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Abstract:  Under healthy conditions, the normal  cardiac (sinus) interbeat 
interval fluctuates in a complex manner. Quantitative analysis using tech- 
niques adapted from statistical physics reveals the presence of long-range 
power- law correlations extending over thousands of heartbeats. This scale- 
invariant (fractal) behavior suggests that the regulatory system generating 
these fluctuations is operating far from equilibrium. In contrast, it is found 
that for subjects at high risk of sudden death (eg, congestive heart  failure 
patients), these long-range correlations break down. Application of fractal 
scaling analysis and related techniques provides new approaches to assessing 
cardiac risk and forecasting sudden cardiac death, as well as motivating devel- 
opement  of novel physiologic models of systems that appear to be hetero- 
dynamic rather than homeostatic. K e y  w o r d s :  cardiac interbeat interval, 
fluctuation, sudden cardiac death, fractal scaling analysis. 

Scale-invariant properties in biologic systems have 
received much attention recently. 1.2 The absence of char- 
acteristic length (or time) scales may confer important  
biologic advantages related to adaptability of responseY 
We present here some recent progress in applying scale- 
invariant (fractal) analysis to interbeat interval time 
series. We will concentrate on the concept of long-range 
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(power-law) correlations, which is a consequence of the 
scaling properties. We will also emphasize the difficulties 
of analyzing heartbeat  time series, which arise mainly 
from their nonstat ionari ty and sometimes short data 
length. 

A system is said to exhibit long-range correlations 
when some physical properties of the system are corre- 
lated at different times (or positions) and the corre- 
sponding correlation function decays much slower than 
exponentially as a function of time or distance. In physics 
and mathematics,  long-range correlations typically refer 
to a power-law decay of the correlation function? The 
mechanism for generating such long-range correlations is 
not always obvious. Usually, long-range correlations are 
a result of the collective behavior of a complex system 
(under unique conditions), with the multiple compo- 
nents interacting through "local" (short-range) interac- 
tions. A well-studied example in statistical physics is a 
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system at or near its critical po in t - - such  as the critical 
point of liquid-gas transition, ~ for which the interactions 
among the molecules are quite short range, being essen- 
tially nearest-neighbor only. In this case, the origin for 
genera t ing  long-range correlat ions is the balance 
between two competitive mechanisms- -order  (interac- 
tion between molecules) and disorder (thermal fluctua- 
t ions) - -over  all scales. 

Human Heartbeat Dynamics 

Clinicians often describe the normal activity of the 
heart  as "regular sinus rhythm." But, in fact, cardiac 
interbeat intervals normally fluctuate in a complex, 
apparently erratic manner  2.6 (Fig. l).  This highly irregular 
behavior has recently motivated researchers 7~8 to apply 
time-series analysis that derive from statistical physics, 
especially methods for the study of critical phenomena  
where  fluctuations at all length (time) scales occur. These 
studies show that under  heal thy conditions, interbeat 
interval t ime series exhibit tong-range power- law corre- 
lations reminiscent of physical systems near a critical 
point2 ,~ Furthermore,  certain disease states may be 
accompanied by alterations in this scale-invariant (frac- 
tal) correlation property. We explore here the potential 
utility of such scaling alterations in the detection of 
pathologic states. 
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Fig. l .  The interbeat interval time series B(i) of 1,000 
beats for (A) a heal thy subject and (B) a patient with 
severe cardiac disease (dilated cardiomyopathy).  The 
healthy heartbeat  t ime series shows more complex fluc- 
tuations compared to the diseased heart  rate fluctuation 
pattern. 

Our analysis in this study is based on the beat- to-beat  
heart  rate fluctuations of digitized electrocardiograms 
recorded with an ambulatory (Holter) monitor. The time 
series obtained by plott ing the sequential  intervals 
between beat  i and beat  i + l,  denoted by B(i), typically 
reveals a complex type of variability (Fig. 1). The mecha- 
nism underlying such fluctuations appears to be related 
pr imari ly  to countervai l ing neuroau tonomic  inputs. 
Parasympathetic stimulation decreases the firing rate of 
pacemaker  cells in the heart 's sinus node. Sympathetic 
stimulation has the opposite effect. The nonlinear inter- 
action (competition) between the two branches of the 
autonomic nervous system is the postulated mechanism 
for the type of erratic heart  rate variability recorded in 
healthy subjects¢ ,~° 

An immediate problem facing researchers applying 
time-series analysis to interbeat interval data is that the 
heartbeat  t ime series is often highly nonstationary. Sev- 
eral approaches can be taken to reduce these nonstation- 
ary effects. We will discuss one particular method and its 
physiologic implications. 

Detrended Fluctuation Analysis 

To describe quantitatively the properties of normal 
interbeat fluctuations, we can first examine the moments  
of their distribution such as mean value, variance, etc. 
However, these measurements  contain no information 
about the dynamics, that is, the sequential ordering of 
data points. The correlation function is a natural  statisti- 
cal measurement  that does reveal some important  prop- 
erties of the dynamics. We will introduce a useful 
analysis to quantify the correlation properties of the 
interbeat time series. The method is derived from the 
concept of self-similar processes. 

The concept of self-similar processes was first pro- 
posed by Kolmogorov" in theoretical physics and later 
introduced into mathematics through the influential 
work of Mandelbrot  on fractals, n An object is self-similar 
if its subset can be rescaled to resemble (statistically) the 
original object. A scaling exponent  (also called the 
self-similarity parameter) can be defined by this rescaling 
process, A stationary time series with long-range correla- 
tions can be integrated, that is, form an accumulated 
sum, to form a self-similar process. Therefore, measure- 
ment  of the self-similarity scaling exponent  of the inte- 
grated series can tell us the long-range correlation 
properties of the original time series. Hurst analysis 4 and 
root-mean-square analysis of random walks ~3 are both 
based on this concept. 

As discussed above, an immedia te  problem facing 
researchers in applying t ime-series analysis to hear tbeat  
data is that  the interbeat  t ime series are often highly 
nonstat ionary.  An impor tant  quest ion is whe ther  this 
heterogeneous structure arises trivially from external  
and intrinsic per turbat ions that  drive the system away 
from a homeostat ic  "set point." An impor tant  al terna-  
tive hypothesis  is that  such fluctuations are, at least in 
part, due to the underlying dynamics of the system. If 
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this hypothesis is correct, that is, neurophysiologic con- 
trol systems behave like dynamical systems that are far 
from equilibrium, such long-range correlations are con- 
sequences of the underlying control mechanisms and 
their properties in the signals should be very robust 
with respect to other varying trends in the data. The key 
problem is how to decompose subtle fluctuations with 
long-range correlations from other nons ta t ionary  
trends. 

To this end, we introduced a modified root-mean- 
square analysis of a random walk-- termed detrendedfluc- 
tuation analysis (DFA)*~4--to the analysis of heartbeat 
data. The advantages of DFA over conventional methods 
are that it permits the detection of long-range correla- 
tions embedded in a seemingly nonstationary time series 
and also avoids the spurious detection of apparent long- 
range correlations that are an artifact of nonstationarity. 
This method has been tested on control time series that 
consist of long-range correlations with superposition of a 
nonstationary external trend. It has also been success- 
fully applied to detect long-range correlations in highly 
heterogeneous DNA sequences. ~-~6 

To illustrate the algorithm of DFA, we use the inter- 
beat time series shown in Figure 1A as an example. 
Briefly, the interbeat interval time series (of total length 
N) is first integrated, y(k) = ~ki=l[B(i) - B~w], where B(i) 
is the ith interbeat interval and B e is the average inter- 
beat interval. Next, the integrated time series is divided 
into boxes of equal length, n. In each box of length n, a 
least-squares line was fit to the data (representing the 
trend in that box) (Fig. 2). The y coordinate of the 
straight line segments is denoted by Yn(k). Next, we 
detrend the integrated time series, y(k), by subtracting 
the local trend, Yn(k), in each box. For a given box size n, 
the characteristic size of fluctuation for this integrated 
and detrended time series is calculated by 

(1) F(n) = - y~(k)] 2 

This computation is repeated over all time scales (box 
sizes) to provide a relationship between F(n) and the box 
size n (ie, the number  of beats in a box). Typically, F(n) 
will increase with box size n. A linear relationship on a 
double log graph indicates the presence of scaling, that is, 
the integrated and detrended time series is a self-similar 
process. In other words, fluctuations in small boxes are 
similar to fluctuations in bigger boxes in a power-law 
fashion. The slope of the line relating log F(n) to log n 
determines the scaling exponent (self-similarity parame- 
ter}, alpha. For a process where the value at one inter- 
beat interval is completely uncorrelated from any 
previous values (eg, white noise), the integrated value, 
y(k), corresponds to a random walk and therefore alpha 
= 0.5. n If there are only short-term correlations, the ini- 
tial slope may be different from 0.5, but alpha will 

*Computer software of the DFA algorithm is available upon 
request; contact C.-K. Peng (e-mail: peng@chaos.bih. 
harvard.edu). 
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F i g .  2. The integrated time series: y(k) = ~k= x[B (i) - B w ], 
where B(i) is the interbeat interval shown in Figure 1 (A). 
The vertical dotted lines indicate the box of size n = 100; 
the solid straight line segments indicate the trend esti- 
mated in each box by a linear least-squares fit. 

approach 0.5 for large window sizes. An alpha greater 
than 0.5 and less than or equal to 1.0 indicates persistent 
long-range power-law correlations, while 0 < alpha < 0.5 
indicates antipersistent power-law correlations~; alpha = 
1 corresponds to 1/f noise. For alpha greater than 1, cor- 
relations exist but cease to be of a power-law form; alpha 
= 1.5 indicates brown noise, the integration of white 
noise. The alpha exponent can also be viewed as an indi- 
cator that describes the "roughness" of the original time 
series: the larger the value of alpha, the smoother the 
time series. In this context, ]/f noise can be interpreted as 
a compromise or balance between the complete unpre- 
dictability of white noise (very rough landscape) and the 
much smoother landscape of Brownian noiseJ 7 

Figure 3 compares the DFA analysis of representative 
24-hour interbeat interval time series of a healthy subject 
and a patient with congestive heart failure. Notice that 
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Fig. 3. Plot of log F(n) versus log n for two very long 
interbeat interval time series (approximately 24 hours). 
The circles represent a healthy subject and the triangles 
represent a subject with congestive heart failure. Arrows 
indicate crossover points in scaling. 
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for large time scales (asymptotic behavior), the healthy 
subject interbeat interval time series shows almost perfect 
power-law scaling over two decades (20 < n _< i0,000) 
with alpha = 1 (ie, I/f noise), while for the pathologic 
data set alpha ~ 1.3 (closer to Brownian noise). This 
result is consistent with our previous finding that there is 
a significant difference in the long-range scaling behavior 
between healthy and diseased states. 7,8 

Normal vs Pathologic Time Series 

To test for statistical significance using the DFA method, 
we reanalyzed cardiac interbeat data from two different 
groups of subjects reported in our previous work. 7 12 
healthy adults without clinical evidence of heart disease 
(age range, 29-64 years; mean, 44 years) and 15 adults 
with severe heart failure t (age range, 22-71 years; mean, 
56 years). Data from each subject consisted of approxi- 
mately 24 hours of electrocardiographic recording. Data 
from the patients with heart failure due to severe left ven- 
tricular dysfunction are likely to be particularly informa- 
tive in analyzing correlations under pathologic conditions 
since these individuals have abnormalities in both the 
sympathetic and parasympathetic control mechanisms 1~ 
that regulate beat-to-beat variability. Previous studies have 
demonstrated marked changes in short-range heart rate 
dynamics in heart failure compared to healthy function, 
including the emergence of intermittent relatively low-fre- 
quency (approximately 1 cycle/rain) heart rate oscillations 
associated with the well-recognized syndrome of periodic 
(Cheyne-Stokes) respiration, an abnormal breathing pat- 
tern often associated with low cardiac output58 

We observed the following scaling exponents{ (for 
time scales 10 ~ - i04 beats) for the group of healthy car- 
diac interbeat interval time series (mean value + SD): 
alpha = 1.00 + 0.1 i. This result is consistent with previ- 
ous reports of 1/f fluctuations in healthy heart rates (by 
spectral analysis).3.~9 The pathologic group shows a signif- 
icant (P < .01 by Student's t-test) deviation from normal 
of the long-range correlation exponent. For the group of 
heart failure subjects, we find that alpha = 1.24 _+ 0.22. Of 
interest, some of the heart failure subjects show an alpha 
exponent  very close to 1.5 (Brownian noise), indicating 
random walk-like fluctuations, also consistent with our 
previous findings in this group. The group-averaged 
exponent  alpha is less than 1.5 for the heart failure 
patients, suggesting that pathologic dynamics may only 

tElectrocardiographic recordings of Holter monitor tapes 
were processed both manually and in a fully automated manner 
using our computerized beat recognition algorithm (Aristotle). 
Abnormal beats were deleted from each data set. The deletion 
has practically no effect on the DFA analysis since less than 1% 
of total beats were removed. Patients in the heart failure group 
were receiving conventional medical therapy prior to receiving 
an investigational cardiotonic drug2 ° 

1:Typical regression fit shows excellent linearity of the double 
log graph (indicated by correlation coefficient r > .97) for both 
groups; however, usually, data from healthy subjects show even 
better linearity on log-log plots than data from subjects with 
heart disease. 

transiently operate in the random walk regime or may 
only approach this extreme state as a limiting case. We 
obtained similar results when  we divided the time series 
into three consecutive subsets (of approximately 8 hours 
each) and repeated the above analysis. Therefore, our 
findings are not simply attributable to different levels of 
daily activities. 

Crossover Phenomena 

Although this asymptotic scaling exponent may serve 
as a useful index for selected diagnostic purposes, a draw- 
back is that very long data sets are required (at least 24 
hours) for statistically robust results. For practical pur- 
poses, clinical investigators are often interested in the pos- 
sibility of using substantially shorter time series. In this 
regard, we note that for short time scales, there is an 
apparent crossover exhibited for the scaling behavior of 
both data sets (arrows in Fig. 3). For the healthy subject, 
the alpha exponent estimated from the very small n (< 10 
beats) is larger than that calculated from the large n 
(> 10 beats). This is probably due to the fact that on very 
short time scales (up to 10 beats), the physiologic inter- 
beat interval fluctuation is dominated by the relatively 
smooth heartbeat oscillation associated with respiration, 
thus giving rise to a large alpha value. For longer scales, 
the interbeat fluctuation, reflecting the intrinsic dynam- 
ics of a complex system, approaches that of 1/f behavior 
as previously noted. In contrast, the pathologic data set 
shows a very different crossover pattern (Fig. 3). For very 
short time scales, the fluctuation is quite random (close 
to white noise, alpha = 0.5). As the time scale becomes 
larger, the fluctuation becomes smoother (asymptotically 
approaching Brownian noise, alpha = 1.5). These findings 
are consistent with our previous report of altered corre- 
lation properties under  pathologic conditions. 7,8 

Clinical Application: Preliminary Results 

The above observation of a differential crossover pat- 
tern for healthy versus pathologic data motivated us to 
extract two parameters from each data set by fitting the 
scaling exponent alpha over two different time scales: 
one short, one long. To be more precise, for each data, set 
we calculated an exponent alpha~ by making a least- 
squares fit of log F(n) versus log n for 4 _< n _< 16. Simi- 
larly, an exponent alpha 2 was obtained from 16 < n < 64. 
Since these two exponents are not extracted from the 
asymptotic region, relatively short data sets are sufficient, 
thereby making this technique applicable to "real world" 
clinical data. 

We applied this quantitative fluctuation analysis to the 
two different groups of subjects mentioned above to 
measure the two scaling exponents alpha I and alpha 2. All 
data set records were divided into multiple subsets (each 
with n = 8,192 beats - 2 hours) and the two exponents 
were calculated for each subset. For healthy subjects, we 
find the following exponents (mean value _+ SD) for tee 
cardiac interbeat interval time series: alpha~ = 1.201 _+ 
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0.178 and alpha 2 = 0.998 _+ 0.124. For the group of con- 
gestive heart failure subjects, we find that alpha~ = 0.803 
_+ 0.259 and alpha 2 = 1.125 _+ 0.216, both significantly (P 
< .0001 for both alpha 1 and alpha2) different from nor- 
mal. Furthermore, we show in Figure 4 that fairly good 
discrimination be tween these two groups can be 
achieved by using these two scaling exponents. We note 
that not all subjects in our preliminary study show an 
obvious crossover in their scaling behavior. Only 8 of 12 
healthy subjects exhibited this crossover, while 11 of 15 
pathologic subjects exhibited a reverse crossover. How- 
ever, the two scaling exponents (alpha~ and alpha2) mea- 
sured from relatively short data sets can still be 
potentially useful indicators to distinguish normal from 
pathologic time series. 

To test the effect of data length on these calculations, we 
repeated the same DFA measurements for longer data sets 
(n = 16,384) and also for shorter data sets (n = 4,096). As 
expected, the results for shorter data sets are less reliable 
(more overlap between two groups) due to anticipated sta- 
tistical error related to the finite sample size. ~ On the other 
hand, longer data sets result in little improvement for the 
distinction between groups. Therefore, the data length of 
8,192 seems to be a statistically reasonable choice.§ 

Furthermore, we note that data from normal interbeat 
interval time series are tightly clustered, suggesting that 
there may exist a universal scaling behavior for physio- 
logic interbeat time series. In contrast, the pathologic 
data show more variation, a finding that may be related 
to different clinical conditions and varying severities of 
the pathologic states. 

Forecasting Clinical Outcomes: Survival 
Rate Assessment 

Based on the hypothesis that there is a region of scal- 
ing behavior (Fig. 4) over which normal (healthy) car- 
diac control operates, we have recently found another 
promising application of DFA in analyzing data sets from 
the Framingham Heart Study, which was a prospective, 
population-based study. = The primary group of interest 
was individuals with congestive heart failure; 28 conges- 
tive heart failure cases and 41 sex- and age-matched 
healthy control cases were analyzed by our scaling anal- 
ysis. Briefly, using Holter monitor data (approximately 2 
hours) from each subject of the Framingham Study, we 
assigned an index (range from 0 to 1) to each individual 
by estimating the probability that this particular heart- 
beat time series was operating in the appropriate region 
in Figure 4 (normal vs pathologic). Note that the data 

§We also tested these calculations by varying the fitting range 
for alpha 2. We find that the results are very similar when we mea- 
sure alpha 2 from 16 beats to 128 beats; however, when we move 
the upper fitting range for alpha 2 from 128 beats to 256 beats or 
more, the pathologic data sets show larger variation of alpha 2, 
leading to less obvious separation from normal subjects. This is 
partly due to the fact that, for finite length data sets, the calcula- 
tion error of F(n) increases with n. ~l Therefore, scaling exponents 
obtained over larger values of n will have greater uncertainty. 
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Fig. 4. Scatterplot of scaling exponents alpha~ versus 
alpha 2 for the healthy subjects (circles) and subjects with 
congestive heart failure (triangles). The alphas were cal- 
culated from interbeat interval data sets with a length of 
8,192 beats. Longer data set records were divided into 
multiple data sets (each with 8,192 beats). Note good 
separation between the healthy and heart-disease sub- 
jects, with clustering of points in two distinct "clouds." 

studied in Figure 4 are treated as a representative train- 
ing set. (None of the Framingham Heart Study subjects 
are included in this training set.) The question we posed 
was: What is the utility of this new fractal index? In par- 
ticular, does this measure add independent  information 
to conventional measures? In comparison with 10 other 
time and frequency measures, we found that the DFA 
index carries prognostic information about mortality not 
extractable from these traditional methods of heart rate 
variability analysis. = 

Conclusion 

Our finding of nontrivial long-range correlations in 
healthy heart rate dynamics is consistent with the obser- 
vation of long-range correlations in other biologic systems 
that do not have a characteristic scale of time or 
length. 2,234~ Such behavior may be adaptive for at least two 
reasons. (1) The long-range correlations serve as an orga- 
nizing principle for highly complex, nonlinear processes 
that generate fluctuations on a wide range of time scales. 
(2) The lack of a characteristic scale helps prevent exces- 
sive mode-locking that would restrict the functional 
responsiveness of the organism. Support for these related 
conjectures is provided by observations from severe dis- 
eased states, such as heart failure, where the breakdown of 
long-range correlations is often accompanied by the emer- 
gence of a dominant frequency mode (eg, the Cheyne- 
Stokes frequency). Analogous transitions to highly 
periodic regimes have been observed in a wide range of 
other disease states including certain malignancies, sudden 
cardiac death, epilepsy, and fetal distress syndromes) 
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The complete breakdown of normal long-range (frac- 
tal) correlations in the cardiovascular system could theo- 
retically lead to three possible diseased states: (1) random 
walk (brown noise), (2) highly periodic behavior, or (3) 
completely uncorrelated behavior (white noise). Cases 1 
and 2 both indicate only trivial long-range correlations of 
the types observed in severe heart  failure. Case 3 may 
correspond to certain cardiac arrhythmias such as fibril- 
lation. More subtle or intermit tent  degradation of long- 
range correla t ion propert ies  may  provide an early 
warning of incipient pathology. Finally, we note that the 
long-range correlations present in the heal thy heartbeat  
and gait indicate that  the neuroautonomic  and central 
nervous control mechanisms actually drive the system 
away from a single steady state. Therefore, the classic 
theory of homeostasis, according to which stable physio- 
logic processes seek to maintain constancy, 29 should be 
extended to account for this dynamic, far from equilib- 
rium, behavior of these heterodynamic systems. 
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Nonlinear Forecasting and the Dynamics 
of Cardiac Rhythm 

Neal Lippman, MD,* Kenneth M. Stein, MD,J- 
and Bruce B. Lerman, MDt 

Abstract: Since the initial development of the electrocardiogram, cardiologists 
have made dramatic advances in the description and understanding of cardiac 
arrhythmias. Despite these successes, the analysis of cardiac rhythm has remained 
largely descriptive. Recently, the principles of nonlinear dynamics, or chaos the- 
ory, have been applied to the quantitative analysis of cardiac rhythm in a variety 
of diverse situations. In chaos theory, three types of signals can be defined: peri- 
odic signals, which repeat themselves over some finite time interval, chaotic sig- 
nals, which, while deterministic, demonstrate complex behavior and do not 
repeat themselves, and random signals, which are unpredictable and nondeter- 
ministic. The technique of nonlinear forecasting defines trajectories in a suitably 
defined phase space and uses the future evolution of trajectories that are close to 
each other over short distances to make predictions for times further into the 
future. The ability to reliably predict the future evolution of the trajectories 
derived from any signal is an important characteristic of the underlying dynam- 
ics of the signal and can therefore used to determine those dynamics. The foun- 
dation of nonlinear forecasting is reviewed, and an algorithm is described that can 
be used to determine the underlying dynamics of a signal and has been applied 
to the analysis of R-R interval data. K e y  words :  nonlinear dyamics, chaos the- 
ory, trajectories, periodic signals, chaotic signals, random signals. 
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The deve lopment  of the string galvanometer  by 
Wil lem Einthoven (for which he received the 1924 
Nobel Prize for Medicine ~,2) ushered in the era of mod-  
ern cardiology. However, despite the advances made  in 
the last cen tury  in our  unders tand ing  of cardiac 
a r rhy thmias ,  the  analysis  of cardiac r h y t h m  has 
remained  largely descriptive. For example,  while beat-  
to-beat  variat ions in sinus cycle length (sinus ar rhyth-  
mia) in normal  subjects has long been recognized, it is 
only relat ively recent ly that  hear t  rate variabil i ty anal-  


