of a
given type in space Y.

~vi! The denote spaces of type X or Y, we use 0,1,2,3 . . .
to denote k-blocks with k50,1,2,3 . . . corresponding to Eu-
clidean space, clusters, blobs, and 3-blocks, respectively. We
use B to denote the percolation cluster backbone.

~vii! Additionally, because, as noted above, objects such
as 3-blocks can be nested, we denote quantities that relate to
all levels of nesting with an asterisk. Specifically, tX ,Y* and
AX ,Y* denote the exponent of the power-law regime and the
amplitude of a distribution of nested objects of type X at all
levels of nesting in space of type Y. Similarly, dnY* is defined
through the relation

^n*~L !&;LdnY* , ~2!

where ^n*(L)& is the average number of nested objects at all
levels of nesting of a given type in space Y. Quantities not
qualified with an asterisk will denote quantities at a single
level or quantities that cannot be nested.

Using this notation, previous results are @5#

n~N2 ,LB!5A2,BLdnBN2
2t2,B f L2S N2

Ld2
D ~3!

for the number distribution of blobs of mass N2 in the per-
colation cluster backbone and @4#

n~N2 ,L1!5A2,1L
dn1N2

2t2,1f L2S N2

Ld2
D ~4!

for the number distribution of blobs of mass N2 in the whole
percolation cluster. The finite-size scaling function f L2(x) in
Eqs. ~3! and ~4! approaches 0 when x.1 and is 1 otherwise.

In analogy with Eqs. ~3! and ~4! we expect the number
distribution of 3-blocks at all levels of nesting in a blob to be

n*~N3 ,L2!5A3,2* Ldn2* N
3
2t3,2*

f cS N3

c D f L3S N3

Ld3
D , ~5!

where c is the mass of the smallest 3-block and the finite-size
scaling function f c(x) approaches 0 when x,1 and is 1
otherwise, reflecting the fact that there cannot be any
3-blocks smaller than the smallest size c. In all dimensions
and for all lattices, c55. For simplicity we will approximate
n*(N3 ,LB) as

n*~N3 ,L2!5H A3,2* Ldn2* N
3
2t3,2*

, c<N3<aLd2

0 otherwise.
~6!

III. SIMULATIONS

We perform simulations with p50.5, the exact percola-
tion threshold for 2D @2,3# and p50.248 812 6, the most
precise current estimate for the percolation threshold for 3D
@8#. We created percolation clusters, which included the sites
(0,L/2) and (L ,L/2) for the 2D simulations and the sites
(0,L/2,L/2) and (L ,L/2,L/2) for the 3D simulations, decom-
posed the backbones determined by these sites into blobs and
then decomposed the blobs into 3-blocks. We study both dis-

FIG. 1. ~a! Decomposition of 2-block G into subgraphs G1 , G2,
and G3. The rightmost graph represents G with the subgraphs re-
placed by equivalent ‘‘virtual edges.’’ ~b! Subgraph G2 of G is
decomposed by identifying subgraph G21 . The rightmost graph rep-
resents G2 with the subgraph G21 replaced by its equivalent edge.
~c! Subgraph G3 of G is decomposed by identifying subgraph G31 .
The rightmost graph represents G3 with the subgraph G31 replaced
by its equivalent edge. In ~a!, ~b!, and ~c! virtual edges are denoted
by dashed lines. Note that while not shown in this figure, subgraph
G31 could be further decomposed. The 3-blocks contained in the
graph G are G21 , having five edges, and G3 ~with the subgraph G31

replaced by its equivalent edge! having eight edges.

FIG. 2. Example of decomposition of backbone into 3-blocks.
The thin lines represent the bonds in the backbone between points
$0,15% and $31,15% on a lattice with L532. The backbone is com-
posed of a few single bond blobs connected to the terminal points
and a single large blob containing 950 bonds. The thick lines rep-
resent the virtual bonds of a single top-level 3-block into which the
blob has been decomposed. This 3-block contains 216 virtual
bonds. Some of the groups of bonds replaced by virtual bonds can
themselves be decomposed into lower-level 3-blocks and so on.
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tributions of 3-blocks in blobs of given mass N2, and distri-
butions of 3-blocks in backbones in systems of a given size
L. For purposes of analysis, we group together blobs with
mass 2m21

,N2<2m.
We perform the decomposition into 3-blocks along the

lines of the procedure sketched in Ref. @6#. Basically, this
procedure is as follows: We first designate the blob that we
are decomposing as the 2-block graph G. The natural next
level of decomposition is to identify connected subgraphs
with two or more edges that are connected to G at only two
vertices. We denote these subgraphs G1 ,G2 ,G3 , . . . of G as
two-terminal objects. These two-terminal objects can then be
replaced in G by ‘‘virtual edges,’’ e1 ,e2 ,e3 , . . . . Note that
this process can be continued recursively. That is, the sub-
graph G i may itself contain sub-graphs, G i1 ,G i2 ,G i3 , . . .
that are connected to G i at only two vertices; we then replace
the subgraphs G i j in G i by virtual edges eGi j . The process
continues until the only remaining subgraphs are those that
cannot be decomposed further by making cuts at two verti-
ces; these, by definition, are 3-blocks. An example of this
decomposition is shown in Fig. 1. Other methods of decom-
postion into 3-blocks are described in Refs. @9,10#.

We perform at least 3700 realizations for each system
size; for the smaller system sizes for which the simulations
run more quickly we performed as many as 108 realizations.
Because, the larger the systems the larger the number of
3-blocks contained in the system, the statistics for the larger
systems were acceptable despite the lower number of real-
izations. We bin the results for all system sizes in order to
smooth the plots.

IV. TWO SPATIAL DIMENSIONS

In this section we discuss our results for 3-blocks in 2D
percolation. Results in 3D are analogous and are discussed in
the following section.

A. 3-blocks in blobs

Figure 3~a! plots the distributions P*(N3uN2), the prob-
ability that a 3-block contained in a blob of size N2 contains
N3 bonds, for various values of N2 . P(N3uN2) is the number
distribution n*(N3 ,N2) normalized to unity. Consistent with
Eqs. ~5! and ~6!, the plots exhibit power-law regimes fol-
lowed by cutoffs due to the finite size of the blobs. The
‘‘bumps’’ in the distributions right before the cutoffs repre-
sent 3-blocks that would have been larger but are truncated
due to the finite size of the blobs in which they are embed-
ded. We estimate the slope of the power-law regimes, t3,2* , to
be 2.3560.05. Since

N3;Ld3 ~7!

and

N2;Ld2, ~8!

we expect

N3;N2
d3 /d2. ~9!

In Fig. 3~b!, we show the collapsed plots in which we
scale the distributions by N2

d3 /d2 using the most precise pub-
lished estimate for d2 , 1.643260.0008 @11#. ~A consistent
more recent estimate, d251.643160.0006, is given in Ref.
@12#.! Visually, we find the best collapse is obtained for d3
51.2060.1.

We can also estimate d3 using Eq. ~A5! from the Appen-
dix

d3~t3,2* 21 !5dn2* 5d2 . ~10!

Using t3,2* 52.3560.05 and d251.643260.0008, results
in an estimate of d351.2260.05.

B. 3-blocks in backbone

Figure 4~a! plots the distributions P*(N3uLB), the prob-
ability that a 3-block contained in the backbone of a system
of size L contains N3 bonds, for various values of L.
P*(N3uLB) is the number distribution n*(N3 ,LB) normal-
ized to unity. Consistent with Eqs. ~5! and ~6!, the plots
exhibit power-law regimes followed by cutoffs due to the
finite size of the systems. We estimate the slope of the
power- law regimes, t3,B* , to be 2.2560.05. In Fig. 4~b!, we

FIG. 3. 2D ~a! distributions P*(N3uN2) of the number of
3-blocks of mass N3 in a blob of size N2 versus N3 for ~from
bottom to top! N25210,212,214, and 216. The distributions exhibit a
power-law regime with slope 22.3560.05 ~b! Distributions for
N25212,213,214,215, and 216 scaled with the value 1.20 for the
fractal dimension d3 which gives the best collapse of the plots in
~a!.
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show the collapsed plots in which we scale the distributions
by Ld3. Visually, we find the best collapse is obtained for
d351.1560.1.

Next we consider the distribution of ‘‘top-level’’ 3-blocks
in the backbone. Top-level 3-blocks are those not contained
within another 3-block. In Fig. 5~a!, we plot the distributions
P(N3uLB), the probability that a top-level 3-block contained
in the backbone of a system of size L contains N3 bonds, for
various values of L. The plots exhibit power-law regimes
followed by cutoffs due to the finite size of the systems. The
exponent of the power-law regimes t3,B is estimated to be
1.660.05. In Fig. 5~b!, we show the collapsed plots, in
which we scale the distributions by Ld3. The best collapse is
obtained for d351.1560.1, the same value as for the distri-
butions of 3-blocks of all levels. Thus the fractal dimensions
of the top-level 3-blocks is the same as the fractal dimension
of 3-blocks of all levels but the slopes of the power-law
regimes are different; this is seen also in Fig. 6.

We can also use Eq. ~A10!

d3~t3,B21 !5dnB5

1

n
~11!

to obtain an estimate of d3. Since dnB is known exactly in
two dimensions and has been well studied in higher dimen-
sions and because one can usually determine the slope t3,B

more accurately than d3 can be determined by finding the
best scaling collapse, we determine d3 more accurately by
solving Eq. ~11! for d3. Using our estimate for t3,B above we
find d351.2560.1. Combining this result with our earlier
estimates, we make the final estimate

d351.2060.1. ~12!

FIG. 4. 2D ~a! distributions P*(N3uL) of the number of
3-blocks of mass N3 in a backbone of size L versus N3 for ~from
bottom to top! L516, 32, 64, 128, 256, and 512. The distributions
exhibit a power-law regime with slope 22.2560.05 ~b! Distribu-
tions scaled with the value 1.15 for the fractal dimension d3 that
gives the best collapse of the plots in ~a!.

FIG. 5. 2D ~a! distributions P(N3uL) of the number of top level
3-blocks of mass N3 in a backbone of size L versus N3 for ~from
top to bottom! L58, 16, 32, 64, and 128. The distributions exhibit
a power-law regime with slope 21.660.1. ~b! Distributions scaled
with the value 1.15 for the fractal dimension d3 that gives the best
collapse of the plots in ~a!.

FIG. 6. 2D distributions P(N3uL) of top-level 3-blocks ~filled
symbols! and P*(N3uL) of all-level 3-blocks ~unfilled symbols!.
While the slopes of the power-law regimes of the two types of
distributions are different, the finite-size-system cutoffs are essen-
tially superimposed, consistent with the fractal dimension of the
two types of distributions being equal.
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C. Why the fractal dimension of 3-blocks is smaller than the
fractal dimension of the backbone and 2-blocks

The fractal dimension of the 3-blocks is considerably
smaller than the fractal dimension, dB51.643260.0008
@11#, of 2-blocks ~blobs!. This is because virtual bonds
~which are counted as one bond! replace many bonds in the
object which it replaces. This can be seen if we plot the
distributions P*(M 3uLB), the probability that a 3-block con-
tained in the backbone of a system of size L contains M 3

bonds where we can count not the virtual bonds, but all
bonds contained a 3-block. In Fig. 7~a! we plot P*(M 3uLB)
for various L. The best collapse for these plots @Fig. 7~b!#

corresponds to a fractal dimension of 1.660.1 consistent
with the fractal dimension of 2-blocks in 2D. This can be
understood as a reflection of the fact that in a system of size
L, the mass of the largest 3-block ~counting all bonds! can be
the same as the backbone mass. This is similar to the situa-
tion with blobs and backbones; the largest blob in a back-
bone can be as large as the whole backbone, which explains
why the fractal dimension of blobs is the same as the fractal
dimension of the backbone.

Replacing a group of bonds by a virtual bond is analogous
to removing dangling ends on a cluster when determining the
backbone.

V. THREE SPATIAL DIMENSIONS

Our analysis of the results of the 3D simulations proceeds
in a similar manner to the analysis for 2D.

A. 3-blocks in blobs

Figure 8~a! plots the distributions P*(N3uN2), the prob-
ability that a 3-block contained in a blob of size N2 contains
N3 bonds, for various values of N2. We estimate the slope of
the power-law regimes, t3,2* , to be 2.6360.05. In Fig. 8~b!,
we show the collapsed plots in which we scale the distribu-
tions by N2

d3 /d2 with d251.8760.03 @13#. Visually, we find
the best collapse is obtained for d351.1560.1.

Estimating d3 using Eq. ~A5! from the Appendix,

d3~t3,2* 21 !5dn2* 5d2 , ~13!

with t3,2* 52.6360.05 and d251.8760.03, results in an es-
timate of d351.1560.05.

B. 3-blocks in backbone

Figure 9~a! plots the distributions P*(N3uLB), the prob-
ability that a 3-block contained in the backbone of a system
of size L contains N3 bonds, for various values of L. We
estimate the slope of the power-law regimes, t3,B* , to be
2.5560.05. In Fig. 9~b!, we show the collapsed plots in

FIG. 7. 2D ~a! distributions P*(M 3uL) of the number of
3-blocks of mass M 3 in a backbone of size L versus M 3 for from
top to bottom! L516, 32, 64, 128, 256, and 512. In M 3 we count
not virtual bonds but all bonds in the 3-block. The distributions
exhibit a power-law regime with slope 21.860.1 ~b! Distributions
scaled with the value 1.6 for the fractal dimension d3 that gives the
best collapse of the plots in ~a!.

FIG. 8. 3D ~a! distributions P*(N3uN2) of the number of
3-blocks of mass N3 in a blob of size N2 versus N3 for ~from
bottom to top! N25211,212, and 213. The distributions exhibit a
power-law regime with slope 22.6360.05 ~b! Distributions for
N25211,212, and 213 scaled with the value 1.15 for the fractal di-
mension d3 that gives the best collapse of the plots in ~a!.
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which we scale the distributions by Ld3. Visually, we find the
best collapse is obtained for d351.1560.1.

Next we consider the distribution of the ‘‘top-level’’
3-blocks in the backbone. In Fig. 10~a!, we plot the distribu-
tions P(N3uLB), the probability that a top-level 3-block con-
tained in the backbone of a system of size L contains N3
bonds, for various values of L. The exponent of the power-
law regimes t3,B is estimated to be 2.060.05. In Fig. 10~b!,
we show the collapsed plots, in which we scale the distribu-
tions by Ld3. The best collapse is obtained for d351.15
60.1, the same value as for the distributions of 3-blocks of
all levels. As in 2D, the fractal dimensions of the top level
3-blocks is the same as the fractal dimension of 3-blocks of
all levels but the slopes of the power-law regimes are differ-
ent; this is seen also in Fig. 11.

Using Eq. ~A10!

d3~t3,B21 !5dnB5

1

n
. ~14!

To obtain an estimate of d3 with our estimate for t3,B above
we find d351.1460.1. Combining this result with our ear-
lier estimates, we make the final estimate

d351.1560.1. ~15!

The simulation results notwithstanding, it would be sur-
prising if d3 were smaller in 3D than in 2D because, below
the critical dimension dc56, both the fractal dimensions of
clusters and blobs increase with the Euclidean dimension.
This suggests that while the actual values of d3 may be
within the bounds we have estimated, the actual values will
be consistent with d3 (2D)<d3 (3D).

FIG. 9. 3D ~a! distributions P*(N3uL) of the number of
3-blocks of mass N3 in a backbone of size L versus N3 for ~from
top to bottom! L58, 16, 32, 64, and 128. The distributions exhibit
a power-law regime with slope 22.5560.1. ~b! Distributions scaled
with the value 1.15 for the fractal dimension d3 that gives the best
collapse of the plots in ~a!.

FIG. 10. 3D ~a! distributions P(N3uL) of the number of top-
level 3-blocks of mass N3 in a backbone of size L versus N3 for
~from top to bottom! L532, 64, 128, 256, and 512. The distribu-
tions exhibit a power-law regime with slope 22.060.1. ~b! Distri-
butions scaled with the value 1.15 for the fractal dimension d3 that
gives the best collapse of the plots in ~a!.

FIG. 11. 3D distributions P(N3uL) of top-level 3-blocks ~filled
symbols! and P*(N3uL) of all-level 3-blocks ~unfilled symbols!.
While the slopes of the power-law regimes of the two types of
distributions are different, the finite-size-system cutoffs are essen-
tially superimposed consistent, with the fractal dimension of the
two types of distributions being equal.
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As in 2D, if we do not replace two-terminal objects in a
3-block by a single virtual bond, the fractal dimension of the
3-block is that of a blob ~see Fig. 12!.

Estimates for all of the 2D and 3D exponents are summa-
rized in Table I.

VI. DECOMPOSITION OF THE WHOLE PERCOLATION
CLUSTER

While we have only decomposed 2-blocks that comprise
the cluster backbone, we could proceed similarly for all
2-blocks into which a cluster is decomposed. The fractal di-
mension of the 3-blocks into which a cluster is ultimately
decomposed should be the same as the fractal dimension of
the 3-blocks into which the backbone is ultimately decom-
posed. The only difference we would expect in our results
would be that the slope of the power-law regime of the dis-
tribution of the top-level 3-blocks would be given by

d3~t3,121 !5dn15d , ~16!

the analogy of Eq. ~A10!

VII. k-BONES AND PATH CROSSING PROBABILITIES

Just as blobs and backbones have the same fractal dimen-
sion, we can identify objects analagous to backbones which

have the same fractal dimensions as k-blocks. We define a
k-bone as the set of all points in a percolation system con-
nected to k disjoint terminal points ~or sets of disjoint termi-
nal points! by k disjoint paths. Thus the backbone is a k-bone
with k52. Just as the largest k-blocks into which a backbone
can be decomposed are 2-blocks, the largest k-blocks into
which a k-bone can be decomposed are k-blocks. The fractal
dimension of k-bones is the fractal dimension of the
k-blocks. One can see this easily by noting that if the
k-terminal points that define a k-bone are connected to each
other, the resulting structure is k-block.

Recent work @14# has identified a relationship between
path crossing probabilities and the fractal dimensions of per-
colation structures. Specifically, consider the probability, P̂k

P

that in an annular region the small inner circle of radius r is
connected to the larger outer circle of radius R, R@r , by k
disjoint paths. Then

P̂k
P;S r

R D x̂k

. ~17!

It has been observed @14# that x̂1 is the codimension of the
percolation cluster and x̂2 is the codimension of the back-
bone. We extend these observations to the case of general k

d2 x̂k5dk , ~18!

where d is the spatial dimension of the system. This should
hold in all dimensions where the annulus is now defined by
two hyperspheres. It has been argued @12# that

xk, x̂k,x2k , ~19!

where xk is the polychromatic path crossing exponent @14#
and which has been found rigorously in 2D to be @14#

xk5
1

12 ~k2
21 !. ~20!

Using Eqs. ~18!–~20!, we find in 2D

2
11
12 ,d3,

4
3 , ~21!

TABLE I. Measured fractal dimension, measured power-law re-
gime exponent, and calculated fractal dimension for 3-blocks in 2D
and 3D. The calculated value of d3 is determined by Eq. ~10! for
3-blocks in a blob and Eq. ~11! for 3-blocks in the backbone.

d3 t d3

Measured Measured Calculated
2D

All 3-blocks in blob 1.2060.1 2.3560.05 1.2260.05
All 3-blocks in backbone 1.1560.1 2.2560.05 —
Top-level 3-blocks in backbone 1.1560.1 1.6060.05 1.2560.1

3D

All 3-blocks in blob 1.1560.1 2.6360.05 1.1560.05
All 3-blocks in backbone 1.1560.1 2.5560.05 —
Top-level 3-blocks in backbone 1.1560.1 2.060.05 1.1460.1

FIG. 12. 3D ~a! distributions P*(M 3uL) of the number of
3-blocks of mass M 3 in a backbone of size L versus M 3 for ~from
top to bottom! L58, 16, 32, 64, and 128. In M 3 we count not
virtual bonds but all bonds in the 3-block. The distributions exhibit
a power-law regime with slope 21.8760.1. ~b! Distributions scaled
with the value 1.85 for the fractal dimension d3 that gives the best
collapse of the plots in ~a!.
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consistent with our estimate for d3 in 2D.
The relationship between the path crossing problem for

k52 and the backbone dimension has been recently ex-
ploited to determine dB very accurately using a transfer ma-
trix technique @12#. Possibly similar methods can be em-
ployed to find the fractal dimension of k-bones ~and therefore
k-blocks! with k>3 to high precision.

VIII. RELATIONSHIP TO RENORMALIZATION GROUP

The process of replacing a two-terminal object t by a
single virtual bond and then replacing two-terminal objects
within t by single virtual bonds and so on is reminiscent of
the decimation process in renormalization group ~RG! ap-
proaches to percolation @2,3,15,16#. It is here, however, that
the similarity ends. The decimation process performed in the
decomposition into 3-blocks is an exact decimation per-
formed on objects in individual realizations while the RG
decimation is performed on the lattice and is an approxima-
tion, except for hierarchical lattices. Also, the purpose of the
decomposition into 3-blocks is to improve computational
performance and analyze the properties of substructures of
the cluster while the purpose of RG calculations is to find
properties of percolation analytically. Finally, whereas RG
approaches on hierarchical lattices result in objects that are
finitely ramified, the decomposition into 3-blocks we per-
form maintains the infinite ramification of the Euclidean lat-
tice.

IX. COMPUTATIONAL IMPLICATIONS

The fact that the fractal dimension of 3-blocks is signifi-
cantly smaller than the fractal dimension of 2-blocks has
important computational implications. We can efficiently cal-
culate properties ~e.g., resistance, velocity distributions, self-
avoiding walk statistics! of a percolation cluster or backbone
as follows: ~i! decompose the cluster or backbone into
2-blocks; ~ii! decompose the 2-blocks into 3-blocks; ~iii! cal-
culate the desired properties of the 3-blocks; ~iv! algebra-
ically determine the properties of the 2-blocks from the prop-
erties of the 3-blocks; and ~v! algebraically determine the
properties of the cluster or backbone from the properties of
the 2-blocks.

In many cases the computation will require less CPU
~computer processing! resource when the complexity of the
computation is a power law or exponential of the mass of the
object for which the property is being calculated. By decom-
position we make the mass of these objects smaller. Reduced
CPU resource usage is also obtained if only a decomposition
into 2-blocks is made although the saving is less. Systems of
larger size than that could be treated before can now be
treated when we decompose into 3-blocks because the fractal
dimension of the 3-blocks is lower than that of the backbone
in which they are embedded; this is not true if we only de-
compose into 2-blocks.

As an example of the dramatically smaller size of the
largest 3-block versus the size of the largest blob consider a
3D system of size L51000. At criticality, the largest mass
blob in the backbone will be of the order L1.62'63 000 while

the mass of the largest 3-block in the backbone will be of
L1.2'4000. In Fig. 2 we show an actual simulation realiza-
tion in which a blob of 950 bonds is decomposed into a
3-block with only 216 virtual bonds, greatly reducing the
computational complexity.

X. DISCUSSION

Traditionally the decomposition of percolation systems
has been to decompose the system into clusters ~1-blocks!
and to decompose the clusters into blobs ~2-blocks!. We ex-
tend this decomposition by decomposing 2-blocks into
3-blocks. 3-blocks are especially interesting because in con-
trast to 1- and 2-blocks, the 3-blocks have the property that
they can be nested. That is, two-terminal objects, which are
replaced by single virtual bonds in a 3-block, can themselves
contain other 3-blocks. Because of this replacement of a
2-terminal object by a virtual bond, the fractal dimension of
3-blocks is significantly smaller than the fractal dimension of
2-blocks. As discussed in the preceding section, this smaller
fractal dimension has important computational implications
for the size of percolation systems, which can be analyzed
and the speed at which the analysis can be performed.

In addition, within the error bars of our calculations, the
values for the 3-block fractal dimension appear to be identi-
cal for 2D and 3D systems. Simulations of larger systems
and higher-dimension systems could help answer whether in
fact d3 is independent of dimension ~superuniversal!. It will
also be of interest to determine the properties of k-blocks
with k.3.
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APPENDIX A: RELATIONSHIPS AMONG EXPONENTS

Here we ask if any of the fractal dimensions and power-
law regime exponents we have identified are related. To an-
swer this question we must first briefly review some existing
results for relations between other exponents.

1. Previous results

It has been shown generally @17,18# that, for disjoint ob-
jects of type X embedded in a space Y,

dX~tX ,Y21 !5dnY . ~A1!

Equation ~A1! holds if tX,2 or if dnY is equal to the fractal
dimension of space Y, dY .

Special cases of Eq. ~A1! have been identified previously
for Y50, 1, and 2 corresponding to Euclidean space, perco-
lation cluster space, and percolation backbone space, respec-
tively.

~i! The first is the familiar scaling relation for the Fisher
exponent t @2,3#

d f~t21 !5dn05d ~clusters!, ~A2!
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where d is the Euclidean dimension, d f the fractal dimension
of the cluster, and t the exponent of the power-law regime in
the distribution of cluster sizes.

~ii! In Ref. @4# it was shown that

dblob-cl~tblob-cl21 !5dn15d f , ~cluster blobs!, ~A3!

where dblob-cl and tblob-cl are the fractal dimension and the
exponent of the power-law regime, respectively, for all blobs
in the cluster.

~iii! In Ref. @5# it was argued that

dblob-bb~tblob-bb21 !5dnB5d red , ~backbone blobs!
~A4!

where dblob-bb and tblob-bb are the fractal dimension and the
exponent of the power-law regime, respectively, for those
blobs in the backbone and d red is the fractal dimension of
singly connected red bonds in the backbone.

Both dblob-cl and dblob-bb are equal to dB , the backbone
fractal dimension. In ~i! and ~ii!, Eq. ~A1! applies because
dnY5dY ; in ~iii!, Eq. ~A1! applies because tX,2.

2. 3-blocks in blobs

In analogy with Eqs. ~A2! and ~A3!, we would expect

d3~t3,2* 21 !5dn2* 5d2 . ~A5!

We first confirm that the total number of 3-blocks in blobs
scales with the exponent d2. If

^n~L !&;Ldn2 ~A6!

and

N2;Ld2. ~A7!

Then we would expect

^n~N2!&;Ldn2 /d2. ~A8!

Figures 13~a! and 13~b! are log-log plots of ^n(N2)& , the
average number of all 3-blocks in a blob, versus blob size N2
for 2D and 3D, respectively. The straight line fits with slope
1.060.05 are consistent with dn25d2. Our simulation results
in 2D from Sec. IV, d351.20 and t3,252.35 result in
d3(t3,2* 21)51.62 close to the value d251.6432. In 3D, our
simulation results from Sec. V, d351.15 and t3,252.63 re-
sult in d3(t3,2* 21)51.87 identical to the value d251.87
@13#.

3. 3-blocks in backbone

Because the number of top-level 3-blocks in the backbone
is proportional to the number of 2-blocks in the backbone,
the number of top level 3-blocks in the backbone should
scale the same way the number of 2-blocks in the backbone.
For all dimensions and lattices, dnB has been shown to be
@19,20#

dnB5dred5

1

n
, ~A9!

FIG. 13. ^n*(N2)&, the average number of 3-blocks in a blob of
size N2 versus N2 for ~a! 2D and ~b! 3D.

FIG. 14. ^n(L)&, the average number of top-level 3-blocks in a
backbone of size L versus L. ~a! 2D The solid line has slope 0.75.
~b! 3D The solid line has slope 1.14.
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where n is the exponent associated with the divergence of
the correlation length as p approaches pc @1,2#. In 2D 1/n is
exactly 3/4 @21,22#; in 3D, 1/n has been estimated to be
1.14360.01 @23,24#. We would expect

d3~t3,B21 !5dnB5

1

n
. ~A10!

Figures 14~a! and 14~b! are log-log plots of ^n(L)&, the

average number of top-level 3-blocks in the backbone versus
system size L for 2D and 3D, respectively. The straight line
fits with slope 0.7560.05 and 1.1460.05 are consistent with
the exact and previously estimated values for 1/n of 3/4 and
1.143 in 2D and 3D, respectively. Our 2D simulation results
from Sec. IV, d351.15 and t3,251.60 result in d3(t3,B21)
50.69 close to the value 1/n53/4. For 3D, our simulation
results from Sec. V, d351.15 and t3,252.0 result in
d3(t3,B21)51.15 close to the value 1/n51.143.
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