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Quantifying the statistical features of the bid-ask spread offers the possibility of understanding some aspects
of market liquidity. Using quote data for the 116 most frequently traded stocks on the New York Stock
Exchange over the two-year period 1994–1995, we analyze the fluctuations of the average bid-ask spreadS
over a time intervalDt. We find thatS is characterized by a distribution that decays as a power lawPhS
.xj,x−zS, with an exponentzS<3 for all 116 stocks analyzed. Our analysis of the autocorrelation function of
S shows long-range power-law correlations,kSstdSst+tdl,t−ms, similar to those previously found for the
volatility. We next examine the relationship between the bid-ask spread and the volumeQ, and find thatS
, ln Q; we find that a similar logarithmic relationship holds between the transaction-level bid-ask spread and
the trade size. We then study the relationship betweenS and other indicators of market liquidity such as the
frequency of tradesN and the frequency of quote updatesU, and findS, ln N andS, ln U. Lastly, we show
that the bid-ask spread and the volatility are also related logarithmically.
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I. INTRODUCTION

The primary function of a market is to provide a venue
where buyers and sellers can transact. The more buyers and
sellers at any time, the more efficient the market is in match-
ing buyers and sellers, so a desirable feature of a competitive
market is liquidity, i.e., the ability to transact quickly with
small price impact. To this end, most exchanges have market
makersfe.g., “specialists” in the New York Stock Exchange
sNYSEdg who provide liquidity by selling or buying accord-
ing to the prevalent market demand. The market maker sells
at the “ask”sofferd priceA and buys at a lower “bid” priceB;
the differences;A−B is the bid-ask spread.

The ability to buy at a low price and sell at a high price is
the main compensation to market makers for the risk they
incur while providing liquidity. Therefore, the spread must
cover costs incurred by the market makerf1–7g such as:sid
order processing costs, e.g., costs incurred in setting up,
fixed exchange fees, etc.,sii d risk of holding inventory,
which is related to the volatility, andsiii d adverse information
costs, i.e, the risk of trading with a counterparty with supe-
rior information. Since the first component is a fixed cost, the
interesting dynamics of liquidity is reflected insii d and siii d.
Analyzing the statistical features of the bid-ask spread thus
also provides a way to understand information flow in the
market.

The prevalent bid-ask spread reflects the underlying li-
quidity for a particular stock. Quantifying the fluctuations of
the bid-ask spread thus offers a way of understanding the
dynamics of market liquidity. In this paper, we show that the
fluctuations of the average bid-ask spread over a fixed time
interval display power-law distributions and long-range cor-

relations. We further explore the relationship between the
bid-ask spread and other indicators of liquidity such as the
frequency of trade occurrenceN, and the frequency of quote
updatesU. We findS, ln N andS, ln U. We find a similar
logarithmic relation between the bid-ask spread and the share
volume, both over a fixed time interval and on a transaction
level. Lastly, we report logarithmic relationships between
bid-ask spread, order flow, and two different measures of
volatility.

Our analysis focuses on stocks that are listed on the
NYSE. The NYSE is a hybrid market in which both the
specialist and limit-order traders play a role in price forma-
tion. The hybrid market system ensures that specialists incor-
porate the best bid and ask in the order book while posting
their quotes. The NYSE hybrid market contrasts with a
purely order-driven market, such as the Tokyo Stock Ex-
change, where orders are submitted before prices are deter-
mined, or a “quote-driven” system such as used in NAS-
DAQ, where different competing market makers are required
to provide bid-ask quotes continuously.

In an order-driven market, orders are submitted to a cen-
tralized location selectronic or physicald, where they are
matched, executed, or deleted. Here, the bid price represents
the largest sell limit order price and the ask price represents
the smallest buy limit order price. Their difference defines
the spread. Order-driven markets are generally cheaper to
trade since they have smaller bid-ask spreads, in part because
fixed costs such assid discussed above, are not present.

We analyze the trades and quotessTAQd database for the
two-year period January 1994 to December 1995. The TAQ
database, which has been published by the NYSE since
1993, covers all trades and quotes for all stocks listed at three
major U.S. stock marketssNYSE, AMEX, and NASDAQd.
Our analysis focuses on a subset of these stocks that are
traded on the NYSE.

This paper is organized as follows. Sections II and III
present our results on the distribution and time correlations
of the bid-ask spread, respectively. Section IV presents our
results on the relationship between the bid-ask spread, the
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share volume, and the number of trades, both over fixed time
intervals and at the transaction level. Sections V and VI de-
scribe the relationship of the bid-ask spread to the order flow
and to the frequency of quote updates. Section VII explores
the relationship between the bid-ask spread and the volatility.

II. DISTRIBUTION OF FLUCTUATIONS IN THE BID-ASK
SPREAD

From the TAQ database, we select the 116 most fre-
quently traded stocks listed in the NYSE, and form for each
stock a list of all trades and quotes. For each tradei, the
database provides the trade pricePi and the trade sizeqi. We
use the procedure of Ref.f8g to identify for each tradei, the
bid priceBi and the ask priceAi.

We first compute a time series of the average spreadS

S; SDtstd ;
1

No
i=1

N

si , s1d

over fixed time intervalsDt, where si ;Ai −Bi f9g and N
;NDtstd denotes the number of trades inDt f10g. In the
following analysis, we show results forDt=15 min. We find
similar results forDt=30 and 60 min.

Denote bySjstd the time series of the bid-ask spread for
stock j . Figure 1sad shows that theSjstd for a typical stock
displays large fluctuations. We compute the cumulative dis-
tribution function PhSj .xj for each of the j =1, . . . ,116
stocks. We find that each distribution is consistent with a
power law

PhSj . xj , x−zSj . s2d

Our estimates of the individual exponentszSj
are similar

across all 116 stocks in our sample. Although the functional
forms of individual distributions are similar, their widths
sstandard deviationsd vary. We obtain a good “collapse” of
the distributions by normalizing each time seriesSjstd by
transforming it to zero mean and unit standard deviation.
Based on the hypothesis that the functional forms of the
distributionsPhSj .xj are the same for all stocks, we com-
pute the cumulative distribution functionPhS.xj using the
normalized spreads for all stocksj =1, . . . ,116. Figure 1sbd
shows thatPhS.xj decays as

PhS. xj , x−zS, s3d

and we find the mean valuezS=3.0±0.1.
We note thatzS is similar in value to the exponent found

for zG describing the distributionPhG.xj of price changeG
f11,12g, and the tail exponent describing the distribution of
volatility f13g. Our analysis of the relationship between re-
turn G andS shows an approximate power-law dependence
uGu,Sa with a<0.7. For most stocks this dependence holds
only up to a threshold, after which there is a drop off. Since
the relationship is weaker than linearsa,1 followed by a
drop offd, our results do not seem to support the simplistic
hypothesis that the power-law tails ofuGu with zG<3 can be
explained byzS<3.

III. TIME CORRELATIONS IN THE BID-ASK SPREAD

We next consider temporal correlations in the bid-ask
spread. Figure 2sad shows the autocorrelation function
kSstdSst+tdl for a typical stock, whereSstd is transformed to
zero mean and unit variance. We find thatkSstdSst+tdl de-
cays slowly and displays pronounced peaks at multiples of 1
day s390 mind. The peaks originate from theU-shaped intra-
day pattern in the bid-ask spreadf14g, similar to the previ-
ously reported intradaily patterns in volatilityf13,15–17g.

To test the presence of long-range correlations, we first
remove the intraday pattern fromSstd using the procedure
outlined in Ref.f13g. To accurately quantify the long-range
persistence of the bid-ask spread correlation function, we use
the method of detrended fluctuation analysissDFAd. We
therefore calculate the detrended fluctuation functionFstd,
defined as theroot-mean-squarefluctuation around a polyno-
mial fit to the integrated time series ofS sfor details see Ref.
f13gd. In the analysis presented in this paper we use linear
detrending. We find that the detrended fluctuation function
Fstd for S scales as

FIG. 1. sad Time series of the bid-ask spread overDt=15 min
for a typical stock, Exxon Corp., for the two-year period 1994–
1995. The smallest value of the abscissa is the tick size for this
stock =1/8 USD.sbd The log-log plot of the cumulative distribution
of SDt, which is normalized to have a zero mean and unit variance,
for all 116 stocks in our sample. The abscissa is therefore in units of
standard deviations. A power-law fit in the regionx.3 gives a
value for the exponentzS=3.0±0.1. Fits to individual distributions
give similar results for the exponent values.
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Fstd , tns, s4d

with the mean value ofns=0.73±0.01 for all 116 stocks
fFigs. 2sbd and 2scdg. The correlation function therefore de-
cays as

kSstdSst + tdl , t−ms, s5d

with ms=2–2ns=0.54±0.02.
The power-law distributions and long-range correlations

that we find inS are similar to those found in the volatility
smeasured, e.g., byuGud f13,15–18g. The similarity in statis-
tical properties of spread and volatility is qualitatively con-
sistent with the notion that spreads reflect the market maker’s
risk of holding inventory, which is, in turn, an increasing
function of volatility f19g.

FIG. 3. sad Equal-time conditional expectationkSlQ of the
spread for a given value ofQ averaged over all 116 stocks over a
time intervalDt=15 min. HereS is normalized to have a zero mean
and unit variance, andQ;QDtstd is normalized by its first centered
moment. The solid line shows a logarithmic fit to the data extending
over almost two orders of magnitude.sbd Conditional expectation
kSlN. As before,S is normalized to have a zero mean and unit
variance, and we normalizeN;NDtstd by its standard deviation.
The solid line shows a logarithmic fit to the data. Note that for both
sad and sbd the ordinate takes negative values because of our nor-
malization of the spread to zero mean. We have tested that these
relationships are robust under other normalization schemes such as
scaling by the first moment.

FIG. 2. sad The autocorrelation functionkSstdSst+tdl displays
peaks at multiples of one day for Exxon Corp.sbd The detrended
fluctuation functionFstd for the same stock displays long-range
power-law correlations that extend over almost 3 orders of magni-
tude.scd A histogram of slopes are obtained by fittingFstd=tns for
all 116 stocks. We find a mean value of the exponentns

=0.73±0.01. The error bar denotes the standard error of the mean
of the distribution of exponents, which, underi.i.d. assumptions, is
estimated as the ratio of the standard deviation of the distribution to
the square root of the number of points. In reality, thei.i.d. assump-
tions do not hold, so the error bar thus obtained is likely
understated.
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IV. BID-ASK SPREAD, SHARE VOLUME, AND TRADING
ACTIVITY

A. Fixed time interval analysis

We next examine the relationship between the bid-ask
spreadkSlQ and the share volumeQ tradedf20g. Both S and
Q display intraday patterns and are large near the open and
close of the market and smaller around midday. Figure 3sad
shows that the increase of spread with volume is consistent,
over 2 orders of magnitude, with the logarithmic relationship
f21g

kSlQ , ln Q. s6d

One may expect that small spreads should accompany large
volumes, since one expects that counterparties are easier to
find during times of large activity. Here we find the opposite
relation, i.e., a positive correlation between the equal time
conditional expectationkSlQ and Q. Perhaps the reason for
this increasing relationship is that large volumes tend to be

directionalsbuy or selld, so they consume prevalent orders in
the order book, thereby increasing the spread. If so, the loga-
rithmic relation that we find, particularly at the transaction
level sbelowd, reflects the distribution of the order book
f22,23g.

We next analyze the relationship betweenSDtstd and the
number of tradesNDtstd. Figure 3sbd shows that the increase
with N of the equal-time conditional expectationkSlN can be
fit by a logarithmic function

kSlN , ln N. s7d

For bothQ andN, we test and confirm that the logarithmic
relationships hold individually for each stock.

Recent empirical studiesf17g show that the long-range
correlations in volatilityV and volumeQ can be related to
the long-range correlations inN. This is becauseV,ÎN and
Q,N, andN has recently been shown to be long-range cor-
relatedf17,20g. Similarly, sincekSlN, ln N, it is not surpris-
ing that the long-range correlation inS also arises from the
long-range correlations inN.

FIG. 4. sad Conditional expectation of the transaction-level
spread conditioned on trade size averaged over all 116 stocks. The
solid line is a logarithmic fit to the data. Heres has been normalized
to have a zero mean and unit variance, andq is normalized by its
centered first moment. For tradei, instead of conditioning solely on
its sizeqi, we have taken a local average ofqi over four preceding
trades to account for the rapidly decaying correlation function
kqisi+kl. The logarithmic result also holds without the local averag-
ing. sbd The expectation of the spread conditioned on the time in-
terval dt between trades. The solid line shows a logarithmic fit to
the data. Heredt is normalized by its standard deviation.

FIG. 5. sad Conditional expectationkSluVu of the spread for a
given value ofuVu averaged for all 116 stocks over a time interval
Dt=15 min. The solid line shows a logarithmic fit to the data. Here,
V is normalized by its first moment after setting to zero mean.sbd
The conditional expectationkSluFu. Here,F is normalized to a zero
mean and unit variance. In both plots,S is normalized by setting to
a zero mean and unit variance.
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B. Transaction level analysis

We next analyze the relationship between spread and vol-
ume at the trade level. To test the time dependence between
spreads and volume, we first analyze the correlation function
kqisi+kl. The correlation function has its largest value atk
=0; for k,0, correlations are almost zero while fork.0 we
find correlations that decay to zero quickly. Beyondk=4
trades, we find no statistically significant correlation.

We next analyze the conditional expectationkslq of the
transaction-level bid-ask spread conditioned on the trade
size. We findfFig. 4sadg, similar to Eq.s6d,

kslq , ln q. s8d

The logarithmic relationshipS, ln Q fEq. s6dg can therefore
be understood becauseS=1/No1

Nsi, andoi=1
N si =oi=1

N ln qi can
be expressed to leading order in terms of lnsoi=1

N qid=ln Q,
and consequentlyS, ln Q.

We next examine the relationship betweensi and the time
intervaldt between trades. The average intertrade time inter-
val kdtl can be thought of as a reciprocal ofNDt to a first

approximation. We find that asdt increases, the bid-ask
spreaddecreases, and the functional relationship isfFig.
4sbdg,

ksldt , − ln dt, s9d

where the brackets denote an average over all transactionsi
conditioned ondt.

V. SPREADS AND ORDER FLOW

Similar logarithmic functional forms also describe the re-
lation between the bid-offer spread and order flow. During
periods of large demand or supply, we expectS to be large,
since a market maker increases the spread to compensate for
the additional risk.

Denoteai =−1 if the trade is seller initiated andai =1 if
the trade is buyer initiated. The volume imbalance can then
be defined asf24g

FIG. 6. sad Probability density functionPsUd for the number of quote revisionsU for all 116 stocks. HereU for each stock is normalized
to a zero mean and unit variance.sbd The correlation functionkUstdUst+tdl shows long-range correlationsswith a marked intraday patternd.
scd The histogram of our estimates of DFA exponents for each stock. We find a mean exponent value ofnu=0.78±0.03. As before, the error
bar denotes the standard error of the mean.sdd The conditional expectationkSlU of the spread for a given quote-update frequency. The solid
line shows a logarithmic fit to the data. HereU has been normalized by its second moment.
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VDtstd ; V ; o
i=1

N

qiai , s10d

and the number imbalance

F ; o
i=1

N

ai , s11d

which quantify, respectively, the difference between the trad-
ing volume and numberf25g of buyer-initiated and seller-
initiated trades in a time intervalDt. We next compute the
equal-time conditional expectationskSluVu fFig. 5sadg and
kSluFu fFig. 5sbdg of the spread for a given value of volume
imbalance and number imbalance, respectively. We find

kSluVu , lnsuVud. s12d

and

kSluFu , lnsuFud. s13d

The logarithmic relationshipkSluVu, lnsuVud is not surpris-
ing, sinceuVu,Q for large volumes, and we have seen above
that S, ln Q.

VI. FREQUENCY OF QUOTE UPDATES

Our analysis thus far has focused on the properties of the
bid-offer spread. A closely related indicator of liquidity is the
quote-update frequencyU;UDtstd, i.e., the number of times
a new bid or offer is posted in the market in a time interval
Dt. Note that the prevalent bid or offer can change either
because of incoming market orders, limit-order cancella-
tions, or by the specialist posting an improved quote over the
prevalent best limit-order book bid or ask. We therefore ana-
lyze the statistics ofU to understand the behavior of liquidity
in terms of quote updates.

Figure 6sad shows that the distributionPsUd decays al-
most exponentially, unlike the frequency of tradesN, which
has power-law fluctuationsf17g. Performing power-law fits
gives a very large value of exponent, consistent with an ap-
proximately exponential behavior.

We next consider temporal correlations in the quote-
update frequency. Figure 6sbd shows the autocorrelation
functionkUstdUst+tdl for a typical stock whereUstd is trans-
formed to zero mean and unit variance. As before, we find
that kUstdUst+tdl decays slowly and displays pronounced
peaks at multiples of 1 days390 mind, similar to the intraday
pattern that we find inS. To accurately quantify these corre-
lations, we use the DFA method and find that the de-trended
fluctuation function forU scales as

FUstd , tnu, s14d

with the mean valuenu=0.78±0.03 for all 116 stocksfFig.
6scdg. Here, we have first excluded the effects of the intraday
pattern, and have performed linear detrending for computing
FUstd.

The correlation functionkUstdUst+tdl correspondingly
decays as

kUstdUst + tdl , t−mu, s15d

with mu=2–2nu=0.44±0.06. Somewhat related results are
obtained in Ref.f26g.

As we have found previously, spreads depend logarithmi-
cally on the number of trades. Similarly, we find a logarith-
mic relationship between spreads and the frequency of quote
revisions. Figure 7sdd shows that the conditional expectation

kSlU , ln U. s16d

VII. RELATION BETWEEN SPREADS AND
VOLATILITY

Finally, we study the dependence of the bid-ask spread on
the volatility of price movements. As a short-term estimate
of volatility, we consider two measures:sad the magnitude
uGu;uGuDtstd of the price changes andsbd the magnitude
uMu;uMuDtstd of the midquote change over the time interval

FIG. 7. sad Conditional expectationkSluGu of the spread for a
given volatility sestimated byuGud averaged over all 116 stocks. The
solid line shows a logarithmic fit.sbd The conditional expectation
kSluMu of the spread for a given magnitude of the midquote change
uMu. The fit is curved because we use a shifted logarithmic fitA
+B lnsx+x0d to the data. A reasonable fit can also be obtained by a
power law; we find small exponent values. Insad andsbd G, S, and
M have been normalized to have a zero mean and unit variance.
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Dt. Figure 6sad shows that the equal-time conditional expec-
tation kSluGu of the spread for a given value ofuGu increases
logarithmically,

kSluGu , lnsuGud. s17d

We find similar behavior for the spread when conditioned on
the absolute changes in the midquote priceuMu fFig. 6sbdg,

kSluMu , lnsuMud. s18d

It is interesting to contrast our finding of a logarithmic de-
pendence of the bid-ask spread on the volatility with the
somewhat related results of Ref.f27g, where an almost linear
relationship is reported between the time-averaged spread
and the time-averaged volatility for LSE stocks. While the
linear relationship of Ref.f27g is a time-averaged property
that holds between the mean spread and the mean volatility
for a particular stock, our finding of Eq.s18d reflects more on
the dynamics of the joint evolution ofSstd and uMstdu.

VIII. DISCUSSION AND SUMMARY

The relationships that we uncover for the bid-ask spread
are interesting from the perspective of recent work
f22,23,26,28–30g. Referencef26g analyzes the Island elec-
tronic communication networksECNd order book, which is
one of many electronic platforms that comprise NASDAQ.
They report the long-memory behavior of the rates of order
placement and cancellation, that is related to our finding of
long memory inS. Studying double-auction limit-order mar-
kets within a model where order arrivals and cancellations
follow a Poisson process, Ref.f29g finds an exponential tail
for the distribution of spread, and a weak approximately lin-
ear relationship between spreads and order size. It is possible
that their inherent assumptions about thin-tailed distribution
of order sizes or thei.i.d. nature of order flow gives rise to
the disparity with our empirical finding ofS, ln Q.

Referencef30g studies the evolution of spreads and vola-
tility following large price moves in the NYSE and NAS-
DAQ. They find that for the NYSE, both the volatility and
the bid-ask spread decay as a power law following a large
price move. For NASDAQ, however, they find that the bid-
ask spread reacts in a much milder way than for the NYSEsa
20% increase compared to a 600% increase for the NYSE
f30gd. On the other hand, Ref.f23g finds that their analysis of
the Island ECN order book for NASDAQ stocks seems to
give qualitatively similar results to their analysis of the Paris
Bourse. In light of these findings, it is interesting to see if the
relationships that we uncover for the spread and its relation
to volume in the NYSE hold for quote-driven markets as
well.

In sum, we have analyzed the statistical properties of the
bid-ask spread for the most frequently traded 116 stocks in
the NYSE. We have found that the bid-ask spreadS over a
fixed time intervalDt displays power-law distributions and
long-range temporal correlations. Our finding thatkSlN

, ln N suggests that the long-range correlations inS arises
from those ofN. We have explored the relationship between
the bid-ask spread and the transaction volume and find a
logarithmic relationship both over fixed time intervals and at
the trade-by-trade level. Lastly, we have found logarithmic
relationships between spreads, order flow, and volatility. Our
results add to the existing literature on the relationships be-
tween spreads and volatility, and uncover interesting loga-
rithmic relationships that may offer a guide to modeling the
microstructural dynamics of spreads, returns, volume, and
volatility.
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