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Motivated by the fact that many physical systems display sid power-law correlations together with siid an
asymmetry in the probability distribution, we propose a stochastic process that can model both properties. The
process depends on only two parameters, where one controls the scaling exponent of the power-law correla-
tions, and the other controls the degree of asymmetry in the distributions leaving the correlations unaffected.
We apply the process to air humidity data and find that the statistical properties of the process are in a good
agreement with those observed in the data.
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Many physical phenomena exhibit temporal or spatial cor-
relations that can be approximated by power laws. For ex-
ample, long-range power-law correlations have been found
in physical, biological, and social systems f1–8g, and various
stochastic processes f9–12g have been developed to model
these power-law scaling properties. Recent studies have
shown that in addition to power-law correlations empirical
data often exhibit a significant skewness or asymmetry in
their distributions. Asymmetric distributions have been found
in astrophysical data f13g, genome sequences f14g, respira-
tory dynamics f15g, brain dynamics f16g, heartbeat dynamics
f17g, turbulence f18g, physical activities, and finance f19g.

With the goal of constructing a stochastic process that can
generate time series with both power-law correlated and
asymmetrically distributed variables xi, we define the process
Asr ,ld by

xi = luxi−1u + o
n=1

`

ansrdsxi−n − luxi−n−1ud + hi, s1d

where rP s0,0.5d and lP s−1,1d are free parameters, ansrd
are weights defined by ansrd=Gsn−rd / fGs−rdGs1+ndg, G

denotes the Gamma function, and hi denotes independent
and identically distributed Gaussian variables with expecta-
tion value khil=0 and variance khi

2l=1. The parameter r

controls the length of the memory, i.e., how rapidly the in-
fluence of past values xi−n and uxi−n−1u on xi decays in time,
and the parameter l controls the relative influence of xi−n on
xi compared to the influence of uxi−n−1u on xi.

Asr ,ld can be understood as a generalization f20,21g of
the fractionally integrated process proposed in Refs. f9,10g,
to which Asr ,ld reduces for l=0. While the fractionally
integrated process Asr ,0d is known to generate power-law
correlated and symmetrically distributed time series f9,10g,
we will show in the following that, for lÞ0, Asr ,ld gener-
ates power-law correlations with an asymmetric distribution.
Specifically, we will show that the parameter r controls the
scaling exponent of the power-law correlations, and that the
parameter l controls the degree of asymmetry in the distri-

butions, leaving the correlations almost unaffected.
Before studying the autocorrelation function of xi, Csnd

;kxi+nxil− kxil
2, and the probability distribution, Psxd, for

different values of r and l, we note that process Asr ,ld
exhibits two invariance properties. Under the transformations
xi→−xi, hi→−hi, l→−l, one can see that Csn ur ,ld
=Csn ur ,−ld and Psx ur ,ld= Ps−x ur ,−ld. That is, the auto-
correlation functions calculated for opposite values of l are
identical, and the distributions for opposite values of l are
mirror images of each other. Hence, we focus on values of
lù0 in the following study.

To quantify the autocorrelations in xi generated by
Asr ,ld, we employ the method of detrended fluctuation
analysis sDFAd f22g. In the DFA method one measures the
standard deviation Fsnd of the detrended fluctuations as a
function of the scale n. If Csnd can be approximated by a
power law with exponent g, i.e., if Csnd~n−g, then Fsnd can
also be approximated by a power law with exponent a, i.e.,
Fsnd~na, with a<1+g /2 f22g. Hence, the value of a rep-
resents the degree of autocorrelations in the time series: if
a.0.5, the time series is power-law correlated; if a=0.5,
the time series is uncorrelated or short-range correlated; and
if a,0.5, the time series is power-law anticorrelated.

In order to study the influence of the parameter l on au-
tocorrelations and the degree of asymmetry in the distribu-
tion, we perform numerical simulations f23g of Asr ,ld with
r=0.3 and varying l. Figure 1sad shows that, for l=0, Fsnd
can be approximated by a power law with scaling exponent
a, i.e., Fsnd~na, where a<0.5+r=0.8, as expected from
Refs. f9,10,24g. Figure 1sad shows that, also for lÞ0, Fsnd
can be approximated by a power law with scaling exponent
a, where a<0.5+r=0.8, i.e., the value of l has no visible
effect on autocorrelations of xi for asymptotically large val-
ues of n. We also find from Fig. 1sad that, for lÞ0, the Fsnd
curves exhibit a crossover at small time scales n, which be-
comes more pronounced and shifts to larger scales of n with
increasing ulu.

In Fig. 1sbd we see that, for l=0, Psxd is symmetric, as
expected for the process of Refs. f9,10g. For l=0.6 and
l=0.9, we find that Psxd is asymmetric with positive skew-
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ness, where the left tail is almost identical to the left tail of
the symmetric distribution, and the right tail is broader than
the right tail of the symmetric distribution. Due to the invari-
ance Psx ur ,ld= Ps−x ur ,−ld, we find that the distributions
for positive and negative values of l are mirror images of
each other for opposite values of l.

In order to investigate how the correlation properties of
Asr ,ld depend on r, we perform numerical simulations to
obtain time series for l=0.6 and r ranging from 0 to 0.4. We
find from Fig. 2 that the Fsnd curves can be approximated by
power laws with a scaling exponent of a<0.5+r. This states
that we obtain the same scaling law for the process Asr ,ld
generating asymmetrical distributions as for the process
Asr ,0d generating symmetrical distributions. Numerically
we find that, independently of l, the relation a<0.5+r
holds for all values of r and l where rP s0,0.5d and
lP s−1,1d f24g.

In order to model probability distributions with a different
shape, particularly with tails broader than those generated by
process Asr ,ld, we propose the process Bsr ,ld by substi-
tuting the term hi in Eq. s1d by the term sihi, where the

time-dependent standard deviation si is defined by f25g

si = o
n=1

`

ansrd
uxi−nu

kuxi−nul
. s2d

Bsr ,ld generates not only long-range autocorrelations in xi,
but also autocorrelations in the magnitudes uxiu, and pro-
cesses with autocorrelations in the magnitudes have been in-
troduced to model broader tails in the distributions f26g.

Figure 3sad shows that, for asymptotically large n, each
Fsnd curve can be approximated by a power law with scaling
exponent a<0.5+r. This states that the time-dependent
standard deviation si does not affect the relation between a
and r observed for process Asr ,ld f24g. Figure 3sbd shows
the distribution of xi generated by Bsr ,ld for r=0.3 and l

ranging from 0 to 0.3. As expected, the asymmetry vanishes
for l=0 even in the presence of the term sihi, meaning that
this term alone does not create an asymmetry in the distribu-
tion of xi but only broadens its tails f26g. For l.0, we find
that, as l increases, the right tails of the distributions become
broader, the left tails of the distributions become thinner, and
thus the asymmetry becomes more pronounced. Comparing
Figs. 3sbd and 1sbd we find that the time-dependent standard
deviation si broadens the tails and increases the skewness of
Psxd.

To exemplify the utility of process Bsr ,ld for modeling
real-world data, we study air humidity data, which can be
considered an output of a complex geophysical system. We
analyze the relative air humidity recorded in 10-min intervals
at the Institute of Plant Genetics and Crop Plant Research in
Gatersleben f27g. We denote the differences of successive
relative air humidity by x̃i, and we show in Fig. 4sad the time
series x̃i. Figures 4sbd and 4scd show that the time series x̃i
exhibits both power-law autocorrelations with a scaling ex-
ponent of a<0.87 and an asymmetric distribution.

In order to investigate to which degree process Bsr ,ld
can approximate the statistical properties of the empirical
time series x̃i, we generate time series by numerical simula-
tions of process Bsr ,ld with r=0.37 and l=0.15, where we

FIG. 1. Correlations and probability distributions obtained from
numerical simulations of process Asr ,ld with r=0.3 and l=0,
±0.6, and ±0.9. sad Detrended fluctuation function Fsnd. We see that
the Fsnd curves for opposite values of l are identical, and we find
that, for all values of l ,Fsnd can be approximated by a power law
for asymptotically large n, and the scaling exponent a in Fsnd
~na is virtually the same for all values of l. sbd Probability distri-
bution Psxd. We see that for opposite values of l the distributions
are mirror images of each other, and we find that Psxd is symmetric
for l=0, Psxd is asymmetric with positive skewness for l.0, and
the degree of asymmetry increases with increasing ulu.

FIG. 2. Detrended fluctuation function Fsnd obtained from nu-
merical simulations of process Asr ,ld with l=0.6 and r=0, 0.1,
0.2, 0.3, and 0.4. For asymptotically large values of n, each of the
Fsnd curves can be approximated by a power law Fsnd~na with the
scaling exponent a<0.5+r.
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set r by using the relation a<0.5+r, and where we find l
based on a numerical least-square minimization. In Fig. 4,
we present sad the time series x̃i and xi, sbd their detrended
fluctuation functions Fsnd, and scd their distributions Psx̃d
and Psxd. Figures 4sad–4scd show that the time series of x̃i

and xi look similar, that the autocorrelation behavior of the
simulated time series xi is in good agreement with that of the
air humidity time series x̃i, and that the distributions Psx̃d and
Psxd are asymmetric with positive skewness. Moreover, we
find that even the shapes of both distributions are similar,
which is surprising because the shape of Psxd is not fitted to
the shape of Psx̃d, but the shape of Psxd is entirely given by
the values of r and l.

One possible explanation for the positive skewness in the
data is that it is very easy to increase the humidity rapidly, by
rain for example, but it is hard to dry it rapidly. This simple
physical fact could be one of the origins of the asymmetry
observed in the distribution of x̃i. The agreement of the sta-
tistical properties of x̃i and xi observed in Fig. 4 might indi-
cate that humidity changes at time i depend not only on past
humidity changes xi−n but also on their magnitudes uxi−n−1u.
The degree of asymmetry in the distribution of xi reproduced

by process Bsr ,ld with a small value of l<0.15 suggests
that the influence of the past magnitudes uxi−n−1u on xi is
significantly smaller than the influence of the past humidity
changes xi−n. Specifically, we might speculate that the influ-
ence of the past humidity changes xi−n on xi is approximately
seven times greater than the influence of their magnitudes
uxi−n−1u on xi. Even though both processes Asr ,ld and
Bsr ,ld can generate asymmetric distributions, we find that
the empirical distribution cannot be reproduced by process

FIG. 3. Correlations and probability distributions of process
Bsr ,ld. sad Detrended fluctuation function Fsnd obtained from nu-
merical simulations of process Bsr ,ld with l=0.15 and varying
values of r=0, 0.1, 0.2, 0.3, and 0.4. We find that, independently of
l, Fsnd can be approximated by a power law Fsnd~na with the
scaling exponent a<0.5+r. sbd Probability distributions Psxd ob-
tained from numerical simulations with r=0.3 and l=0, 0.15, and
0.3. We see that Psxd is symmetric for l=0, Psxd is asymmetric
with positive skewness for l.0, and the skewness increases with
increasing l.

FIG. 4. Comparison of the changes of relative air humidity x̃i

with the time series xi generated by process Bsr ,ld with r=0.37
and l=0.15. sad Time series x̃i and xi. We find that both time series
show sudden bursts of large fluctuations predominantly in the posi-
tive direction. sbd Detrended fluctuation functions Fsnd. We find that
autocorrelations of x̃i and xi are very similar, and consistent with a
power-law scaling of Fsnd~na with the scaling exponent a<0.87.
scd Probability distributions Psx̃d and Psxd. We find that both distri-
butions are asymmetric with positive skewness. Moreover, we find
that even the shapes of both distributions are similar.
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Asr ,ld, but it can be almost perfectly reproduced by process
Bsr ,ld. This surprising observation indicates that the envi-
ronmental factors hi at time i might be amplified by a mul-
tiplicative factor si, which does not depend on past humidity
changes xi−n but on their magnitudes uxi−n−1u.

In conclusion, we propose two stochastic processes,
Asr ,ld and Bsr ,ld, that generate simultaneously power-law
autocorrelations and asymmetric probability distributions.
Both processes depend on only two parameters, r and l,
where r controls the scaling exponent of the power-law au-
tocorrelations and l controls the degree of asymmetry. We
study air humidity time series, and we find that they display
both power-law autocorrelations and asymmetric distribu-
tions. We find that process Bsr ,ld is capable of
reproducing—qualitatively and quantitatively—the autocor-
relations and the distribution of the data. The quantitative
agreement of the shape of the distribution generated by pro-
cess Bsr ,ld with the shape of the distribution of the air
humidity changes is surprising, because the shape of the dis-
tribution is not fitted, but fully determined by the parameters

r and l controlling the scaling exponent of the power-law
autocorrelations and the skewness of the distribution, respec-
tively. The surprising agreement of the shapes of the distri-
butions might suggest that air humidity changes at time i are
possibly driven by sid past air humidity changes at times i–n,
siid their magnitudes at times i–n, and siiid environmental
factors at time i amplified by a multiplicative factor that
itself depends on past magnitudes at times i–n. It is clear
that processes Asr ,ld and Bsr ,ld lack many important de-
tails necessary for realistic weather models, but the simplic-
ity and generality of processes Asr ,ld and Bsr ,ld might
possibly make them useful for modeling diverse physical
systems exhibiting both power-law correlations and asym-
metric distributions.
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