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We analyze cross correlations between price fluctuations of different stocks using methods of random matrix
theory ~RMT!. Using two large databases, we calculate cross-correlation matrices C of returns constructed
from ~i! 30-min returns of 1000 US stocks for the 2-yr period 1994–1995, ~ii! 30-min returns of 881 US stocks
for the 2-yr period 1996–1997, and ~iii! 1-day returns of 422 US stocks for the 35-yr period 1962–1996. We
test the statistics of the eigenvalues l i of C against a ‘‘null hypothesis’’ — a random correlation matrix
constructed from mutually uncorrelated time series. We find that a majority of the eigenvalues of C fall within
the RMT bounds @l2 ,l1# for the eigenvalues of random correlation matrices. We test the eigenvalues of C
within the RMT bound for universal properties of random matrices and find good agreement with the results
for the Gaussian orthogonal ensemble of random matrices—implying a large degree of randomness in the
measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the
eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the
RMT prediction. In addition, we find that these ‘‘deviating eigenvectors’’ are stable in time. We analyze the
components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence
common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose
identities correspond to conventionally identified business sectors. Finally, we discuss applications to the
construction of portfolios of stocks that have a stable ratio of risk to return.
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I. INTRODUCTION

A. Motivation

Quantifying correlations between different stocks is a
topic of interest not only for scientific reasons of understand-
ing the economy as a complex dynamical system, but also
for practical reasons such as asset allocation and portfolio-
risk estimation @1–4#. Unlike most physical systems, where
one relates correlations between subunits to basic interac-
tions, the underlying ‘‘interactions’’ for the stock market
problem are not known. Here, we analyze cross correlations
between stocks by applying concepts and methods of random
matrix theory, developed in the context of complex quantum
systems where the precise nature of the interactions between
subunits are not known.

In order to quantify correlations, we first calculate the
price change ~‘‘return’’! of stock i51, . . . ,N over a time
scale Dt ,

G i~ t ![ln S i~ t1Dt !2ln S i~ t !, ~1!

where S i(t) denotes the price of stock i. Since different
stocks have varying levels of volatility ~standard deviation!,
we define a normalized return

g i~ t ![
G i~ t !2^G i&

s i
, ~2!

where s i[A^G i
2&2^G i&

2 is the standard deviation of G i ,
and ^•••& denotes a time average over the period studied.
We then compute the equal-time cross-correlation matrix C
with elements

C i j[^g i~ t !g j~ t !&. ~3!

By construction, the elements C i j are restricted to the do-
main 21<C i j<1, where C i j51 corresponds to perfect cor-
relations, C i j521 corresponds to perfect anticorrelations,
and C i j50 corresponds to uncorrelated pairs of stocks.

The difficulties in analyzing the significance and meaning
of the empirical cross-correlation coefficients C i j are due to
several reasons, which include the following:

~i! Market conditions change with time and the cross cor-
relations that exist between any pair of stocks may not be
stationary.

~ii! The finite length of time series available to estimate
cross correlations introduces ‘‘measurement noise.’’

If we use a long-time series to circumvent the problem of
finite length, our estimates will be affected by the nonstation-
arity of cross correlations. For these reasons, the empirically-
measured cross correlations will contain ‘‘random’’ contribu-
tions, and it is a difficult problem in general to estimate from
C the cross correlations that are not a result of randomness.

How can we identify from C i j , those stocks that re-
mained correlated ~on the average! in the time period stud-
ied? To answer this question, we test the statistics of C
against the ‘‘null hypothesis’’ of a random correlation*Corresponding author. Email address: plerou@cgl.bu.edu
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matrix—a correlation matrix constructed from mutually un-
correlated time series. If the properties of C conform to those
of a random correlation matrix, then it follows that the con-
tents of the empirically measured C are random. Conversely,
deviations of the properties of C from those of a random
correlation matrix convey information about ‘‘genuine’’ cor-
relations. Thus, our goal shall be to compare the properties of
C with those of a random correlation matrix and separate the
content of C into two groups: ~a! the part of C that conforms
to the properties of random correlation matrices ~‘‘noise’’!
and ~b! the part of C that deviates ~‘‘information’’!.

B. Background

The study of statistical properties of matrices with inde-
pendent random elements—random matrices—has a rich
history originating in nuclear physics @5–13#. In nuclear
physics, the problem of interest 50 years ago was to under-
stand the energy levels of complex nuclei, which the existing
models failed to explain. Random matrix theory ~RMT! was
developed in this context by Wigner, Dyson, Mehta, and oth-
ers in order to explain the statistics of energy levels of com-
plex quantum systems. They postulated that the Hamiltonian
describing a heavy nucleus can be described by a matrix H
with independent random elements H i j drawn from a prob-
ability distribution @5–9#. Based on this assumption, a series
of remarkable predictions were made that are found to be in
agreement with the experimental data @5–7#. For complex
quantum systems, RMT predictions represent an average
over all possible interactions @8–10#. Deviations from the
universal predictions of RMT identify system specific, non-
random properties of the system under consideration, provid-
ing clues about the underlying interactions @11–13#.

Recent studies @14,15# applying RMT methods to analyze
the properties of C show that '98% of the eigenvalues of C
agree with RMT predictions, suggesting a considerable de-
gree of randomness in the measured cross correlations. It is
also found that there are deviations from RMT predictions
for '2% of the largest eigenvalues. These results prompt the
following questions:

~1! What is a possible interpretation for the deviations
from RMT?

~2! Are the deviations from RMT stable in time?
~3! What can we infer about the structure of C from these

results?
~4! What are the practical implications of these results?
In the following, we address these questions in detail. We

find that the largest eigenvalue of C represents the influence
of the entire market that is common to all stocks. Our analy-
sis of the contents of the remaining eigenvalues that deviate
from RMT shows the existence of cross correlations between
stocks of the same type of industry, stocks having large mar-
ket capitalization, and stocks of firms having business in cer-
tain geographical areas @16–18#. By calculating the scalar
product of the eigenvectors from one time period to the next,
we find that the ‘‘deviating eigenvectors’’ have varying de-
grees of time stability, quantified by the magnitude of the
scalar product. The largest two to three eigenvectors are
stable for extended periods of time, while for the rest of the

deviating eigenvectors, the time stability decreases as the
corresponding eigenvalues are closer to the RMT upper
bound.

To test that the deviating eigenvalues are the only ‘‘genu-
ine’’ information contained in C, we compare the eigenvalue
statistics of C with the known universal properties of real
symmetric random matrices, and we find good agreement
with the RMT results. Using the notion of the inverse par-
ticipation ratio, we analyze the eigenvectors of C and find
large values of inverse participation ratio at both edges of the
eigenvalue spectrum—suggesting a ‘‘random band’’ matrix
structure for C. Last, we discuss applications to the practical
goal of finding an investment that provides a given return
without exposure to unnecessary risk. In addition, it is pos-
sible that our methods can also be applied for filtering out
‘‘noise’’ in empirically measured cross-correlation matrices
in a wide variety of applications.

This paper is organized as follows. Section II contains a
brief description of the data analyzed. Section III discusses
the statistics of cross-correlation coefficients. Section IV dis-
cusses the eigenvalue distribution of C and compares with
RMT results. Section V tests the eigenvalue statistics C for
universal properties of real symmetric random matrices and
Sec. VI contains a detailed analysis of the contents of eigen-
vectors that deviate from RMT. Section VII discusses the
time stability of the deviating eigenvectors. Section VIII con-
tains applications of RMT methods to construct ‘‘optimal’’
portfolios that have a stable ratio of risk to return. Finally,
Sec. IX contains some concluding remarks.

II. DATA ANALYZED

We analyze two different databases covering securities
from the three major US stock exchanges, namely, the New
York Stock Exchange ~NYSE!, the American Stock Ex-
change ~AMEX!, and the National Association of Securities
Dealers Automated Quotation ~NASDAQ!.

Database I. We analyze the Trades and Quotes ~TAQ!
database, that documents all transactions for all major secu-
rities listed in all the three stock exchanges. We extract from
this database time series of prices @19# of the 1000 largest
stocks by market capitalization on the starting date January
3, 1994. We analyze this database for the 2-yr period 1994–
1995 @20#. From this database, we form L56448 records of
30-min returns of N51000 US stocks for the 2-yr period
1994–1995. We also analyze the prices of a subset compris-
ing 881 stocks ~of those 1000 we analyze for 1994–1995!
that survived through two additional years 1996–1997. From
this data, we extract L56448 records of 30-min returns of
N5881 US stocks for the 2-yr period 1996–1997.

Database II. We analyze the Center for Research in Secu-
rity Prices ~CRSP! database. The CRSP stock files cover
common stocks listed on NYSE beginning in 1925, the
AMEX beginning in 1962, and the NASDAQ beginning in
1972. The files provide complete historical descriptive infor-
mation and market data including comprehensive distribu-
tion information, high, low, and closing prices, trading vol-
umes, shares outstanding, and total returns. We analyze daily
returns for the stocks that survive for the 35-yr period 1962–
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1996 and extract L58685 records of 1-day returns for N
5422 stocks.

III. STATISTICS OF CORRELATION COEFFICIENTS

We analyze the distribution P(C i j) of the elements
$C i j ;iÞ j% of the cross-correlation matrix C . We first exam-
ine P(C i j) for 30-min returns from the TAQ database for the
2-yr periods 1994–1995 and 1996–1997 @Fig. 1~a!#. First,
we note that P(C i j) is asymmetric and centered around a
positive mean value (^C i j&.0), implying that positively cor-
related behavior is more prevalent than negatively correlated
~anticorrelated! behavior. Second, we find that ^C i j& depends
on time, e.g., the period 1996–1997 shows a larger ^C i j&
than the period 1994–1995. We contrast P(C i j) with a
control—a correlation matrix R with elements R i j con-
structed from N51000 mutually uncorrelated time series,
each of length L56448, generated using the empirically
found distribution of stock returns @21,22#. Figure 1~a! shows
that P(R i j) is consistent with a Gaussian with zero mean, in
contrast to P(C i j). In addition, we see that the part of P(C i j)
for C i j,0 ~which corresponds to anticorrelations! is within
the Gaussian curve for the control, suggesting the possibility
that the observed negative cross correlations in C may be an
effect of randomness. Furthermore, our analysis of a surro-
gate correlation matrix generated from the randomized em-
pirical time series of returns show good agreement with the
Gaussian curve for the control @Fig. 1~b!#.

Figure 1~c! shows P(C i j) for daily returns from the CRSP
database for five nonoverlapping 7-yr subperiods in the 35-yr
period 1962–1996. We see that the time dependence of ^C i j&
is more pronounced in this plot. In particular, the period
containing the market crash of October 19, 1987 has the
largest average value ^C i j&, suggesting the existence of cross
correlations that are more pronounced in volatile periods
than in calm periods @23–25#. We test this possibility by
comparing ^C i j& with the average volatility of the market
~measured using the S&P 500 index!, which shows large
values of ^C i j& during periods of large volatility ~Fig. 2!.

IV. EIGENVALUE DISTRIBUTION OF THE
CORRELATION MATRIX

As stated above, our aim is to extract information about
cross correlations from C. So, we compare the properties of
C with those of a random cross-correlation matrix @14#. In
matrix notation, the correlation matrix can be expressed as

C5

1

L
G GT, ~4!

where G is an N3L matrix with elements $g i m
[g i(mDt) ;i51, . . . ,N; m50, . . . ,L21%, and GT denotes
the transpose of G. Therefore, we consider a random corre-
lation matrix

R5

1

L
A AT, ~5!

where A is an N3L matrix containing N time series of L
random elements a i m with zero mean and unit variance, that
are mutually uncorrelated.

Statistical properties of random matrices such as R are
known @26,27#. Particularly, in the limit N→` , L→` , such
that Q[L/N (.1) is fixed, it was shown analytically @27#
that the probability density function P rm(l) of eigenvalues l
of the random correlation matrix R is given by

P rm~l !5

Q

2p

A~l12l !~l2l2!

l
, ~6!

for l within the bounds l2<l i<l1 , where l2 and l1 are
the minimum and maximum eigenvalues of R, respectively,
given by

l6511

1

Q
62A1

Q
. ~7!

For finite L and N, the abrupt cutoff of P rm(l) is replaced by
a rapidly decaying edge @28#. Note that the expression Eq.
~6! is exact for the case of Gaussian-distributed matrix ele-
ments a i m . Numerically, we find that for the case of power-
law distributed a i m , the eigenvalue distribution of the con-
trol correlation matrix shows good agreement with Eq. ~6!,
as long as the power-law exponents are outside the Lévy
stable domain @29#. In particular, for the case of power-law
distributed time series with exponent identical to that for
stock returns @21,22#, we find good agreement with Eq. ~6!.

We next compare the eigenvalue distribution P(l) of C
with P rm(l) @14#. We examine Dt530-min returns for N
51000 stocks, each containing L56448 records. Thus Q
56.448, and we obtain l250.36 and l151.94 from Eq.
~7!. We compute the eigenvalues l i of C, where l i are rank
ordered (l i11.l i) @30#. Figure 3~a! compares the probabil-
ity distribution P(l) with P rm(l) calculated for Q56.448.
We note the presence of a well-defined ‘‘bulk’’ of eigenval-
ues which fall within the bounds @l2 ,l1# for P rm(l). We
also note deviations for a few ('20) largest and smallest
eigenvalues. In particular, the largest eigenvalue l1000'50
for the 2-yr period, which is '25 times larger than l1

51.94.
Since Eq. ~6! is strictly valid only for L→` and N→` ,

we must test that the deviations that we find in Fig. 3~a! for
the largest few eigenvalues are not an effect of finite values
of L and N. To this end, we contrast P(l) with the RMT
result P rm(l) for the random correlation matrix of Eq. ~5!,
constructed from N51000 mutually uncorrelated time series
generated to have identical power-law tails as the empirical
distribution of returns @21#, each of the same length L
56448. We find good agreement with Eq. ~6! @Fig. 3~b!#,
thus showing that the deviations from RMT found for the
largest few eigenvalues in Fig. 3~a! are not a result of the fact
that L and N are finite, or of the fact that returns are fat tailed.

As an additional test, we randomize the empirical time
series of returns, thereby destroying all the equal-time corre-
lations that exist. We then compute a surrogate correlation
matrix. The eigenvalue distribution for this surrogate corre-
lation matrix @Fig. 3~c!# shows good agreement with Eq. ~6!,
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confirming that the largest eigenvalues in Fig. 3~a! are genu-
ine effect of equal-time correlations among stocks.

Figure 4 compares P(l) for C calculated using L
51737 daily returns of 422 stocks for the 7-yr period 1990–
1996. We find a well-defined bulk of eigenvalues that fall
within P rm(l), and deviations from P rm(l) for large
eigenvalues—similar to what we found for Dt530 min
@Fig. 3~a!#. Thus, a comparison of P(l) with the RMT result
P rm(l) allows us to distinguish the bulk of the eigenvalue
spectrum of C that agrees with RMT ~random correlations!
from the deviations ~genuine correlations!.

V. UNIVERSAL PROPERTIES: ARE THE BULK OF
EIGENVALUES OF C CONSISTENT WITH RMT?

The presence of a well-defined bulk of eigenvalues that
agree with P rm(l) suggests that the contents of C are mostly
random except for the eigenvalues that deviate. Our conclu-
sion was based on the comparison of the eigenvalue distri-
bution P(l) of C with that of random matrices of the type
R5(1/L)A AT. Quite generally, comparison of the eigen-
value distribution with P rm(l) alone is not sufficient to sup-
port the possibility that the bulk of the eigenvalue spectrum
of C is random. Random matrices that have drastically dif-
ferent P(l) share similar correlation structures in their
eigenvalues—universal properties—that depend only on the
general symmetries of the matrix @11–13#. Conversely, ma-
trices that have the same eigenvalue distribution can have
drastically different eigenvalue correlations. Therefore, a test
of randomness of C involves the investigation of correlations
in the eigenvalues l i .

Since by definition C is a real symmetric matrix, we shall

FIG. 1. ~a! P(C i j) for C calculated using 30-min returns of
1000 stocks for the 2-yr period 1994–1995 ~solid line! and 881
stocks for the 2-yr period 1996–1997 ~dashed line!. For the period
1996–1997 ^C i j&50.06, larger than the value ^C i j&50.03 for
1994–1995. The narrow parabolic curve shows the distribution of
correlation coefficients for the control P(R i j) of Eq. ~5!, which is
consistent with a Gaussian distribution with zero mean. ~b! P(C i j)
~circles! for the correlation matrix calculated using randomized 30-
min returns of 1000 stocks ~1994-1995! shows good agreement
with the control ~solid curve!. ~c! P(C i j) calculated from daily
returns of 422 stocks for five 7-yr subperiods in the 35 years 1962–
1996. We find a large value of ^C i j&50.18 for the period 1983–
1989, compared with the average ^C i j&50.10 for the other periods.

FIG. 2. The stair-step curve shows the average value of the
correlation coefficients ^C i j&, calculated from 4223422 correlation
matrices C constructed from daily returns using a sliding L5965
day time window in discrete steps of L/55193 days. The diamonds
correspond to the largest eigenvalue l422 ~scaled by a factor 4
3102) for the correlation matrices thus obtained. The bottom curve
shows the S&P 500 volatility ~scaled for clarity! calculated from
daily records with a sliding window of length 40 days. We find that
both ^C i j& and l422 have large values for periods containing the
market crash of October 19, 1987.
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test the eigenvalue statistics C for universal features of ei-
genvalue correlations displayed by real symmetric random
matrices. Consider a M3M real symmetric random matrix S
with off-diagonal elements S i j , which for i, j are indepen-
dent and identically distributed with zero mean ^S i j&50 and
variance ^S i j

2 &.0. It is conjectured based on analytical @31#
and extensive numerical evidence @11# that in the limit M
→` , regardless of the distribution of elements S i j , this class
of matrices, on the scale of local mean eigenvalue spacing,
display the universal properties ~eigenvalue correlation func-
tions! of the ensemble of matrices whose elements are dis-
tributed according to a Gaussian probability measure—called
the Gaussian orthogonal ensemble ~GOE! @11#.

Formally, GOE is defined on the space of real symmetric
matrices by two requirements @11#. The first is that the en-
semble is invariant under orthogonal transformations, i.e., for
any GOE matrix Z, the transformation Z→Z8[WTZ W,
where W is any real orthogonal matrix (W WT

5I), leaves
the joint probability P(Z)dZ of elements Z i j unchanged:
P(Z8)dZ85P(Z)dZ . The second requirement is that the el-
ements $Z i j ;i< j% are statistically independent @11#.

By definition, random cross-correlation matrices R @Eq.

~5!# that we are interested in are not strictly GOE-type ma-
trices, but rather belong to a special ensemble called the
‘‘chiral’’ GOE @13,32#. This can be seen by the following
argument. Define a matrix B,

B[F 0 A/AL

AT/AL 0 G . ~8!

The eigenvalues g of B are given by det(g2I2AAT/L)50
and similarly, the eigenvalues l of R are given by det(lI
2AAT/L)50. Thus, all nonzero eigenvalues of B occur in
pairs, i.e., for every eigenvalue l of R, g656Al are eigen-
values of B. Since the eigenvalues occur pairwise, the eigen-
value spectra of both B and R have special properties in the
neighborhood of zero that are different from the standard
GOE @13,32#. As these special properties decay rapidly as
one goes further from zero, the eigenvalue correlations of R
in the bulk of the spectrum are still consistent with those of
the standard GOE. Therefore, our goal shall be to test the
bulk of the eigenvalue spectrum of the empirically measured
cross-correlation matrix C with the known universal features
of standard GOE-type matrices.

In the following, we test the statistical properties of the
eigenvalues of C for three known universal properties @11–
13# displayed by GOE matrices: ~i! the distribution of
nearest-neighbor eigenvalue spacings Pnn(s), ~ii! the distri-
bution of next-nearest-neighbor eigenvalue spacings Pnnn(s),
and ~iii! the ‘‘number variance’’ statistic S2.

The analytical results for the three properties listed above
hold if the spacings between adjacent eigenvalues ~rank or-
dered! are expressed in units of average eigenvalue spacing.
Quite generally, the average eigenvalue spacing changes
from one part of the eigenvalue spectrum to the next. So, in
order to ensure that the eigenvalue spacing has a uniform
average value throughout the spectrum, we must find a trans-

FIG. 3. ~a! Eigenvalue distribution P(l) for C constructed from
the 30-min returns for 1000 stocks for the 2-yr period 1994–1995.
The solid curve shows the RMT result P rm(l) of Eq. ~6!. We note
several eigenvalues outside the RMT upper bound l1 ~shaded re-
gion!. The inset shows the largest eigenvalue l1000'50@l1 . ~b!
P(l) for the random correlation matrix R, computed from N
51000 computer-generated random uncorrelated time series with
length L56448 shows good agreement with the RMT result, Eq.
~6! ~solid curve!. ~c! Eigenvalue distribution for a surrogate corre-
lation matrix constructed from randomized 30-min returns shows
good agreement with Eq. ~6! ~solid curve!.

FIG. 4. P(l) for C constructed from daily returns of 422 stocks
for the 7-yr period 1990–1996. The solid curve shows the RMT
result P rm(l) of Eq. ~6#! using N5422 and L51737. The dot-
dashed curve shows a fit to P(l) using P rm(l) with l1 and l2 as
free parameters. We find similar results as found in Fig. 3~a! for
30-min returns. The largest eigenvalue ~not shown! has the value
l422546.3.
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formation called ‘‘unfolding,’’ which maps the eigenvalues
l i to new variables called ‘‘unfolded eigenvalues’’ j i , whose
distribution is uniform @11–13#. Unfolding ensures that the
distances between eigenvalues are expressed in units of local
mean eigenvalue spacing @11#, and thus facilitates compari-
son with theoretical results. The procedures that we use for
unfolding the eigenvalue spectrum are discussed in the Ap-
pendix.

A. Distribution of nearest-neighbor eigenvalue spacings

We first consider the eigenvalue spacing distribution,
which reflects two point as well as eigenvalue correlation
functions of all orders. We compare the eigenvalue spacing
distribution of C with that of GOE random matrices. For
GOE matrices, the distribution of ‘‘nearest-neighbor’’ eigen-
value spacings s[jk112jk is given by @11–13#

PGOE~s !5

ps

2
expS 2

p

4
s2D , ~9!

often referred to as the ‘‘Wigner surmise’’ @33#. The Gaussian
decay of PGOE(s) for large s @bold curve in Fig. 5~a!# implies
that PGOE(s) ‘‘probes’’ scales only of the order of one eigen-
value spacing. Thus, the spacing distribution is known to be
robust across different unfolding procedures @13#.

We first calculate the distribution of the ‘‘nearest-neighbor
spacings’’ s[jk112jk of the unfolded eigenvalues obtained
using the Gaussian broadening procedure. Figure 5~a! shows
that the distribution Pnn(s) of nearest-neighbor eigenvalue
spacings for C constructed from 30-min returns for the 2-yr
period 1994–1995 agrees well with the RMT result PGOE(s)
for GOE matrices.

Identical results are obtained when we use the alternative
unfolding procedure of fitting the eigenvalue distribution. In
addition, we test the agreement of Pnn(s) with RMT results
by fitting Pnn(s) to the one-parameter Brody distribution
@12,13#

PBr~s !5B~11b !sbexp~2Bs11b!, ~10!

where B[$G(@b12#/@b11#)%11b. The case b51 corre-
sponds to the GOE and b50 corresponds to uncorrelated
eigenvalues ~Poisson-distributed spacings!. We obtain b
50.9960.02, in good agreement with the GOE prediction
b51. To test nonparametrically that PGOE(s) is the correct
description for Pnn(s), we perform the Kolmogorov-Smirnov
test. We find that at the 80% confidence level, a
Kolmogorov-Smirnov test cannot reject the hypothesis that
the GOE is the correct description for Pnn(s).

Next, we analyze the nearest-neighbor spacing distribu-
tion Pnn(s) for C constructed from daily returns for four 7-yr
periods ~Fig. 6!. We find good agreement with the GOE re-
sult of Eq. ~9!, similar to what we find for C constructed
from 30-min returns. We also test that both of the unfolding
procedures discussed in the Appendix yield consistent re-
sults. Thus, we have seen that the eigenvalue-spacing distri-
bution of empirically measured cross-correlation matrices C
is consistent with the RMT result for real symmetric random
matrices.

B. Distribution of next-nearest-neighbor eigenvalue spacings

A second independent test for GOE is the distribution
Pnnn(s8) of next-nearest-neighbor spacings s8[jk122jk be-
tween the unfolded eigenvalues. For matrices of the GOE
type, according to a theorem due to Ref. @10#, the next-
nearest-neighbor spacings follow the statistics of the Gauss-
ian symplectic ensemble ~GSE! @11–13,34#. In particular, the
distribution of next-nearest-neighbor spacings Pnnn(s8) for a
GOE matrix is identical to the distribution of nearest-
neighbor spacings of the Gaussian symplectic ensemble

FIG. 5. ~a! Nearest-neighbor ~nn! spacing distribution Pnn(s) of
the unfolded eigenvalues j i of C constructed from 30-min returns
for the 2-yr period 1994–1995. We find good agreement with the
GOE result PGOE(s) @Eq. ~9!# ~solid line!. The dashed line is a fit to
the one-parameter Brody distribution PBr @Eq. ~10!#. The fit yields
b50.9960.02, in good agreement with the GOE prediction b51.
A Kolmogorov-Smirnov test shows that the GOE is 105 times more
likely to be the correct description than the Gaussian unitary en-
semble, and 1020 times more likely than the GSE. ~b! Next-nearest-
neighbor ~nnn! eigenvalue-spacing distribution Pnnn(s) of C com-
pared to the nearest-neighbor spacing distribution of GSE shows
good agreement. A Kolmogorov-Smirnov test cannot reject the hy-
pothesis that PGSE(s) is the correct distribution at the 40% confi-
dence level. The results shown above are using the Gaussian broad-
ening procedure. Using the second procedure of fitting F(l)
~appendix! yields similar results.
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~GSE! @11,13#. Figure 5~b! shows that Pnnn(s8) for the same
data as Fig. 5~a! agrees well with the RMT result for the
distribution of nearest-neighbor spacings of GSE matrices,

PGSE~s !5

218

36p3
s4expS 2

64

9p
s2D . ~11!

We find that at the 40% confidence level, a Kolmogorov-
Smirnov test cannot reject the hypothesis that the GSE is the
correct description for Pnnn(s).

C. Long-range eigenvalue correlations

To probe for larger scales, pair correlations ~‘‘two-point’’
correlations! in the eigenvalues, we use the statistic S2 often
called the ‘‘number variance,’’ which is defined as the vari-
ance of the number of unfolded eigenvalues in intervals of
length ,around each j i @11–13#,

S2~, ![^@n~j ,, !2,#2&j , ~12!

where n(j ,,) is the number of unfolded eigenvalues in the
interval @j2,/2, j1,/2] and ^•••&j denotes an average
over all j . If the eigenvalues are uncorrelated, S2;, . For
the opposite extreme of a ‘‘rigid’’ eigenvalue spectrum ~e.g.,
simple harmonic oscillator!, S2 is a constant. Quite gener-
ally, the number variance S2 can be expressed as

S2~, !5,22E
0

,

~,2x !Y ~x !dx , ~13!

where Y (x) ~called ‘‘two-level cluster function’’! is related
to the two-point correlation function @c.f., Ref. @11#, p.79#.
For the GOE case, Y (x) is explicitly given by

Y ~x ![s2~x !1

ds

dxEx

`

s~x8!dx8, ~14!

where

s~x ![
sin~px !

px
. ~15!

For large values of , , the number variance S2 for GOE has
the ‘‘intermediate’’ behavior

S2;ln , . ~16!

Figure 7 shows that S2(,) for C calculated using 30-min
returns for 1994–1995 agrees well with the RMT result of
Eq. ~13!. For the range of , shown in Fig. 7, both unfolding
procedures yield similar results. Consistent results are ob-
tained for C constructed from daily returns.

D. Implications

To summarize this section, we have tested the statistics of
C for universal features of eigenvalue correlations displayed
by GOE matrices. We have seen that the distribution of the
nearest-neighbor spacings Pnn(s) is in good agreement with
the GOE result. To test whether the eigenvalues of C display
the RMT results for long-range two-point eigenvalue corre-
lations, we analyzed the number variance S2 and found good
agreement with GOE results. Moreover, we also find that the
statistics of next-nearest-neighbor spacings conform to the
predictions of RMT. These findings show that the statistics of
the bulk of the eigenvalues of the empirical cross-correlation
matrix C is consistent with those of a real symmetric random
matrix. Thus, information about genuine correlations are

FIG. 6. Nearest-neighbor spacing distribution P(s) of the un-
folded eigenvalues j i of C computed from the daily returns of 422
stocks for the 7-yr periods ~a! 1962–1968, ~b! 1976–1982, ~c!
1983–1989, and ~d! 1990–1996. We find good agreement with the
GOE result ~solid curve!. The unfolding was performed by using
the procedure of fitting the cumulative distribution of eigenvalues
~appendix!. Gaussian broadening procedure also yields similar re-
sults.

FIG. 7. ~a! Number variance S2(,) calculated from the un-
folded eigenvalues j i of C constructed from 30-min returns for the
2-yr period 1994–1995. We used Gaussian broadening procedure
with the broadening parameter a515. We find good agreement with
the GOE result of Eq. ~13! ~solid curve!. The dashed line corre-
sponds to the uncorrelated case ~Poisson!. For the range of ,

shown, unfolding by fitting also yields similar results.
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contained in the deviations from RMT, which we analyze
below.

VI. STATISTICS OF EIGENVECTORS

A. Distribution of eigenvector components

The deviations of P(l) from the RMT result P rm(l) sug-
gests that these deviations should also be displayed in the
statistics of the corresponding eigenvector components @14#.
Accordingly, in this section, we analyze the distribution of
eigenvector components. The distribution of the components
$u l

k ;l51, . . . ,N% of eigenvector uk of a random correlation
matrix R should conform to a Gaussian distribution with
mean zero and unit variance @13#,

r rm~u !5

1

A2p
expS 2u2

2 D . ~17!

First, we compare the distribution of eigenvector compo-
nents of C with Eq. ~17!. We analyze r(u) for C computed
using 30-min returns for 1994–1995. We choose one typical
eigenvalue lk from the bulk (l2<lk<l1) defined by
P rm(l) of Eq. ~6!. Figure 8~a! shows that r(u) for a typical
uk from the bulk shows good agreement with the RMT result
r rm(u). Similar analysis on the other eigenvectors belonging
to eigenvalues within the bulk yields consistent results, in
agreement with the results of the previous sections that the
bulk agrees with random matrix predictions. We test the
agreement of the distribution r(u) with r rm(u) by calculat-
ing the kurtosis, which for a Gaussian has the value 3. We
find significant deviations from r rm(u) for '20 largest and

smallest eigenvalues. The remaining eigenvectors have val-
ues of kurtosis that are consistent with the Gaussian value 3.

Consider next the ‘‘deviating’’ eigenvalues l i , larger than
the RMT upper bound, l i.l1 . Figures 8~b! and 8~c! show
that, for deviating eigenvalues, the distribution of eigenvec-
tor components r(u) deviates systematically from the RMT
result r rm(u). Finally, we examine the distribution of the
components of the eigenvector u1000 corresponding to the
largest eigenvalue l1000 . Figure 8~d! shows that r(u1000)
deviates remarkably from a Gaussian, and is approximately
uniform, suggesting that all stocks participate. In addition,
we find that almost all components of u1000 have the same
sign, thus causing r(u) to shift to one side. This suggests
that the significant participants of eigenvector uk have a
common component that affects all of them with the same
bias.

B. Interpretation of the largest eigenvalue
and the corresponding eigenvector

Since all components participate in the eigenvector corre-
sponding to the largest eigenvalue, it represents an influence
that is common to all stocks. Thus, the largest eigenvector
quantifies the qualitative notion that certain newsbreaks ~e.g.,
an interest rate increase! affect all stocks alike @4#. One can
also interpret the largest eigenvalue and its corresponding
eigenvector as the collective ‘‘response’’ of the entire market
to stimuli. We quantitatively investigate this notion by com-
paring the projection ~scalar product! of the time series G on
the eigenvector u1000, with a standard measure of US stock
market performance—the returns GSP(t) of the S&P 500 in-
dex. We calculate the projection G1000(t) of the time series
G j(t) on the eigenvector u1000,

G1000~ t ![(
j51

1000

u j
1000G j~ t !. ~18!

By definition, G1000(t) shows the return of the portfolio de-
fined by u1000. We compare G1000(t) with GSP(t), and find
remarkably similar behavior for the two, indicated by a large
value of the correlation coefficient ^GSP(t)G1000(t)&50.85.
Figure 9 shows G1000(t) regressed against GSP(t), which
shows relatively narrow scatter around a linear fit. Thus, we
interpret the eigenvector u1000 as quantifying market-wide
influences on all stocks @14,15#.

We analyze C at larger time scales of Dt51 day and find
similar results as above, suggesting that similar correlation
structures exist for quite different time scales. Our results for
the distribution of eigenvector components agree with those
reported in Ref. @14#, where Dt51-day returns are analyzed.
We next investigate how the largest eigenvalue changes as a
function of time. Figure 2 shows the time dependence @35# of
the largest eigenvalue (l422) for the 35-yr period 1962–
1996. We find large values of the largest eigenvalue during
periods of high market volatility, which suggests strong col-
lective behavior in regimes of high volatility.

One way of statistically modeling an influence that is
common to all stocks is to express the return G i of stock i as

G i~ t !5a i1b iM ~ t !1e i~ t !, ~19!

FIG. 8. ~a! Distribution r(u) of eigenvector components for one
eigenvalue in the bulk l2,l,l1 shows good agreement with the
RMT prediction of Eq. ~17! ~solid curve!. Similar results are ob-
tained for other eigenvalues in the bulk. r(u) for ~b! u996 and ~c!
u999, corresponding to eigenvalues larger than the RMT upper
bound l1 ~shaded region in Fig. 3!. ~d! r(u) for u1000 deviates
significantly from the Gaussian prediction of RMT. The above plots
are for C constructed from 30-min returns for the 2-yr period
1994–1995. We also obtain similar results for C constructed from
daily returns.
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where M (t) is an additive term that is the same for all
stocks, ^e(t)&50, a i and b i are stock-specific constants, and
^M (t)e(t)&50. This common term M (t) gives rise to cor-
relations between any pair of stocks. The decomposition of
Eq. ~19! forms the basis of widely used economic models,
such as multifactor models and the Capital Asset Pricing
model @4,36–52#. Since u1000 represents an influence that is
common to all stocks, we can approximate the term M (t)
with G1000(t). The parameters a i and b i can therefore be
estimated by an ordinary least squares regression.

Next, we remove the contribution of G1000(t) to each time
series G i(t), and construct C from the residuals e i(t) of Eq.
~19!. Figure 10 shows that the distribution P(C i j) thus ob-
tained has significantly smaller average value ^C i j&, showing
that a large degree of cross correlations contained in C can
be attributed to the influence of the largest eigenvalue ~and
its corresponding eigenvector! @53,54#.

C. Number of significant participants in an eigenvector:
Inverse participation ratio

Having studied the interpretation of the largest eigenvalue
that deviates significantly from RMT results, we next focus
on the remaining eigenvalues. The deviations of the distribu-
tion of components of an eigenvector uk from the RMT pre-
diction of a Gaussian is more pronounced as the separation
from the RMT upper bound lk2l1 increases. Since prox-
imity to l1 increases the effects of randomness, we quantify
the number of components that participate significantly in
each eigenvector, which in turn reflects the degree of devia-
tion from RMT result for the distribution of eigenvector
components. To this end, we use the notion of the inverse
participation ratio ~IPR!, often applied in localization theory
@13,55#. The IPR of the eigenvector uk is defined as

Ik[(
l51

N

@u l
k# 4, ~20!

where u l
k , l51, . . . ,1000 are the components of eigenvector

uk. The meaning of Ik can be illustrated by two limiting
cases: ~i! a vector with identical components u l

k[1/AN has
Ik

51/N , whereas ~ii! a vector with one component u1
k
51

and the remainder zero has Ik
51. Thus, the IPR quantifies

the reciprocal of the number of eigenvector components that
contribute significantly.

Figure 11~a! shows Ik for the case of the control of Eq. ~5!
using time series with the empirically found distribution of
returns @21#. The average value of Ik is ^I&'331023'1/N
with a narrow spread, indicating that the vectors are extended
@55,56#—i.e., almost all components contribute to them.
Fluctuations around this average value are confined to a nar-
row range ~standard deviation of 1.531024).

Figure 11~b! shows that Ik for C constructed from 30-min
returns from the period 1994–1995, agrees with Ik of the
random control in the bulk (l2,l i,l1). In contrast, the

FIG. 9. ~a! S&P 500 returns at Dt530 min regressed against
the 30-min return on the portfolio G1000 @Eq. ~18!# defined by the
eigenvector u1000, for the 2-yr period 1994–1995. Both axes are
scaled by their respective standard deviations. A linear regression
yields a slope 0.8560.09. ~b! Return ~in units of standard devia-
tions! on the portfolio defined by an eigenvector corresponding to
an eigenvalue l400 within the RMT bounds regressed against the
normalized returns of the S&P 500 index shows no significant de-
pendence. Both axes are scaled by their respective standard devia-
tions. The slope of the linear fit is 0.01460.011, close to 0.

FIG. 10. Probability distribution P(C i j) of the cross-correlation
coefficients for the 2-yr period 1994–1995 before and after remov-
ing the effect of the largest eigenvalue l1000 . Note that removing
the effect of l1000 shifts P(C i j) toward a smaller average value
^C i j&50.002 compared to the original value ^C i j&50.03.
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edges of the eigenvalue spectrum of C show significant de-
viations of Ik from ^I&. The largest eigenvalue has 1/Ik

'600 for the 30-min data @Fig. 11~b!# and 1/Ik'320 for the
1-day data @Figs. 11~c! and 11~d!#, showing that almost all
stocks participate in the largest eigenvector. For the rest of
the large eigenvalues which deviate from the RMT upper
bound, Ik values are approximately four to five times larger
than ^I&, showing that there are varying numbers of stocks
contributing to these eigenvectors. In addition, we also find
that there are large Ik values for vectors corresponding to few
of the small eigenvalues l i'0.25,l2 . The deviations at
both edges of the eigenvalue spectrum are considerably
larger than ^I& , which suggests that the vectors are localized
@55,56#—i.e., only a few stocks contribute to them.

The presence of vectors with large values of Ik also arises
in the theory of Anderson localization @57#. In the context of
localization theory, one frequently finds ‘‘random band ma-
trices’’ @55# containing extended states with small Ik in the
bulk of the eigenvalue spectrum, whereas edge states are
localized and have large Ik. Our finding of localized states
for small and large eigenvalues of the cross-correlation ma-
trix C is reminiscent of Anderson localization and suggests
that C may have a random band matrix structure. A random
band matrix B has elements B i j independently drawn from
different probability distributions. These distributions are of-
ten taken to be Gaussian parametrized by their variance,
which depends on i and j. Although such matrices are ran-
dom, they still contain probabilistic information arising from
the fact that a metric can be defined on their set of indices i.
A related, but distinct way of analyzing cross correlations by
defining ‘‘ultrametric’’ distances has been studied in Ref.
@16#.

D. Interpretation of deviating eigenvectors u990– u999

We quantify the number of significant participants of an
eigenvector using the IPR, and we examine the 1/Ik compo-
nents of eigenvector uk for common features @17#. A direct
examination of these eigenvectors, however, does not yield a
straightforward interpretation of their economic relevance.
To interpret their meaning, we note that the largest eigen-
value is an order of magnitude larger than the others, which
constrains the remaining N21 eigenvalues since Tr C5N .
Thus, in order to analyze the deviating eigenvectors, we must
remove the effect of the largest eigenvalue l1000 .

In order to avoid the effect of l1000 , and thus G1000(t), on
the returns of each stock G i(t), we perform the regression of
Eq. ~19!, and compute the residuals e i(t). We then calculate
the correlation matrix C using e i(t) in Eq. ~ 2! and Eq. ~3!.
Next, we compute the eigenvectors uk of C thus obtained,
and analyze their significant participants. The eigenvector
u999 contains approximately 1/I999

5300 significant partici-
pants, which are all stocks with large values of market capi-
talization. Figure 12 shows that the magnitude of the eigen-
vector components of u999 shows an approximately
logarithmic dependence on the market capitalizations of the
corresponding stocks.

We next analyze the significant contributors of the rest of
the eigenvectors. We find that each of these deviating eigen-
vectors contains stocks belonging to similar or related indus-
tries as significant contributors. Table I shows the ticker sym-
bols and industry groups @Standard Industry Classification
~SIC! code# for stocks corresponding to the ten largest eigen-
vector components of each eigenvector. We find that these
eigenvectors partition the set of all stocks into distinct groups
that contain stocks with large market capitalization (u999),
stocks of firms in the electronics and computer industry
(u998), a combination of gold mining and investment firms
(u996 and u997), banking firms (u994), oil and gas refining and
equipment (u993), auto manufacturing firms (u992), drug
manufacturing firms (u991), and paper manufacturing (u990).

FIG. 11. ~a! Inverse participation ratio ~IPR! as a function of
eigenvalue l for the random cross-correlation matrix R of Eq. ~6!
constructed using N51000 mutually uncorrelated time series of
length L56448. IPR for C constructed from ~b! 6448 records of
30-min returns for 1000 stocks for the 2-yr period 1994–1995, ~c!
1737 records of 1-day returns for 422 stocks in the 7-yr period
1990–1996, and ~d! 1737 records of 1-day returns for 422 stocks in
the 7-yr period 1983–1989. The shaded regions show the RMT
bounds @l1 ,l2# .

FIG. 12. All 103 eigenvector components of u999 plotted against
market capitalization ~in units of U.S. dollars! shows that firms with
large market capitalization contribute significantly. The straight
line, which shows a logarithmic fit, is a guide to the eye.
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TABLE I. Largest ten components of the eigenvectors u999 up to u991. The columns show ticker symbols, industry type, and the standard
industry classification ~SIC! code, respectively.

Ticker Industry Industry code Ticker Industry Industry code

u999

XON Oil & gas equipment/services 2911
PG Cleaning products 2840
JNJ Drug manufacturers/major 2834
KO Beverages-soft drinks 2080
PFE Drug manufacturers/major 2834
BEL Telecom services/domestic 4813
MOB Oil & gas equipment/services 2911
BEN Asset management 6282
UN Food—major diversified 2000
AIG Property/casualty insurance 6331

u998

TXN Semiconductor—broad line 3674
MU Semiconductor—memory chips 3674
LSI Semiconductor—specialized 3674
MOT Electronic equipment 3663
CPQ Personal computers 3571
CY Semiconductor—broad line 3674
TER Semiconductor equip/materials 3825
NSM Semiconductor—broad line 3674
HWP Diversified computer systems 3570
IBM Diversified computer systems 3570

u997

PDG Gold 1040
NEM Gold 1040
NGC Gold 1040
ABX Gold 1040
ASA Closed, end fund ~gold! 6799
HM Gold 1040
BMG Gold 1040
AU Gold 1040
HSM General building materials 5210
MU Semiconductor—memory chips 3674

u996

NEM Gold 1040
PDG Gold 1040
ABX Gold 1040
HM Gold 1040
NGC Gold 1040
ASA Closed, end fund ~gold! 6799
BMG Gold 1040
CHL Wireless communications 4813
CMB Money center banks 6021
CCI Money center banks 6021

u995

TMX Telecommunication services/foreign 4813
TV Broadcasting—television 4833
MXF Closed, end fund ~Foreign! 6726
ICA Heavy construction 1600
GTR Heavy construction 1600

CTC Telecom services/foreign 4813
PB Beverages—soft drinks 2086
YPF Independent oil and gas 2911
TXN Semiconductor—broad line 3674
MU Semiconductor—memory chips 3674

u994

BAC Money center banks 6021
CHL Wireless communications 4813
BK Money center banks 6022
CCI Money center banks 6021
CMB Money center banks 6021
BT Money center banks 6022
JPM Money center banks 6022
MEL Regional—northeast banks 6021
NB Money center banks 6021
WFC Money center banks 6021

u993

BP Oil and gas equipment/services 2911
MOB Oil and gas equipment/services 2911
SLB Oil and gas equipment/services 1389
TX Major integrated oil/gas 2911
UCL Oil and gas refining/marketing 1311
ARC Oil and gas equipment/services 2911
BHI Oil and gas equipment/services 3533
CHV Major integrated oil/gas 2911
APC Independent oil and gas 1311
AN Auto dealerships 2911

u992

FPR Auto manufacturers/major 3711
F Auto manufacturers/major 3711
C Auto manufacturers/major 3711

GM Auto manufacturers/major 3711
TXN Semiconductor—broad line 3674
ADI Semiconductor—broad line 3674
CY Semiconductor—broad line 3674
TER Semiconductor equip/materials 3825
MGA Auto parts 3714
LSI Semiconductor—specialized 3674

u991

ABT Drug manufacturers/major 2834
PFE Drug manufacturers/major 2834
SGP Drug manufacturers/major 2834
LLY Drug manufacturers/major 2834
JNJ Drug manufacturers/major 2834

AHC Oil and gas refining/marketing 2911
BMY Drug manufacturers/major 2834
HAL Oil and gas equipment/services 1600
WLA Drug manufacturers/major 2834
BHI Oil and gas equipment/services 3533
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One eigenvector (u995) displays a mixture of three industry
groups—telecommunications, metal mining, and banking.
An examination of these firms shows significant business
activity in Latin America. Our results are also represented
schematically in Fig. 13. A similar classification of stocks
into sectors using different methods is obtained in Ref. @16#.

Instead of performing the regression of Eq. ~19!, we re-
move the U-shaped intraday pattern using the procedure of
Ref. @58# and compute C. The rationale behind this proce-
dure is that, if two stocks are correlated, then the intraday
pattern in volatility can give rise to weak intraday patterns in
returns, which in turn affects the content of the eigenvectors.
The results obtained by removing the intraday patterns are
consistent with those obtained using the procedure of using
the residuals of the regression of Eq. ~19! to compute C
~Table I!. Often C is constructed from returns at longer time
scales of Dt51 week or 1 month to avoid short-time scale
effects @59#.

E. Smallest eigenvalues and their corresponding eigenvectors

Having examined the largest eigenvalues, we next focus
on the smallest eigenvalues which show large values of Ik

@Fig. 11#. We find that the eigenvectors corresponding to the
smallest eigenvalues contain as significant participants, pairs
of stocks that have the largest values of C i j in our sample.
For example, the two largest components of u1 correspond to
the stocks of Texas Instruments ~TXN! and Micron Technol-
ogy ~MU! with C i j50.64, the largest correlation coefficient
in our sample. The largest components of u2 are Telefonos de
Mexico ~TMX! and Grupo Televisa ~TV! with C i j50.59
~second largest correlation coefficient!. The eigenvector u3

shows Newmont Gold Company ~NGC! and Newmont Min-
ing Corporation ~NEM! with C i j50.50 ~third largest corre-
lation coefficient! as largest components. In all three eigen-
vectors, the relative sign of the two largest components is
negative. Thus pairs of stocks with a correlation coefficient
much larger than the average ^C i j& effectively ‘‘decouple’’
from other stocks.

The appearance of strongly correlated pairs of stocks in
the eigenvectors corresponding to the smallest eigenvalues of
C can be qualitatively understood by considering the ex-
ample of a 232 cross-correlation matrix

C2325F1 c

c 1G . ~21!

The eigenvalues of C232 are b6516c . The smaller eigen-
value b2 decreases monotonically with increasing cross-
correlation coefficient c. The corresponding eigenvector is
the antisymmetric linear combination of the basis vectors (0

1)
and (1

0), in agreement with our empirical finding that the
relative sign of largest components of eigenvectors corre-
sponding to the smallest eigenvalues is negative. In this
simple example, the symmetric linear combination of the two
basis vectors appears as the eigenvector of the large eigen-
value b1 . Indeed, we find that TXN and MU are the largest
components of u998, TMX and TV are the largest compo-
nents of u995, and NEM and NGC are the largest and third
largest components of u997.

VII. STABILITY OF EIGENVECTORS IN TIME

We next investigate the degree of stability in time of the
eigenvectors corresponding to the eigenvalues that deviate
from RMT results. Since deviations from RMT results imply
genuine correlations which remain stable in the period used
to compute C, we expect the deviating eigenvectors to show
some degree of time stability.

We first identify the p eigenvectors corresponding to the p
largest eigenvalues which deviate from the RMT upper
bound l1 . We then construct a p3N matrix D with ele-
ments Dk j5$u j

k ;k51, . . . ,p; j51, . . . ,N%. Next, we com-
pute a p3p ‘‘overlap matrix’’ O(t ,t)5DADB

T , with ele-
ments O i j defined as the scalar product of eigenvector ui of
period A ~starting at time t5t) with uj of period B at a later
time t1t ,

O i j~ t ,t ![(
k51

N

D ik~ t !D jk~ t1t !. ~22!

If all the p eigenvectors are ‘‘perfectly’’ nonrandom and
stable in time O i j5d i j .

We study the overlap matrices O using both high fre-
quency and daily data. For high-frequency data (L56448
records at 30-min intervals!, we use a moving window of
length L51612, and slide it through the entire 2-yr period
using discrete time steps L/45403. We first identify the
eigenvectors of the correlation matrices for each of these
time periods. We then calculate overlap matrices O(t50,t
5nL/4), where nP$1,2,3, . . . %, between the eigenvectors
for t50 and for t5t .

Figure 14 shows a gray scale pixel representation of the
matrix O (t ,t), for different t . First, we note that the eigen-
vectors that deviate from RMT bounds show varying degrees
of stability @O i j(t ,t)# in time. In particular, the stability in
time is largest for u1000. Even at lags of t51 yr the corre-

FIG. 13. Schematic illustration of the interpretation of the eigen-
vectors corresponding to the eigenvalues that deviate from the RMT
upper bound. The dashed curve shows the RMT result of Eq. ~6!.
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sponding overlap '0.85. The remaining eigenvectors show
decreasing amounts of stability as the RMT upper bound l1

is approached. In particular, the three to four largest eigen-
vectors show large values of O i j for up to t51 yr.

Next, we repeat our analysis for daily returns of 422
stocks using 8685 records of 1-day returns, and a sliding
window of length L5965 with discrete time steps L/5

5193 days. Instead of calculating O(t ,t) for all starting
points t, we calculate O(t)[^O(t ,t)& t , averaged over all t
5n L/5, where nP$0,1,2, . . . %. Figure 15 shows gray scale
representations of O (t) for increasing t . We find similar
results as found for shorter time scales, and find that eigen-
vectors corresponding to the largest two eigenvalues are
stable for time scales as large as t520 yr. In particular, the
eigenvector u422 shows an overlap of '0.8 even over time
scales of t530 yr.

VIII. APPLICATIONS TO PORTFOLIO OPTIMIZATION

The randomness of the ‘‘bulk’’ seen in the previous sec-
tions has implications in optimal portfolio selection @59#. We
illustrate these using the Markowitz theory of optimal port-
folio selection @3,17,60,61#. Consider a portfolio P(t) of
stocks with prices S i . The return on P(t) is given by

F5(
i51

N

w iG i , ~23!

FIG. 14. Grayscale pixel representation of the overlap matrix
O(t ,t) as a function of time for 30-min data for the 2-yr period
1994–1995. Here, the gray scale coding is such that black corre-
sponds to O i j51 and white corresponds to O i j50. The length of
the time window used to compute C is L51612 ('60 days! and
the separation t5L/45403 used to calculate successive O i j . Thus,
the left figure on the first row corresponds to the overlap between
the eigenvector from the starting t50 window and the eigenvector
from time window t5L/4 later. The right figure is for t52L/4. In
the same way, the left figure on the second row is for t53L/4, the
right figure for t54L/4, and so on. Even for large t'1 yr, the
largest four eigenvectors show large values of O i j .

FIG. 15. Grayscale pixel representation of the overlap matrix
^O(t ,t)& t for 1-day data, where we have averaged over all starting
points t. Here, the length of the time window used to compute C is
L5965 ('4 yr) and the separation t5L/55193 days used to cal-
culate O i j . Thus, the left figure on the first row is for t5L/5 and
the right figure is for t52L/5. In the same way, the left figure on
the second row is for t53L/5, the right figure for t54L/5, and so
on. Even for large t'20 yr, the largest two eigenvectors show
large values of O i j .
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where G i(t) is the return on stock i and w i is the fraction of
wealth invested in stock i. The fractions w i are normalized
such that ( i51

N w i51. The risk in holding the portfolio P(t)
can be quantified by the variance

V2
5(

i51

N

(
j51

N

w iw jC i js is j , ~24!

where s i is the standard deviation ~average volatility! of G i ,
and C i j are elements of the cross-correlation matrix C. In
order to find an optimal portfolio, we must minimize V2

under the constraint that the return on the portfolio is some
fixed value F . In addition, we also have the constraint that
( i51

N w i51. Minimizing V2 subject to these two constraints
can be implemented by using two Lagrange multipliers,
which yields a system of linear equations for w i , which can
then be solved. The optimal portfolios thus chosen can be
represented as a plot of the return F as a function of risk V2

@Fig. 16#.
To find the effect of randomness of C on the selected

optimal portfolio, we first partition the time period 1994–
1995 into two one-yr periods. Using the cross-correlation
matrix C94 for 1994, and G i for 1995, we construct a family
of optimal portfolios, and plot F as a function of the pre-
dicted risk Vp

2 for 1995 @Fig. 16~a!#. For this family of port-

folios, we also compute the risk V r
2 realized during 1995

using C95 @Fig. 16~a!#. We find that the predicted risk is
significantly smaller when compared to the realized risk,

V r
2
2Vp

2

Vp
2

'170%. ~25!

Since the meaningful information in C is contained in the
deviating eigenvectors ~whose eigenvalues are outside the
RMT bounds!, we must construct a ‘‘filtered’’ correlation
matrix C8, by retaining only the deviating eigenvectors. To
this end, we first construct a diagonal matrix L8, with ele-
ments L ii8 5$0, . . . ,0,l988 , . . . ,l1000%. We then transform
L8 to the basis of C, thus obtaining the ‘‘filtered’’ cross-
correlation matrix C8. In addition, we set the diagonal ele-
ments C ii8 51, to preserve Tr(C)5Tr(C8)5N . We repeat the
above calculations for finding the optimal portfolio using C8

instead of C in Eq. ~24!. Figure 16~b! shows that the realized
risk is now much closer to the predicted risk

V r
2
2Vp

2

Vp
2

'25%. ~26!

Thus, the optimal portfolios constructed using C8 are signifi-
cantly more stable in time.

IX. CONCLUSIONS

How can we understand the deviating eigenvalues, i.e.,
correlations that are stable in time? One approach is to pos-
tulate that returns can be separated into idiosyncratic and
common components, i.e., that returns can be separated into
different additive ‘‘factors,’’ which represent various eco-
nomic influences that are common to a set of stocks such as
the type of industry, or the effect of news @4,36–54,62,63#.

On the other hand, in physical systems one starts from the
interactions between the constituents, and then relates inter-
actions to correlated ‘‘modes’’ of the system. In economic
systems, we ask if a similar mechanism can give rise to the
correlated behavior. In order to answer this question, we
model stock price dynamics by a family of stochastic differ-
ential equations @64#, which describe the ‘‘instantaneous’’ re-
turns g i(t)5(d/dt)lnSi(t) as a random walk with couplings
J i j,

to] tg i~ t !52r ig i~ t !2kg i
3~ t !1(

j
J i jg j~ t !1

1

to
j i~ t !.

~27!

Here, j i(t) are Gaussian random variables with correlation
function ^j i(t)j j(t8)&5d i jtod(t2t8), and to sets the time
scale of the problem. In the context of a soft-spin model, the
first two terms in the right-hand side of Eq. ~27! arise from
the derivative of a double-well potential, enforcing the soft-
spin constraint. The interaction among soft spins is given by
the couplings J i j . In the absence of the cubic term, and
without interactions, to /r i are relaxation times of the

FIG. 16. ~a! Portfolio return R as a function of risk D2 for the
family of optimal portfolios ~without a risk-free asset! constructed
from the original matrix C. The top curve shows the predicted risk
Dp

2 in 1995 of the family of optimal portfolios for a given return,
calculated using 30-min returns for 1995 and the correlation matrix
C94 for 1994. For the same family of portfolios, the bottom curve
shows the realized risk D r

2 calculated using the correlation matrix
C95 for 1995. These two curves differ by a factor of D r

2/Dp
2'2.7.

~b! Risk-return relationship for the optimal portfolios constructed
using the filtered correlation matrix C8. The top curve shows the
predicted risk Dp

2 in 1995 for the family of optimal portfolios for a
given return, calculated using the filtered correlation matrix C948 .
The bottom curve shows the realized risk D r

2 for the same family of
portfolios computed using C958 . The predicted risk is now closer to
the realized risk: D r

2/Dp
2'1.25. For the same family of optimal

portfolios, the dashed curve shows the realized risk computed using
the original correlation matrix C95 for which D r

2/Dp
2'1.3.
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^g i(t)g i(t1t)& correlation function. The return G i at a finite
time interval Dt is given by the integral of g i over Dt .

Equation ~27! is similar to the linearized description of
interacting ‘‘soft spins’’ @65# and is a generalized case of the
models of Ref. @64#. Without interactions, the variance of
price changes on a scale Dt@t i is given by ^„G i(Dt)…2&
5Dt/(r2t i), in agreement with recent studies @66#, where
stock price changes are described by an anomalous diffusion
and the variance of price changes is decomposed into a prod-
uct of trading frequency ~analog of 1/t i) and the square of an
‘‘impact parameter’’ that is related to liquidity ~analog of
1/r).

As the coupling strengths increase, the soft-spin system
undergoes a transition to an ordered state with permanent
local magnetizations. At the transition point, the spin dynam-
ics are very ‘‘slow’’ as reflected in a power-law decay of the
spin autocorrelation function in time. To test whether this
signature of strong interactions is present for the stock mar-
ket problem, we analyze the correlation functions c (k)(t)
[^G (k)(t)G (k)(t1t)&, where G (k)(t)[( i51

1000u i
kG i(t) is the

time series defined by eigenvector uk. Instead of analyzing
c (k)(t) directly, we apply the detrended fluctuation analysis
~DFA! method @67#. Figure 17 shows that the correlation
functions c (k)(t) indeed decay as power laws @68# for the
deviating eigenvectors uk—in sharp contrast to the behavior
of c (k)(t) for the rest of the eigenvectors and the autocorre-
lation functions of individual stocks, which show only short-
ranged correlations. We interpret this as evidence for strong
interactions @69#.

In the absence of the nonlinearities ~cubic term!, we ob-
tain only exponentially decaying correlation functions for the
‘‘modes’’ corresponding to the large eigenvalues, which is
inconsistent with our finding of power-law correlations.

To summarize, we have tested the eigenvalue statistics of
the empirically measured correlation matrix C against the
null hypothesis of a random correlation matrix. This allows
us to distinguish genuine correlations from ‘‘apparent’’ cor-
relations that are present even for random matrices. We find
that the bulk of the eigenvalue spectrum of C shares univer-
sal properties with the Gaussian orthogonal ensemble of ran-
dom matrices. Further, we analyze the deviations from RMT,
and find that ~i! the largest eigenvalue and its corresponding
eigenvector represent the influence of the entire market on all
stocks, and ~ii! using the rest of the deviating eigenvectors,
we can partition the set of all stocks studied into distinct
subsets whose identity corresponds to conventionally identi-
fied business sectors. These sectors are stable in time, in
some cases for as many as 30 years. Finally, we have seen
that the deviating eigenvectors are useful for the construction
of optimal portfolios that have a stable ratio of risk to return.
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APPENDIX: ‘‘UNFOLDING’’ THE EIGENVALUE
DISTRIBUTION

As discussed in Sec. V, random matrices display universal
functional forms for eigenvalue correlations that depend only
on the general symmetries of the matrix. A first step to test
the data for such universal properties is to find a transforma-
tion called ‘‘unfolding,’’ which maps the eigenvalues l i to

FIG. 17. ~a! Autocorrelation function c (k)(t) of the time series
defined by the eigenvector u999. The solid line shows a fit to a
power-law functional form t2gk, whereby we obtain values gk

50.6160.06. ~b! To quantify the exponents gk for all k
51, . . . ,1000 eigenvectors, we use the method of DFA analysis
@66# often used to obtain accurate estimates of power-law correla-
tions. We plot the detrended fluctuation function F(t) as a function
of the time scale t for each of the 1000 time series. Absence of
long-range correlations would imply F(t);t0.5, whereas F(t)
;tn with 0.5,n<1 implies power-law decay of the correlation
function with exponent g5222n . We plot the exponents n as a
function of the eigenvalue and find values exponents n significantly
larger than 0.5 for all the deviating eigenvectors. In contrast, for the
remainder of the eigenvectors, we obtain the mean value n50.44
60.04, comparable to the value n50.5 for the uncorrelated case.
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new variables called ‘‘unfolded eigenvalues’’ j i , whose dis-
tribution is uniform @11–13#. Unfolding ensures that the dis-
tances between eigenvalues are expressed in units of local
mean eigenvalue spacing @11#, and thus facilitates compari-
son with analytical results.

We first define the cumulative distribution function of ei-
genvalues, which counts the number of eigenvalues in the
interval l i<l ,

F~l !5NE
2`

l

P~x !dx , ~A1!

where P(x) denotes the probability density of eigenvalues
and N is the total number of eigenvalues. The function F(l)
can be decomposed into an average and a fluctuating part,

F~l !5Fav~l !1Ffluc~l !. ~A2!

Since Pfluc[dFfluc(l)/dl50 on average,

P rm~l ![
dFav~l !

dl
~A3!

is the averaged eigenvalue density. The dimensionless, un-
folded eigenvalues are then given by

j i[Fav~l i!. ~A4!

Thus, the problem is to find Fav(l). We follow two pro-
cedures for obtaining the unfolded eigenvalues j i : ~i! a phe-
nomenological procedure referred to as Gaussian broadening
@11–13#, and ~ii! fitting the cumulative distribution function
F(l) of Eq. ~A1! with the analytical expression for F(l)
using Eq. ~6!. These procedures are discussed below.

1. Gaussian broadening

Gaussian broadening @70# is a phenomenological proce-
dure that aims at approximating the function Fav(l) defined

in Eq. ~A2! using a series of Gaussian functions. Consider
the eigenvalue distribution P(l), which can be expressed as

P~l !5

1

N (
i51

N

d~l2l i!. ~A5!

The d functions about each eigenvalue are approximated by
choosing a Gaussian distribution centered around each eigen-
value with standard deviation (lk1a2lk2a)/2, where 2a is
the size of the window used for broadening @71#. Integrating
Eq. ~A5! provides an approximation to the function Fav(l)
in the form of a series of error functions, which using Eq.
~A4! yields the unfolded eigenvalues.

2. Fitting the eigenvalue distribution

Phenomenological procedures are likely to contain artifi-
cial scales, which can lead to an ‘‘overfitting’’ of the smooth
part Fav(l) by adding contributions from the fluctuating part
Ffluc(l). The second procedure for unfolding aims at circum-
venting this problem by fitting the cumulative distribution of
eigenvalues F(l) @Eq. ~A1!# with the analytical expression
for

F rm~l !5NE
2`

l

P rm~x !dx , ~A6!

where P rm(l) is the probability density of eigenvalues from
Eq. ~6!. The fit is performed with l2 , l1 , and N as free
parameters. The fitted function is an estimate for Fav(l),
whereby we obtain the unfolded eigenvalues j i . One diffi-
culty with this method is that the deviations of the spectrum
of C from Eq. ~6! can be quite pronounced in certain periods,
and it is difficult to find a good fit of the cumulative distri-
bution of eigenvalues to Eq. ~A6!.
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@28# M.J. Bowick and E. Brézin, Phys. Lett. B 268, 21 ~1991!; J.

Feinberg and A. Zee, J. Stat. Phys. 87, 473 ~1997!.
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