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Abstract. – We study how the presence of correlations in physical variables contributes to
the form of probability distributions. We investigate a process with correlations in the variance
generated by i) a Gaussian or ii) a truncated Lévy distribution. For both i) and ii), we find that
due to the correlations in the variance, the process “dynamically” generates power law tails in
the distributions, whose exponents can be controlled through the way the correlations in the
variance are introduced. For ii), we find that the process can extend a truncated distribution
beyond the truncation cutoff, which leads to a crossover between a Lévy stable power law and
the present “dynamically generated” power law. We show that the process can explain the
crossover behavior recently observed in the S&P500 stock index.

Many natural phenomena are described by distributions with scale-invariant behavior in
the central part and power law tails. To explain such a behavior the Lévy process [1] has been
employed in finance [2], fluid dynamics [3], polymers [4], city growth [5], geophysical [6] and
biological [7] systems. An intense activity has been developed in order to understand the origin
of these ubiquitous power law distributions [8]. The Lévy process, however, is characterized by
a distribution with infinite moments and in applications this might be a problem, e.g., analysis
of autocorrelations in time series requires a finite second moment. To address this problem,
probability distributions of the Lévy type with both abrupt [9] and exponential cutoffs [10]
have been proposed. A second problem is that the Lévy process has been introduced for
independent and identically distributed stochastic variables, while for some systems there is
a clear evidence of correlations in the variance (e.g., for many important market indices [11]).
Moreover, a crossover between a Lévy stable power law and a power law with an exponent out
of the Lévy regime, was recently found in the analysis of price changes [12]. We investigate
how a stochastic process with no correlations in the variables but rather in their variance can
be introduced to account for the empirical observations of a Lévy stable form of the probability
distribution in the central part and a crossover to a power law behavior different than the
Lévy in the far tails.
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Fig. 1 – The dependence on time of (a) a realization of an ARCH process xt of eq. (1) and (b) the
variance σ2

t of eq. (2). The ARCH process xt is defined by a = 0.88 and b = 0.12. For these a and
b values, σ2

x = 1 (eq. (3)). P (wt) is the TL PDF of eq. (5) with α = 1.5, γ = 0.27, and the cutoff
length � = 10 (horizontal dashed line). Large values of xt are followed by large values of σ2

t . Due to
the dynamical features of the ARCH process, values of xt can exceed the truncation cutoff � of the
TL distribution, and the regime beyond the cutoff length becomes populated (see fig. 3).

In finance, a stochastic process with autoregressive conditional heteroskedasticity (ARCH)
[13] is often used to explain systems characterized by correlations in the variance. The ARCH
process is a discrete time process xt whose variance σ2

t depends conditionally on the past
values of xt. The ARCH process is specified by the form of the probability density function
(PDF) P (wt) of the process wt which generates the random variable xt.

Here we ask to what extent the presence of correlations in the variance σ2
t contributes to

the form of the probability distribution P (zn), where zn ≡ ∑i=n
i=1

xt+i−1 and xt is the ARCH
process (in finance zn is called temporal aggregation of the ARCH process xt). We perform
numerical simulations and investigate the form of P (zn), when the PDF P (wt) of the process
wt which generates xt is either of two cases, i) a Gaussian, or ii) a truncated Lévy distribution.
For case i) and n = 1 (i.e. z1 ≡ xt), the ARCH process generates P (xt) which, to a good
approximation, can be fit at the tails by a single power law [14]. For case ii) and n = 1, we
show that the interplay between the Lévy form of the distribution in the central part and the
dynamics of the ARCH process can give rise to a crossover between two power law regimes
in the tails of P (xt). For both i) and ii), at large n, we find clear convergence of P (zn) to a
Gaussian [15].

Suppose xt is generated by an independent and identically distributed (i.i.d.) stochastic
process wt, drawn from a PDF P (wt) with zero mean (〈wt〉 = 0) and unit variance (〈w2

t 〉 = 1),

xt = σtwt. (1)

Then xt follows an ARCH process if the variance σ2
t evolves in time as

σ2
t = a + b x2

t−1, (2)

where a and b are two non-negative constants [13]. For b = 0, the ARCH process xt reduces
to the i.i.d. stochastic process wt —no correlations in all moments. For b �= 0, the stochastic
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Fig. 2 – Log-log plot of P (zn) for the temporal aggregation zn of the ARCH process xt calculated for
different time scales n = 1 (◦), 10 (�), and 100 (�). The ARCH process xt with a = 0.49 and b = 0.51
has the expected variance σ2

x = 1 (eq. (3)) and kurtosis κx = 10 (eq. (4)). wt in eq. (1) is chosen
from a Gaussian distribution (κw = 3). Due to the correlations in the variance σ2

t , the temporal
aggregation of the ARCH process generates power law tails in P (zn) for small time scales n. By solid
lines, for the same time scales (n = 1, 10, and 100), we denote the Gaussian process with the same
variance as the ARCH process. In the inset, we show a log-log plot of the probability of return to the
origin P (zn = 0) for the same ARCH (◦) and for the Gaussian process (solid line); the line has slope
0.5 —the value predicted for the Gaussian— which suggests that P (zn) gradually tends towards the
Gaussian with increasing n.

process xt is uncorrelated —〈xtxt′〉 ∼ δtt′— but has correlations in the variance σ2
t . Indeed,

the ARCH process is characterized by exponentially decaying correlations in the variance
〈σ2

t σ2
t′〉 ∼ exp[−(t′ − t)/τ ] with decay constant τ = | log(b)|−1.

In fig. 1 we see that σ2
t is large when x2

t−1 is large. The ARCH process is specified by the
functional form of the PDF P (wt) which controls the stochastic variable wt and also by the
value of the parameter b (eqs. (1) and (2)). In the ARCH process P (wt) is traditionally the
Gaussian, but other choices are possible [16]. Furthermore, the correlations in the variance
σ2

t can be controlled by changing the parameter b —larger values of b relate to stronger
correlations.

The expected variance of xt is a constant: σ2
x ≡ 〈x2

t 〉 = 〈σ2
t 〉 [13]. From this relation and

eqs. (1) and (2) there follows:

σ2
x =

a

1− b
(3)

and

κx ≡ 〈x4〉
(〈x2〉)2 = κw +

κw(κw − 1)b2

1− κwb2
, (4)

where κw is the kurtosis of P (wt), a common measure of the degree of “fatness” of the
distribution related to the fourth moment [11, 13]. From eq. (3), σ2

x is finite if b < 1, while
finiteness of kurtosis κx (and the fourth moment of xt) requires κwb2 < 1. No matter what
functional form for P (wt) we choose, the ARCH process generates PDFs with slower decaying
tails compared to P (wt) — κx > κw from eq. (4). Such a slow decay in the tails of P (zn)
for the ARCH process may come both from the choice of the P (wt) and the presence of
correlations in the variance, i.e. κw and b, respectively.
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Fig. 3 – Linear-log plot of the PDFs of (◦) the truncated Lévy process wt without correlations and
(•) the ARCH process xt (n = 1), where wt of eq. (1) has the TL distribution of eq. (5) with α = 1.2,
γ = 0.21, and cutoff length � = 9 (vertical dotted lines), implying κw = 24.2. Parameters of the
ARCH process are a = 0.9 and b = 0.1 giving κx = 31.6 (eq. (4)). While the central part (◦) of the
PDF remains practically the same for both wt and xt processes, the ARCH process xt extends the
range of the TL to xt > � due to the correlations in the variance σ2

t (eq. (2)). This ARCH-extended
regime (•) is rarely populated and therefore decays faster. In the inset, we show the log-log plot
of the PDF of the ARCH process xt. The process leads to extension of the range of the original
TL distribution, with a crossover between two different power law regimes: the original Lévy stable
power law and the dynamically generated power law (appearing beyond the truncation cutoff �). The
exponent of the power law in the ARCH-extended regime is defined by correlations in the variance
σ2

t through the parameter b (eq. (2)).

First, we consider the temporal aggregation zn of an ARCH process for a particular choice
of P (wt) given by a Gaussian distribution (see fig. 2). Due to the correlations in the variance
(eq. (2)), the ARCH process, for small n, generates tails which can be approximated by a
power law. Given that the parameter b controls the correlations in the variance σ2

t , we find
that the slope of this power law is directly linked to these correlations —the stronger the
correlations in σ2

t , the smaller the slope of the power law tail. For large n, the PDF of the
temporal aggregation zn of the ARCH process resembles the form of the Gaussian distribution,
i.e. P (zn) tends to the Gaussian, with a variance of nσ2

x.
Second, we analyze the ARCH process where P (wt) (eq. (1)) is the truncated Lévy (TL)

distribution [9], defined by

Tα,γ,l(w) ≡
{

NLα,γ(w), |w| ≤ �

0, |w| > �

}

. (5)

Here, Lα,γ(w) is the symmetrical Lévy stable distribution [1,2], α is the scale index (0 < α < 2),
γ is the scale factor (γ > 0), N is the normalizing constant and � is the cutoff length. Note
that the TL distribution is characterized by power law tails from zero up to the cutoff length �.
In performing numerical simulations [17], we employ an algorithm of ref. [18].

In fig. 3, we show the PDF of an ARCH process xt (n = 1) where P (wt) is the TL
distribution. We find two regimes where the values of xt are smaller and larger than the
cutoff length � of P (wt). The first regime (xt < �) is characterized by the Lévy power law due
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Fig. 4 – PDF of the 1 min price changes for the S&P500 stock index over the 12-year period
Jan. ’84-Dec. ’95. The central part of the empirical PDF is well fit with the Lévy distribution
(α = 1.4) up to the cutoff length � (arrow), followed by crossover to a second “dynamically generated
by ARCH” regime (xt > �), which can be approximated by a power law with slope 4.4 (α = 3.4).
We show a realization of the ARCH process, where P (wt) is the TL distribution of eq. (5) with
α = 1.4, γ = 0.275, length � = 8, and the process is characterized by b = 0.4, where a is chosen to
give the empirical standard deviation σ = 0.07. Note that the bump at the truncation cutoff � in
the PDF of the ARCH process in fig. 3 is more pronounced compared to the bump in the PDF of
the S&P500 data and the ARCH process in this figure. This is due to the fact that the correlations
in the variance σ2

t introduced for the particular realization of the ARCH process in fig. 3 are weaker
(b = 0.1) compared to the correlations in the S&P500 data (b = 0.4).

to the choice of the P (wt) (eq. (5)). Due to the correlations in the variance σ2
t (eq. (2)), the

ARCH process extends the range of the PDF to xt > �, generating a new power law different
from the Lévy power law in the first regime. This second regime, where xt > �, is rarely
populated —events in that regime occur only when two large values of xt follow each other.
Since such events have small probability, the PDF of the ARCH process xt in that regime
decreases faster compared with the first regime where the fluctuations of xt are smaller than
the cutoff length �.

The existence of two regimes in the PDF, characterized by two different power laws, is
empirically observed in high-frequency data on price changes [12]. In addition the central part
of the empirical PDF in financial data is well described by a Lévy distribution and exhibits
the same scale-invariant behavior [2]. Such behavior of the empirical PDF can be mimicked
by the ARCH process with a TL distribution, since the ARCH process generates power laws
in the far tails while preserving the form of the PDF in the central region (figs. 2 and 3).
Empirical data also show a bump in the PDF of the price changes calculated for a delay of 1
min. A similar bump is observed in fig. 3 for the ARCH process xt around the cutoff length
�. We find that this bump is a signal for changing the power law exponent in the probability
distribution. In fig. 4 we show the PDF of the ARCH process in good agreement with the
PDF of 1 min price changes for the S&P500 index. The central part (xt < �) of the PDF
characterized by Lévy-stable power law with slope 2.4 (α = 1.4) is followed by a crossover
to a second “dynamically generated” by ARCH regime (xt > �) with a different behavior,
approximately power law with slope 4.4 (α = 3.4). As in the case of the ARCH process
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Fig. 5 – Left panel: log-log plot of the probability of return P (zn = 0), where zn is the temporal
aggregation of the ARCH process with a = 0.88, b = 0.12, σ2

x = 1 (eq. (3)) and kurtosis κx = 31.4
(eq. (4)). P (wt) is the truncated Lévy distribution (eq. 5) (with σ2

w = 1 and κw = 21.9 (eq. 4))
obtained by setting α = 1.5, γ = 0.27, and � = 10. Also shown is the Lévy stable process with
α = 1.5 (slope equals 1/α) and γ = 0.27, and the Gaussian process with variance σ2 = 1 equal to
the expected variance σ2

x of the ARCH process. For small values of n, zn follows the Lévy process
and then converges to the Gaussian. Right panel: linear-log plot of P (zn) calculated for different
time scales n. For the same time scales, we also show the Gaussian process to which zn gradually
converges. Parameters for both Gaussian and ARCH process are defined as for the left panel.

with Gaussian PDF, we can control the exponent of the power law in the second dynamically
generated by ARCH regime by tuning b, while the parameter a is chosen to give the empirical
standard deviation.

Next we study the asymptotic behavior (at large time scales n) of the PDF of the tem-
poral aggregation zn, where P (wt) is the TL distribution. In fig. 5 we show P (zn = 0) for
the ARCH process. For small n, P (zn = 0) approximately follows the Lévy distribution
Lα,γ(zn = 0) = Γ(1/α)/[πα(n γ)1/α] with the same α and γ as P (wt). For n > 30, P (zn = 0)
tends to a Gaussian distribution G(zn = 0) = 1/[

√
2πσxn1/2] with variance σx defined by

eq. (3) and equal to the variance of P (xt) [19]. Thus, despite the presence of correlations
in the variance σ2

t , the temporal aggregation zn of the ARCH process behaves like an i.i.d.
process, characterized by a fast transition from Lévy to Gaussian process (“ultra-fast” TL
flight [9]). Since the correlations in the variance are of short range, for sufficiently large time
scales n, P (zn) approaches a Gaussian form, a behavior normally associated with uncorrelated
stochastic variables (fig. 5).

In summary, we find that power law tails in distributions can be dynamically generated
by introducing correlations in the variance of stochastic variables, even when the initial dis-
tribution of these variables is the Gaussian. We also find that when the initial distribution
is a truncated Lévy distribution, the process of introducing correlations in the variance can
extend the range of the PDF beyond the truncation cutoff. This extension of the range of the
original probability distribution is characterized by a crossover between two different power
law regimes: the original Lévy stable power law (within the limits of the truncation cutoff)
and the “dynamically generated” power law (beyond the truncation cutoff). This behavior
appears to explain the empirically observed crossover in the PDF of price changes for the
S&P500, and carries information about the relevant parameters of the underlying stochastic
process. Our findings can help understand to what extent the presence of correlations in phys-
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ical variables contributes to the form of probability distributions, and what class of stochastic
processes could be responsible for the emergence of power law behavior.
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tion (Gnedenko B. V. and Kolmogorov A. N., Limit Distributions for Sums of Independent
Random Variables (Addison-Wesley, Cambridge) 1954).

[16] Bollerslev T., Rev. Econ. Statist., 69 (1987) 542; Baillie R. T. and Bollerslev T., J.
Business Econ. Statist., 7 (1989) 297; Hsieh D. A., J. Business Econ. Statist., 7 (1989) 307;
Nelson D. B., Econometrica, 59 (1991) 347.

[17] To obtain a random variable with γ �= 1, we note that the PDF of eq. (5) rescales under the
transformations w̃ ≡ w/λ1/α, T̃α,γ̃,l̃(w̃) ≡ Tα,γ,l(w)λ

1/α, where γ̃ ≡ γ/λ, l̃ ≡ l/λ1/α, and λ
is the scaling parameter. If any algorithm corresponding to random variable w with γ = 1 is
provided, the scaling transformation allows us to obtain any other variable w̃ with γ̃ �= 1.

[18] Mantegna R. N., Phys. Rev. E, 49 (1994) 4677.
[19] Drost F. and Nijman T., Econometrica, 61 (1993) 909.


