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I. DATA AND METHODS

The publication data analyzed in this paper was downloaded from ISI Web of Knowledge in May 2009. We restrict our
analysis to publications termed as “Articles”, which excludes reviews, letters to editor, corrections, etc. Each article summary
includes a field for the author identification consisting of a last name and first and middle initial (eg. the author name John M.
Doe would be stored as “Doe, J” or “Doe, JM” depending on the author’s designation). From these fields, we collect the career
works of individual authors within a particular journal together, and analyze metrics for career longevity and success.

For author i we combine all articles in journal j for which he/she was listed as coauthor. The total number of papers for author
i in journal j over the 50-year period is ni. Following methods from lifetime statistics [S1], we use a standard method to isolate
“completed” careers from our data set which begins at year Y0 and ends at year Yf . For each author i, we calculate 〈∆τi〉,
the average time ∆τi between successive publications in a particular journal. A career which begins with the first recorded
publication in year yi,0 and ends with the final recorded publication in year yi,f is considered “complete”, if the following two
criteria are met:

(1) yi,f ≤ Yf − 〈∆τi〉

(2) yi,0 ≥ Y0 + 〈∆τi〉.

This method estimates that the career begins in year yi,0−〈∆τi〉 and ends in year yi,f + 〈∆τi〉. If either the estimated beginning
or ending year do not lie within the range of the data base, than we discount the career as incomplete to first approximation.
Statistically, this means that there is a significant probability that this author published before Y0 or will publish after Yf . We
then estimate the career length within journal j as Li,j = yi,f − yi,0 + 1, and do not consider careers with yi,f = yi,0. This
reduces the size of the data set by approximately 25% (compare the raw data set sizes N to the pruned data set size N∗ in Table
S1).

There are several potential sources of systematic error in the use of this database:

(i) Degenerate names→ increases career totals. Radicchi et al. [S2] observe that this method of concatenated author ID leads
to a pdf P (d) of degeneracy d which scales as P (d) ∼ d−3.

(ii) Authors using middle initials in some but not all instances of publication→ decreases career totals.

(iii) A mid-career change of last name→ decreases career totals.

(iv) Sampling bias due to finite time period. Recent young careers are biased toward short careers. Long careers located
towards the beginning Y0 or end Yf of the database are biased towards short careers.

II. A ROBUST METHOD FOR CLASSIFYING CAREERS

Professional sports leagues are geared around annual championships that celebrate the accomplishments of teams over a whole
season. On a player level, professional sports leagues annually induct retired players into “halls of fame” in order to celebrate
and honor stellar careers. Induction immediately secures an eternal legacy for those that are chosen. However, there is no
standard method for inducting players into a Hall of Fame, with subjective and political factors affecting the induction process.
In [S5] we quantitatively normalize seasonal statistics so to remove time-dependent factors that influence success. This provides
a framework for comparing career statistics across historical eras.
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In this section we propose a generic and robust method for measuring careers. We find that the pdf for career longevity can
be approximated by the gamma distribution,

Gamma(x;α, xc) =
x−αe−x/xc

x1−α
c Γ(1− α)

, (S1)

with moments 〈xn〉 = xnc
Γ(1−α+n)

Γ(1−α) , where we restrict our considerations to the case of α ≤ 1, with xc >> 1. This distribution
allows us to calculate the extreme value x∗ such that only f percentage of players exceed this value according to the pdf P (x),

f =
∫ ∞
x∗

x−αe−x/xc

x1−α
c Γ(1− α)

dx =
Γ[1− α, x

∗

xc
]

Γ(1− α)
= Q[1− α, x

∗

xc
] , (S2)

where Γ[1 − α, x
∗

xc
] is the incomplete gamma function and Q[1 − α, x

∗

xc
] is the regularized gamma function. This function can

be easily inverted numerically using computer packages, e.g. Mathematica, which results in the statistical benchmark

x∗ = xc Q
−1[1− α, f ]. (S3)

In [S5] we use the maximum likelihood estimator (MLE) for the Gamma pdf to estimate the parameters α and xc for each
pdf. The values we obtain using MLE are systematically smaller for α values and for xc values, but the relative differences are
negligible.

In Table S2 we provide statistical benchmarks x∗ corresponding to career longevity and career metrics for several sports. For
the calculation of each x∗ we use the parameter values α and xc calculated from a least-squares fit to the empirical pdf P (x)
using the functional form of Eq. [5], and the significance level value f calculated from historical induction frequencies in the
American Baseball Hall of Fame (HOF) in Cooperstown, NY USA. The baseball HOF has inducted 276 players out of the 14,644
players that exist in Sean Lahman’s baseball database between the years 1879-2002, which corresponds to a fraction f ≡ 0.019.
It is interesting to note that the last column, x

∗

σ ≡ β ≈ 3.9 for all the gamma distributions analyzed. This approximation is a
consequence of the universal scaling form of the gamma function Gamma(x) ≡ U(x/xc), where the standard deviation σ of
the Gamma pdf has the simple relation σ = xc

√
1− α. Hence, for a given f and α, the ratio

x∗/σ =
Q−1[1− α, f ]√

1− α
(S4)

is independent of xc. Furthermore, this approximation is valid for all statistics in MLB since α is approximately the same for all
pdfs analyzed. Thus, the value x∗ ≈ 4σ is a robust approximation for determining if a player’s career is stellar at the f ≈ 0.02
significance level. The highly celebrated milestone of 3,000 hits in baseball corresponds to the value x∗ = 1.26 βσhits. Only 27
players have exceeded this benchmark in their professional careers, while only 86 have exceeded the arbitrary 2,500 benchmark.
Hence, it makes sense to set the benchmark for all milestones at a value of x∗ = βσ corresponding to each distribution of career
metrics.

We check for consistency by comparing the extreme threshold value x∗ calculated using the gamma distribution with the value
x∗d derived from the database of career statistics. Referring to the actual set of all baseball players from 1871-2006, to achieve
a fame value fd ≈ 0.019 with respect to hits, one should set the statistical benchmark at x∗d ≈ 2250, which account for 146
players (this assumes that approximately half of all baseball players are not pitchers, who we exclude from this calculation of
fd). The value of x∗d ≈ 2250 agrees well with the value calculated from the gamma distribution, x∗ ≈ 2366. Of these 146
players with career hit tallies greater than 2250, there are 126 players who have been eligible for at least one induction round,
and 82 of these players have been successfully inducted into the American baseball hall of fame. Thus, a player with a career hit
tally above x∗ ≈ x∗d has a 65% chance of being accepted, based on just those merits alone. Repeating the same procedure for
career strikeouts obtained by pitchers in baseball we obtain the milestone value x∗d ≈ 1525 strikeouts, and for career points in
basketball we obtain the value x∗d ≈ 16, 300 points. Nevertheless, the overall career must be taken into account, which raises the
bar, and accounts for the less than perfect success rate of being voted into a hall of fame, given that a player has had a statistically
stellar career in one statistical category.

III. CAREER METRICS

In Fig. 4 we plot common career metrics for success in American baseball and American basketball. Note that the exponent
α for the pdf P (z) of total career successes z is approximately equal to the exponent α for the pdf P (x) of career longevity x
(see Table S2). In this section, we provide a simple explanation for the similarity between the power law exponent for career
longevity (Fig. 2) and the power law exponent for career success (Fig. 4).
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Consider a distribution of longevity that is power law distributed, P (x) ∼ x−α for the entire range 1 ≤ x ≤ xc < ∞. The
cutoff xc represents the finiteness of human longevity, accounted for by the exponential decay in Eq. [7]. Also, assume that
the prowess y has a pdf P (y) which is characterized by a mean and standard deviation, which represent the talent level among
professionals (see Ref. [S3] for the corresponding prowess distributions in major league baseball). In the first possible case, the
distribution is right-skewed and approximately exponential (as in the case of home-runs). In other cases, the distributions are
essentially Gaussian. Regardless of the distribution type, the prowess pdfs P (y) are confined to the domain δ ≤ y ≤ 1, where
δ > 0.

Assume that in any given appearance, a person can apply his/her natural prowess towards achieving a success, independent
of past success. Although prowess is refined over time, this should not substantially alter our demonstration. Since not all
professionals have the same career length, the career totals are in fact a combination of these two distributions as in their
product. Then the career success total z = xy has the distribution,

P (z = xy) =
∫ ∫

dy dx P (y)P (x)δ(xy − z)

=
∫ ∫

dy dxP (y)P (x)δ(x(y − z/x))

=
∫
dx P (

z

x
)P (x)

1
x
. (S5)

This integral has three domains (Ref. [S4]),

P (z) ∝


∫ z/δ

1
dx P ( zx )x−(α+1) , δ < z < 1∫ z/δ

z
dx P ( zx )x−(α+1) , 1 < z < xcδ∫ xc

z
dx P ( zx )x−(α+1) , xcδ < z < xc .

The first regime δ < z < 1 is irrelevant, and is not observed since z is discrete in the cases analyzed here. For the first case of an
exponentially distributed prowess,

P (z) ∝
{

z−α , 1 < z < xc δ
z−α exp(−z/λxc) , xcδ < z < xc .

(S6)

In Ref. [S3] we mainly observe the exponential tail in the home-run distribution, as the above form suggests in the regime
xcδ < z < xc, resulting from δ ≈ 0 for the right-skewed home-run prowess distribution. However, in the case for a normally
distributed prowess, the power law behavior of the longevity distribution is maintained for large values into the career success
distribution P (z), as xcδ > 103.

P (z) ∝
{

z−α , 1 < z < xcδ

z−αe−( z
σxc

)2/2 , xcδ < z < xc .
(S7)

Thus, the main result of this demonstration is that the distribution P (z) maintains the power law exponent α of the career-
longevity distribution, P (x), when the prowess is distributed with a characteristic mean and standard deviation. This result is
also demonstrated with the simplification of representing the prowess distribution P (y) as an essentially uniform distribution
over a reasonable domain of y, which simplifies the integral in Eq. (S5) while maintaining the inherent power law structure.

In Fig. S1 we plot the prowess distributions that correspond to the career success distributions plotted in Fig. 4. It is interesting
that the competition level based on the distributions of prowess indicates that Korean and American baseball are nearly equiva-
lent. Also, note that the prowess distributions for rebounds per minute are bimodal, as the positions of players in basketball are
more specialized.

IV. A NULL MODEL WITHOUT THE MATTHEW EFFECT

In this section, we compare the predictions of our theoretical model with the predictions of a theoretical model which does
not incorporate the Matthew effect. Since the Matthew effect implies that the progress rate g(x) increase with career position x,
we analyze the more simple model where for each individual i the progress rate gi(x) is constant,

gi(x) ≡ λi . (S8)

The solution to the conditional longevity pdf P (x|λi) is still given by Eq. [5], taking the form

P (x|λi) =
λx−1
i

xc( 1
xc

+ λi)x
≈ 1
λixc

e
− x
λixc , (S9)
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FIG. S1: Probability density functions of seasonal prowess for several career metrics. Each pdf is normally distributed, except for the bimodal
curve for rebound prowess, NBA (Reb.). The bimodal distribution for Rebound prowess reflects the specialization in player positions in the
sport of basketball. Furthermore, note the remarkable similarity in the distributions between American (MLB) and Korean (KBB) baseball
players.

which is an exponential pdf, with a characteristic career length lc ≡ λixc. Hence, this null model corresponds to a career
progress mechanism wherein intrinsic ability, which is incorporated into the relative value of λi, is the dominant factor. In order
to calculate the longevity pdf P (x) which incorporates a distribution of intrinsic abilities across the population of individuals,
we average over the conditional pdfs using a pdf P (λ) that we assume is well-defined by a mean λ and standard deviation σ,
consistent with what we observe for the seasonal prowess pdfs shown in Fig. S1. In the case of P (λ) = Normal(λ, σ), then

P (x) =
∫ 1

0

P (λ)P (x|λ)dλ ≡
∫ 1

0

e−(λ−λ)2/2σ2

√
2πσ2

P (x|λ)dλ . (S10)

For the sake of providing an analytic result, we replace P (λ) by a uniform distribution,

P (λ) ≈
{

0 , |λ− λ| > 2σ
1

4σ , |λ− λ| ≤ 2σ ,
(S11)

which does not change the overall result. The integral in Eq. (S10) then becomes,

P (x) ≈ 1
4σ

∫ λ+2σ

λ−2σ

dλ

λxc
e−

x
λxc =

1
4σxc

[Γ(0,
x/xc

λ+ 2σ
)− Γ(0,

x/xc

λ− 2σ
)] ≈ e−x/λxc , (S12)

for 1 > λ > 2σ, where the last approximation corresponds to a relatively small σ. Thus, we find that even with a reasonable
dispersion in the constant progress rates λ in a population of individuals, the pdf P (x) is still exponential. Hence, our theoretical
model cannot explain the empirical non-exponential form of P (x) unless we incorporate the Matthew effect using g(x) that
increase with x.
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FIG. S2: A graphical illustration of a hypothetical career progress trajectory g(t) = a sech[(t − t∗)/w] (dashed red line), with amplitude
a = 0.9, peak time t∗ = 2500, and width w = 1000, in arbitrary time units. As an approximation, in order to provide an analytic solution to
the model, we approximate g(t) by a uniform plateau function g(t) ≈ γ[H(t− t1)−H(t− t2)] (solid red line), as in Eq. (S18), where H(t)
is the standard Heavyside step function.

V. A NULL MODEL WITH TIME-DEPENDENT CAREER TRAJECTORY

In this section, we develop a career progress model where the progress rate g(t) is time-dependent instead of being position-
dependent g(x), as in the previous sections. We use a time dependent career trajectory to capture the non-monotonic peaks in
key productivity factors, e.g. creativity and talent, that are observed for various creative careers [S6]. In Fig. S2 we show a
generic g(t) which peaks at a variable time t∗, and has an amplitude a related to the individual’s underlying talent. The regime
in which g(t) is increasing reflects the learning curve associated with a difficult endeavor, whereas the regime in which g(t) is
decreasing reflects e.g. aging factors and the upper limit to the finite resources which facilitate improvement.

In analogy to Eq. [10], the master equation for the evolution of career progress is

∂P (x+ 1, t)
∂t

= g(t)P (x, t)− g(t)P (x+ 1, t) , (S13)

where g(t) is an arbitrary function which quantifies the forward progress rate at time t. To solve for P (x, t), we define the
“integrated time” τ given by,

τ ≡
∫ t

0

dt′g(t′) . (S14)

Hence, we write Eq. (S13) as,

∂P (x+ 1, τ)
∂τ

= P (x, τ)− P (x+ 1, τ) , (S15)

which along with the initial condition P (x+ 1, τ) = P (x+ 1, t) = δx,0, has the solution,

P (x, τ) =
e−ττx−1

(x− 1)!
. (S16)

As previously described in the main text, we obtain the unconditional probability density function P (x) of career longevity x
from the conditional pdf P (x|T ) = P (x, t ≡ T ) using a pdf of random termination times r(T ),

P (x) =
∫ ∞

0

P (x|T )r(T )dT , (S17)

where we use the exponential pdf r(T ) = x−1
c exp[−(T/xc)] for the demonstration of a career termination model with constant

hazard rate, corresponding to the Laplace transform of P (x|T ) in the variable s = 1/xc. The integral in Eq. (S17) is typically
difficult to calculate given the time-dependence of the progress rate.
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FIG. S3: Exact solutions for P (x) with time-dependent career trajectory g(t) defined in Eq. (S21), for the case of t1 = 0, xc = t2, and
γxc = {1000, 2000, 3000, 4000}.

Simonton [S6] finds that the annual productivity of creative products or ideas has a trajectory that is peaked around a given
characteristic time t∗ into a given profession. This peak is determined by two model parameters quantifying “ideation” and
“elaboration” rates, and two additional parameters quantifying initial creative potential and the age at career onset. To demon-
strate the solution to our null model, we use an simplified functional form for g(t) corresponding to a uniform distribution over
the interval t ∈ [t1, t2],

g(t) ≈

 0 , t < t1
γ , t ∈ [t1, t2]
0 , t > t2 ,

(S18)

where t1 is the “breakout” year of the career, t2 corresponds to the year in which the individual’s productivity declines rapidly,
and 0 ≤ γ ≤ 1 is the intrinsic potential or talent of the given individual, and the time duration t2 − t1 is the precocity of the
given individual. Hence, the corresponding integrated time τ is given by

τ ≡
∫ t

0

dt′g(t′) =

 0 , t < t1
γ(t− t1) , t ∈ [t1, t2]
γ(t2 − t1) , t > t2 .

(S19)

Then Eq. (S17) becomes,

P (x) =
∫ t2

t1

dTe−γ(T−t1) [γ(T − t1)]x−1

(x− 1)!
x−1
c e−T/xc +

∫ ∞
t2

dTe−γ(t2−t1) [γ(t2 − t1)]x−1

(x− 1)!
x−1
c e−T/xc

=
e−t1/xc

γxc

( 1
1 + 1/γxc

)x[
1− Γ(x, γ(t2 − t1))

Γ(x)

]
+ e−γ(t2−t1) [γ(t2 − t1)]x−1

Γ(x)
e−t2/xc . (S20)

In the limit t1 → 0 and with t2 ≡ xc, the functional form of P (x) has only one parameter, the product γxc � 1, so that

P (x) =
1
γxc

[
1− Γ(x, γxc)

Γ(x)

]
+ e−(γxc+1) [γxc]x−1

Γ(x)
(S21)

In Fig. S3 we plot P (x) for several values of the parameter γxc, where each curve demonstrates two common features, (i)
a uniform distribution of career longevity x for 1 ≤ x . γxc, and (ii) a sharp peak that is centered around x = γxc which
corresponds to approximately 10% of careers which are stellar. Averaging the P (x) over a distribution P (γ) of talent values γ
that is approximately normal, as in the case of the prowess pdfs in Fig. S1, would result in a qualitatively similar P (x) which is
peaked around the value x ≈ γxc. The resulting distribution would be essentially “bimodal”, with one mode corresponding to
“stellar” careers distributed for x ≈ γxc, and a mode corresponding to less-substantial careers for x . γxc, just as in the case of
the convex progress rate for α > 1, both of which do not agree with the statistical regularity in the empirical data (Fig. 3) which
occurs over several orders of magnitude.

In our model, we assume that termination is due to external factors. A more complex model might include the possibility that
termination is due to endogenous factors, e.g. a reduced level of productivity below a predetermined employment threshold at
any given time. This type of endogenous termination is more difficult to model, since it correlates the progress δx/δt with the
termination probability r(T ), whereas above they are assumed to evolve independently. We leave this more complex model as
an open avenue of research.
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TABLE S1: Summary of data sets for each journal. Total number N of unique (but possibly degenerate) name identifications. N∗ is the
number of unique name identifications after pruning the data set of incomplete careers.

Journal Years Articles Authors, N N∗

Nature 1958-2008 65,709 130,596 94,221

Science 1958-2008 48,169 109,519 82,181

PNAS 1958-2008 84,520 182,761 118,757

PRL 1958-2008 85,316 112,660 72,102

CELL 1974-2008 11,078 31,918 23,060

NEJM 1958-2008 17,088 66,834 49,341

TABLE S2: Data summary for the pdfs of career statistical metrics. The values α and xc are determined for each career longevity pdf P (x)
and each career success pdf P (z) via least-squares method using the functional form given by Eq. [5]. We calculate the Gamma pdf average
〈x〉, the standard deviation σ, and the extreme threshold value x∗ at the f = 0.019 significance level using the corresponding values of α and
xc. The units for each metric are indicated in parenthesis alongside the league in the first column.

For publication distributions, the career longevity metric x is measured in years.
Least-square values Gamma pdf valuesProfessional League,

(success metric) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

MLB, (H) 0.76 ± 0.02 1240 ± 150 300 610 2400 7.8 3.9

MLB, (RBI) 0.76 ± 0.02 570 ± 80 140 280 1100 7.8 3.9

NBA, (Pts) 0.69 ± 0.02 7840 ± 760 2400 4400 17000 7.0 3.9

NBA, (Reb) 0.69 ± 0.02 3500 ± 130 1100 2000 7600 6.9 3.9

Least-square values Gamma pdf valuesProfessional League,

(opportunities) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

KBB, (AB) 0.78 ± 0.02 2600 ± 320 580 1200 4700 8.2 3.9

MLB, (AB) 0.77 ± 0.02 5300 ± 870 1200 2500 9700 8.1 3.9

MLB, (IPO) 0.72 ± 0.02 3400 ± 240 950 1800 6900 7.3 3.9

KBB, (IPO) 0.69 ± 0.02 2800 ± 160 840 1500 5900 7.0 3.9

NBA, (Min) 0.64 ± 0.02 20600 ± 1900 7700 12600 48800 6.4 3.9

UK, (G) 0.56 ± 0.02 138 ± 14 61 92 360 5.8 3.9

Least-square valuesAcademic Journal,

(career length in years) α xc

Nature 0.38 ± 0.03 9.1 ± 0.2

PNAS 0.30 ± 0.02 9.8 ± 0.2

Science 0.40 ± 0.02 8.7 ± 0.2

CELL 0.36 ± 0.05 6.9 ± 0.2

NEJM 0.10 ± 0.02 10.7 ± 0.2

PRL 0.31 ± 0.04 9.8 ± 0.3
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