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Time series of increments can be created in a number of different ways from a variety of physical phenom-
ena. For example, in the phenomenon of volatility clustering—well-known in finance—magnitudes of adjacent
increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with
respect to an increment’s sign: the magnitude of �xi� depends on the sign of the previous increment xi−1. Here
we define a model-independent test to measure the statistical significance of any observed asymmetry. We
propose a simple stochastic process characterized by a an asymmetry parameter � and a method for estimating
�. We illustrate both the test and process by analyzing physiological data.
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The outputs of a broad class of systems ranging from
physical and biological to social systems exhibit either long-
range temporal or spatial correlations that can be approxi-
mated by power laws �1�. A variety of studies have also
found that different complex systems spanning finance �2�,
physiology �3�, and seismology �4,5� generate time series of
increments, the magnitudes of which are power-law corre-
lated. The correlation of these magnitudes, results in “clus-
tering,” where large increments are more likely to follow
large increments and small increments are more likely to
follow small increments.

Long-range magnitude correlations in increments xi are
usually modeled using a time-dependent standard deviation,
�i �2�, commonly called volatility, which essentially influ-
ences the size of subsequent increments. �i is defined as a
linear combination of N previous values of �xi−n�, i.e., �i
=�n=1

N a�n��xi−n�, where i and n are time scales, and a�n� are
statistical weights.

Magnitude correlations of many financial time series �6�
are asymmetric with respect to increment sign, in that nega-
tive increments are more likely to be followed by increments
of large magnitude and positive increments are more likely
to be followed by increments with small magnitudes �i.e.,
“bad news” causes more volatility than “good news”�.

If we are to model this asymmetry, the standard deviation
�i we define must depend on both xi−n and �xi−n� to capture
the dependence of both sign and magnitude. Since �i must be
positive, we can define �i��na�n����xi−n�+�xi−n��, where �
is a real parameter that acts as a measure of asymmetry. For
��0, positive increments xi−1 are more likely to be followed
by large increments �xi� �see Fig. 1�a��, whereas for ��0,
negative increments are more likely followed by large incre-

ments. �=0 reduces to the symmetric �i above that has no
dependence on the sign of the increment.

We ask if the concept of asymmetry in magnitude corre-
lations is relevant to real physical data. We first create a test
allowing us to determine whether an observed asymmetry is
statistically significant. We then propose a stochastic process
in order to �i� further test significance and �ii� model data as
dependent on two parameters which characterize both the
length of the power-law memory and its magnitude correla-
tion asymmetry, parameters which we then demonstrate how
to obtain. Finally, we apply our test to real-world physiologi-
cal data to determine if there is statistically significant asym-
metry in the magnitude correlations.

How would we know if an observed asymmetry is genu-
ine and not due to a finite-size effect? For example, a finite-
length time series generated by an independent and identi-
cally distributed �iid� �i.e., uncorrelated� process will exhibit
a spurious asymmetry. To this end, we ask how large should
the asymmetry be to become statistically significant? To an-
swer this question, we generate iid series with zero mean and
unit variance, and for each we calculate two sums, S+ and S−.
The sum S+ is the average of all the values �xi� preceded by
positive xi−1, while the sum S− is the average of all the values
�xi� preceded by negative xi−1. For an infinitely long iid time
series, we expect S+=S−, while finite-length time series in
general have S+�S−.

We therefore define a test variable:

S � S+ − S−. �1�

What is the range �−Sc ,Sc� such that S will fall in this range
95% of the time? To answer this question, we generate a
large number of finite iid time series, each with N data
points. For each time series we calculate S. We find on col-
lecting all the S values that S follows a symmetrical prob-
ability distribution P�S� centered at zero. By ranking the val-*bp@phy.hr
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ues S from smallest to largest, we find a critical value Sc for
which there is probability 0.95 that the S of a random uncor-
related series is between �−Sc ,Sc�. By repeating the same
procedure for a different number of data points, in Fig. 2 and
in the inset, we find an almost perfect power-law fit relating
the critical value Sc to the number of data points with expo-
nent 0.5�0.006 in agreement with the central limit theorem.

To find critical values for empirical series, we also use
another approach of Ref. �5�. For a given series, we accom-
plish 104 reshufflings, where each reshuffled time series is
subtracted from the average and divided by its standard de-
viation. For each series, we calculate S of Eq. �1�. By ranking
the values S in ascending order, we find Sc for which there is
probability 0.95 that the S is between �−Sc ,Sc�. By using this
approach, for subjects 02 and 08 we find Sc=0.019 and Sc
=0.021, respectively.

We next argue that the interval �−Sc ,Sc� found for a given
N is a “litmus test” for significance. If the empirically calcu-
lated S is found outside this interval, we consider the asym-

metry statistically significant. We calculate the values of Sc

for various N �Table I and Fig. 2�.
Note that our test is model independent—it measures

asymmetry in magnitude correlations but assumes neither the
memory in correlations �long or short� nor the functional
form of the correlation �e.g., power law or exponential�.

A concern is the possibility that in order to test signifi-
cance of asymmetry in power-law magnitude correlations,
we should find the intervals �−Sc ,Sc� not from iid but from
time series generated by symmetric magnitude correlations.
To address this concern, we create a stochastic process char-
acterized by asymmetric power-law correlations in the mag-
nitudes �xi�

TABLE I. Critical values Sc obtained for an iid process and for
the process of Eq. �2� with �=0. Due to finite-size effects, even
these two processes may have nonzero values for S. In order to be
considered significant asymmetry, we demand that the empirically
calculated S �see Table II� is outside the interval �−Sc ,Sc�.

N iid �=0.1 �=0.2 �=0.3 �=0.4

500 0.105 0.106 0.118 0.141 0.222

2000 0.053 0.054 0.063 0.076 0.131

8000 0.027 0.027 0.029 0.039 0.070

32000 0.014 0.014 0.016 0.019 0.037

t

(a)

(b)

FIG. 1. Asymmetry in magnitude correlations and detrended
fluctuation function F�n�. �a� We show that the increments are
larger for xi−1�0 �top curve, shifted upward for clarity� than for
xi−1�0 �bottom curve� as a result of positive �. The time series is
obtained from numerical simulations of the process of Eq. �2� with
�=0.9 and �=0.4. �b� Detrended fluctuation function F�n�, where n
is a time scale, obtained from numerical simulations of process of
Eq. �2� with �=0.3, 0.6, and 0.9 and �=0.2 and 0.4. For asymptoti-
cally large values of n, each of the F�n� curves can be approximated
by a power law F�n�	n
 with scaling exponent 
�0.5+� indepen-
dent of the value of �.
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FIG. 2. To utilize the test from Eq. �1�, we show that the critical
value Sc follows a power law with respect to sample size N. In order
to apply the test for empirical time series, we calculate values Sc for
different value of N. We generate 106 iid time series for such N and
for each series we calculate the test S. We rank all the S values from
smallest to largest and find the Sc for which there is probability 0.95
that the S of a generated series is between �−Sc ,Sc�. We repeat the
same procedure for different values of N. We obtain a power law
�inset� Sc�AN−
 between Sc and N, where 
=0.5 and A=2.16. We
repeat the procedure for Sc values for the process of Eq. �2� when
�=0 �FIARCH�, a symmetric process in magnitude correlations.
For four different values of � we obtain power law relations be-
tween Sc and N.
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xi = �i�i,�i = 	
n=1

�

an���
��xi−n� + �xi−n�


��xi−n� + �xi−n��
, �2�

where �� �0,0.5� and �� �−1,1� are free parameters, �i is a
time-dependent standard deviation, an��� are power-law-
distributed weights an���=−�n−�� / ��−���1+n�� chosen
to generate power-law correlations in the magnitudes �xi�.
�x� denotes the Gamma function and �i denotes iid
Gaussian random variables with mean 
�i�=0 and variance

�i

2�=1. The parameter � controls the length of the power-
law memory, whereas the parameter � controls the asymme-
try in magnitude correlations. When �=0, the process of Eq.
�2� reduces to a fractionally integrated autoregressive condi-
tional heteroskedastic �FIARCH� process with symmetric
magnitude correlations �7� for which 
=0.5+� �8�, where 

is the exponent found from detrended fluctuation analysis
�DFA� �9�. We therefore call the process of Eq. �2� asymmet-
ric FIARCH �AFIARCH� process.

Because we include all previous increments in �i
of Eq. �2�, our process is necessarily long-range correlated.
We can also create a short-range correlated process
xi=�i�i by including only the most recent increment so
�i= ���xi−1�+�xi−1��. In this paper, instead of �, in the sum of
Eq. �2� we use the cut-off length �=500.

By using the process of Eq. �2�, we generate a number of
time series and find that the magnitude correlations quanti-
fied by the DFA exponent practically do not depend on the
parameter �. To demonstrate this, Fig. 1�b� shows DFA plots
for two fixed values of � and varying values of �. We see that
the DFA plots practically overlap and that 
=0.5+� holds as
for the symmetric FIARCH process �Eq. �2� with �=0 �7��.
Thus, the asymmetric term in Eq. �2� ���0� practically does
not affect the correlation pattern of the magnitude time se-
ries.

We next return to our goal of determining the statistical
significance of asymmetry. We use the process of Eq. �2�
with �=0 to generate a large number of time series for vari-
ous values of � and N. We then determine the test variable S
of Eq. �1� for each of these series. Ranking the values S from
smallest to largest we find a critical value Sc for which there
is probability of 0.95 that the S from a finite symmetrically
defined series falls between �−Sc ,Sc�. Varying both � and N,
in Fig. 2 we obtain four power-law fits relating the critical
value Sc and the number of data points N. As expected, the
critical values for power-law correlated time series shown in
Table I with �=0.1 �“weak” power-law correlations� are
practically the same as the critical values obtained for iid
time series. However, the stronger the correlation, the larger
the critical value Sc.

In order to estimate the parameter � characterizing the
asymmetry of a time series, we employ the maximum likeli-
hood estimation method �10�. One starts by deriving a like-
lihood function that is an expression for the probability of
obtaining a given sample of N known observations
�X1 ,X2 , . . . ,XN�. We denote the probability of obtaining the
ith observation Xi as P�Xi�. Then the probability L of obtain-
ing our particular N observations is the product of the prob-
ability P�Xi� to obtain each

L = �
i=1

N

P�Xi� . �3�

To make further progress, we need to posit a form for
P�Xi�. We assume the increments Xi are normally distributed
P�Xi�= �2��i

2�−1/2exp�Xi
2 /2�i

2� with a mean 0 and character-
ized by a time-dependent variance �i

2 which depends on the
past values of Xi. In our case, all values of �i and all values
of P�Xi� are characterized by only two adjustable parameters
�� ,��. Substituting the previous P�Xi� into Eq. �3� and taking
the logarithm we obtain the logarithmic-likelihood function
for the sample �10�

ln L = −
1

2
N ln�2�� − 	

i=1

N �ln��i� +
1

2
Xi

2/�i
2 . �4�

To illustrate the utility of the process of Eq. �2� for mod-
eling real-world data, we next analyze a large electroen-
cephalography �EEG� database �11� comprising records from
25 subjects randomly selected over a 6-month period at St.
Vincent’s University Hospital in Dublin �12�. EEG data are
recorded every 0.8 s, so we obtain the number of data points
N between 22 000 and 30 000 �Table II�. Time series of EEG
magnitudes exhibit power-law long-range correlated behav-
ior �13,14�.

From each original time series we subtract the average.
From Tables I and II we see that our test of Eq. �1� with
probability 0.95 confirms the existence of asymmetry in
magnitude correlations. The test for each subject is outside
the range �−Sc ,Sc� for a given N. For example, for subject
02, characterized by N=28 000 �close to 32 000 in Table I�
and �=0.27 �close to 0.3 in Table I�, we find S=−0.024
outside the range we obtained for iid process
�−0.014,0.014�, process with symmetric power-law magni-
tude correlations �−0.019,0.019�, and the approach of Ref.
�5� �−0.019,0.019�.

By minimizing Eq. �4�, we estimate � and � for each
subject �Table II� where we choose a normal probability dis-
tribution function �pdf� P�x� for EEG data. Commonly one

TABLE II. Subjects shown in column 1 are designated as in Ref.
�11�. We show only a few subjects. Statistics for all subjects avail-
able on request. Column 2 shows the number N of data points,
while column 3 displays the results obtained for the test of Eq. �1�.
In columns 4 and 5 are the estimates for � and � of the AFIARCH
process of Eq. �2� obtained after likelihood minimization of Eq. �4�
with Gaussian pdf. In columns 6 and 7 are the AFIARCH estimates
for � and � with the Laplace pdf. In the last column we show the
AGARCH �1 estimate.

Subject N S � � � � AGARCH �1

02 28000 −0.024 0.27 0.20 0.30 0.09 0.170�0.01

06 30000 0.015 0.24 −0.02 0.22 −0.01 −0.085�0.010

08 24000 0.070 0.28 0.02 0.27 0.03 −0.002�0.012

10 24000 0.028 0.24 0.10 0.26 0.13 0.023�0.022

24 25000 0.003 0.20 −0.08 0.19 −0.08 −0.062�0.012

28 27000 0.028 0.24 −0.12 0.25 −0.06 −0.115�0.010
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uses a normal pdf when using logarithmic-likelihood ap-
proach. In order to check if some other choice for P�x�
would be more appropriate, next we analyze pdf P�x� of
empirical data �11�. In Fig. 3 we see that for most of the
empirical time series, P�x� in the broad central region fol-
lows not normal, but Laplace distribution P�Xi�
=1 / ��2��exp�−�2�x− x̄� /��, where � is the standard devia-
tion. For 5 subjects, P�x� exhibit some bumps in the tail
parts.

Next we follow the procedure of Eq. �3� but this time with
Laplace P�x�. We find that the parameters � and � change
quantitatively but not qualitatively �see Table II�—the sign of
� does not change by replacing normal P�x� by Laplace
P�x�.

To further test the statistical significance of asymmetry in
magnitude correlations found in the data, we employ another
process known as asymmetric generalized autoregresive con-
ditional heteroskedastic �AGARCH� process �6�. This pro-
cess is characterized by an exponentially decaying autocor-
relation function

�i
2 = � + 
��xi−1� + �1xi−1�2 + ��i−1

2 , �5�

where 
, �, �, and �1 are the free AGARCH parameters and
�1 is an asymmetry parameter similar to the one in Eq. �2�.
The last column in Table II shows our estimate for �1 �and
two standard errors�.

Note that the estimates � and �1 for AFIARCH and
AGARCH, respectively, calculated for different subjects are
very closely related. We obtain �=−0.029+1.232�1, where
0.120 is the standard error of the slope coefficient. Differ-
ences are expected since the AFIARCH is characterized by
power-law magnitude correlations �see Fig. 1�b��, while the
AGARCH process is characterized by exponential magni-
tude correlations. From the results obtained for the
AGARCH process, the asymmetry parameter �1 is statisti-
cally insignificant �within two standard errors� only for sub-
jects 7, 8, 10, 12, and 21. Discrepancy between the results
obtained from the test of Eq. �1� and the stochastic process of
Eq. �5� is likely explained by the fact that the test of Eq. �1�
measures only asymmetry in magnitude correlations and
does not assume either �i� the functional form of the magni-
tude correlations or �ii� their long-range nature, whereas our
stochastic process imposes both.

From the analysis of individual time series, we
conclude that magnitude correlations in observed physiologi-
cal data exhibit significant asymmetry. However, universality
is not confirmed. From the values of � in Table II
obtained for different subjects, we calculate the average

�− �̄=−0.022�0.11. The spread of values of the asymmetry
parameter � suggests that the asymmetry does not show uni-
versality. However, the average � and its standard deviation
� should show significant differences between diseased and
healthy subjects. Consequently, the present analysis and pro-
posed test may have potential to be useful for diagnostic
purposes.
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FIG. 3. The pdf in the logarithmic-linear plot for each of 20
EEG time series out of total 25 time series �11� comprising records
from 20 subjects. Each pdf approximately follows the Laplace dis-
tribution. We also show the pdf of subject 10 whose tails due to
bumps deviate from the Laplace pdf.
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