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Abstract. In order to quantify the long-range cross-correlations between two time series qualitatively, we
introduce a new cross-correlations test QCC(m), where m is the number of degrees of freedom. If there
are no cross-correlations between two time series, the cross-correlation test agrees well with the χ2(m)
distribution. If the cross-correlations test exceeds the critical value of the χ2(m) distribution, then we say
that the cross-correlations are significant. We show that if a Fourier phase-randomization procedure is
carried out on a power-law cross-correlated time series, the cross-correlations test is substantially reduced
compared to the case before Fourier phase randomization. We also study the effect of periodic trends on
systems with power-law cross-correlations. We find that periodic trends can severely affect the quantitative
analysis of long-range correlations, leading to crossovers and other spurious deviations from power laws,
implying both local and global detrending approaches should be applied to properly uncover long-range
power-law auto-correlations and cross-correlations in the random part of the underlying stochastic process.

PACS. 05.45.Tp Time series analysis – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion

There are a number of situations where different
signals exhibit cross-correlations, ranging from geo-
physics [1] to finance [2–14] and solid-state physics [15].
Cross-correlation functions together with auto-correlation
functions are commonly used to gain insight into the dy-
namics of natural systems. By their definitions, these tech-
niques should be employed only in the presence of station-
arity. However, it is an important fact that many time
series of physical, biological, hydrological, and social sys-
tems are non-stationary and exhibit long-range power-law
correlations [16–22]. In practice, statistical properties of
these systems are difficult to study due to these nonsta-
tionarities.

For determining the scaling exponent of a long-range
power-law auto-correlated time series in the presence
of nonstationarities, the detrended fluctuation analysis
(DFA) method has been developed [23] and its perfor-
mance has been systematically tested for the effect of
different types of trends and nonstationarities [24–27] as
encountered in a wide range of different fields, such as
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cardiac dynamics [28], economics [29], DNA analysis [30],
and meteorology [31]. The square root of the detrended
variance grows with time scale n as FDFA(n) ∼ nλDF A ,
where λDFA is the DFA scaling exponent [23–26], where
1/2 < λDFA < 1, indicates the presence of power-law
auto-correlations, and 0 < λDFA < 1/2 indicates the pres-
ence of long-range power-law anti-correlations.

There are many realistic situations in which one desires
to quantify cross-correlations between two non-stationary
time series. Examples include blood pressure and heart
rate [32], air temperature and air humidity, and the
temporal expression data of different genes. To quantify
power-law cross-correlations in non-stationary time series,
a new method based on detrended covariance, called de-
trended cross-correlations analysis (DCCA), has been re-
cently proposed [11]. If cross-correlations decay as a power
law, the corresponding detrended covariances are either al-
ways positive or always negative, and the square root of
the detrended covariance grows with time scale n as

FDCCA(n) ∝ nλDCCA , (1)
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where λDCCA is the DCCA cross-correlation exponent. If,
however, the detrended covariance oscillates around zero
as a function of the time scale n, there are no long-range
cross-correlations.

In order to investigate power-law auto-correlations and
power-law cross-correlations and effects of sinusoidal peri-
odicity on cross-correlations, first we define a periodic two-
component fractionally autoregressive integrated moving-
average (ARFIMA) process [33–37], where each variable
depends not only on its own past, but also on the past
values of the other variable,

yi =

[
W

∞∑
n=1

an(ρ1)yi−n + (1 − W )
∞∑

n=1

an(ρ2)y′
i−n

]

+ A1 sin
(

2π

T
i

)
+ ηi, (2a)

y′
i =

[
(1 − W )

∞∑
n=1

an(ρ1)yi−n + W

∞∑
n=1

an(ρ2)y′
i−n

]

+ A2 sin
(

2π

T
i

)
+ η′

i. (2b)

Here, ηt and η′
t denote two independent and identically

distributed (i.i.d.) Gaussian variables with zero mean and
unit variance, aj(ρm) are statistical weights defined by
(ρm) ≡ Γ (j−ρm)

Γ (−ρm)Γ (1+j) , where Γ (x) denotes the Gamma
function, ρm (for m = 1, 2) are parameters ranging from 0
to 0.5, T is the sinusoidal period, A1 and A2 are two sinu-
soidal amplitudes, and W is a free parameter ranging from
0.5 to 1 and controlling the strength of power-law cross-
correlations between yt and y′

t. In case of A1 = A2 = 0, for
W = 1, cross-correlations vanish, and the system of two
equations decouples to two separate ARFIMA processes.

In Appendix A, for a version of the above process yi ≡∑∞
j=1 aj(ρ1)yi−j+ηi, y′

i ≡
∑∞

j=1 aj(ρ2)y′
i−j+ηi [11] where

both yi and y′
i share the same i.i.d. Gaussian process ηi,

we analytically find that the time series {yi} and {y′
i} are

long-range power-law cross-correlated, where the scaling
cross-correlations exponent λDCCA (Eq. (1)) is equal to
the average of the Hurst exponents, λDCCA = H1+H2

2 ,
the result found numerically in reference [11], and where
Hm = 0.5 + ρm [37].

Statistical inferences based on estimation and hypoth-
esis testing are among the most important aspects of the
decision making process in science and business. Here
we propose a new statistic to test the presence of cross-
correlations. Suppose that {yi} and {y′

i} are two discrete-
time i.i.d. stochastic processes, where there are no cross-
correlations among the time series. We may define their
cross-correlation function

Xi =
∑N

k=i+1 yky′
k−i√∑N

k=1 y2
k

∑N
k=1 y′2

k

. (3)

Under the assumption that {yi} and {y′
i} are statistically

independent, one can easily show that the Xi are uncor-

related [38]:

E(XiXi′) ∝
N∑

k=i+1

N∑
k′=i′+1

E(yky′
k−iyk′y′

k′−i′)

=
N∑

k=i+1

N∑
k′=i′+1

E(ykyk′)E(y′
k−iy

′
k′−i′), (4)

which is zero for i �= i′. The expectation value of X i is
equal to zero, E(Xi) = 0, because there are no cross-
correlations between {yi} and {y′

i}, and the variance is

V (Xi) = E(X2
i ) =

∑N
k=i+1

∑N
k′=i+1 E(yky′

k−iyk′y′
k′−i)∑N

k=1

∑N
k′=1 E(y2

k)E(y′2
k′ )

=

∑N
k=i+1

∑N
k′=i+1 E(ykyk′)E(y′

k−iy
′
k′−i)

σ2σ′2N2
, (5)

where we use E(ykyk′) = σ2δk,k′ and E(y′
ky′

k′) =

σ′2δk,k′ . Further, V (Xi) =
∑ N

k=i+1
∑ N

k′=i+1 δk,k′δk−i,k′−i

N2 =∑N
k=i+1 δk,k

N2 = N−i
N2 . Thus, we find that E(X2

i ) = N−i
N2 ,

where E(XiXi′) = 0 when i �= i′. The cross-correlation
coefficient Xk is normally distributed for asymptotically
large values of N [38], as it holds for auto-correlation
function rk [39]. Then Xi/

√
(N − i)/N2 asymptotically

behaves as a Gaussian distribution with zero mean and
unit variance, and the sum of squares of these variables
approximately follows a χ2 distribution.

According to definition of the χ2 distribution, we pro-
pose the cross-correlations statistic

QCC(m) ≡ N2
m∑

i=1

X2
i

N − i
, (6)

which is approximately χ2(m) distributed with m degrees
of freedom. The test can be used to test the null hypothesis
that none of the first m cross-correlation coefficients is
different from zero. The test of equation (6) is similar to
the test statistic [40]

Q′(m) ≡ N(N + 2)
m∑

i=1

X2
i

N − i
(7)

proposed in analogy to the Ljung-Box (LJB) test [41] that
is one of the most widely employed tests for the pres-
ence of auto-correlations. The Ljung-Box (LJB) test can
be easily obtained if all cross-correlation coefficients Xk in
equation (7) are replaced by auto-correlation coefficients.
Clearly, for larger samples where N(N + 2) ≈ N2, the
tests of equations (6) and (7) give the same distribution.

Next we show that the test of equation (6) better ap-
proximates the χ2(m) distribution than the test of equa-
tion (7) for small samples. In order to show that the cross-
correlation test of equation (6) is applicable to real-world
data where time series are commonly of small size, we test
the speed of convergence of the distribution of QCC(m)
to the χ2(m) distribution. Thus, we first generate 106
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Fig. 1. Probability distribution function (pdf) P (QCC) of QCC

defined in equation (6) together with the χ2(m) pdf, where m
are the degrees of freedom. We also show P (Q′) of Q′ defined
in equation (7). We generate 106 pairs of time series {yi} and
{y′

i}, where each time series is generated by an i.i.d. Gaussian
process with mean zero and unit variance. Each time series is
comprised of N = 20 data points (small time series). We choose
m = 8, and for each pair of time series we calculate the cross-
correlations Xi, where i = 1, ..., 8. We find a perfect match
between P (QCC(m)) and χ2(m). In opposite, the pdf of Q′

defined in equation (7) deviates from the χ2(m) distribution.
We also show the pdf of a test defined as N

∑m
i X2

i , which
substantially deviates from χ2(m).

equally-sized i.i.d. time series {yi} and {y′
i} for a small

value N = 20 where m = 8. For each pair of time series,
we calculate the cross-correlations Xk, where k = 1, ..., 8,
and then the test statistic QCC(m). In Figure 1 we show
the distribution of P (QCC(m)) together with χ2(8), and
find a perfect agreement between these two probability
distributions. We also show the distribution of the test
statistic of equation (7), where for a given small sample
(N = 20), deviation between the given distribution and
χ2(8) is obvious. Thus, when the cross-correlation test is
applied in practice, we can use the critical values of the
χ2(m) distribution.

Note that the LJB test and hence the cross-correlation
test of equation (6) is proposed to be applied for the
residuals of a given model, not the original time series.
However, sometimes the test is applied to the original se-
ries, e.g., return time series [42]. Accordingly, the cross-
correlation test of equation (6) can be also used to mea-
sure the strength of cross-correlations in the original time
series. In order to investigate cross-correlation scaling we
analyze the daily adjusted closing values of the IBM and
General Electric [43]. For each company’s price, we calcu-
late the time series of the differences of logarithms for
successive days over the period 2 January 1962 till 1
May 2009. Then we calculate the P value of the cross-
correlation test of equation (6) for different degrees of
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Fig. 2. Cross-correlations between the differences of loga-
rithms of prices for IBM and General Electric (GE). We show
QCC(m) versus the degrees of freedom m. We also show the
critical values for the χ2(m) distribution at the 5% level of sig-
nificance. QCC(m) virtually follows the critical values for the
χ2(m) distribution that is a signal for no cross-correlations.
The test of equation (7) gives practically the same result as
the test of equation (6) since N � 1.

freedom m together with the critical values for the χ2(m)
distribution at the 5% level of significance. In Figure 2 we
find that the cross-correlation QCC test statistic practi-
cally follows the critical values for the χ2(m), suggesting
no cross-correlations in the data.

In opposite to a common practice in statistic when a
test statistic is compared with a critical value for a sin-
gle value of degree of freedom m, here in the paper we
plot the statistic test versus the critical value of χ2(m) for
a broad range of values of m. If for a broad range of m
the test statistic of equation (6) exceeds the critical val-
ues of χ2(m) (QCC(m) > χ2

0.95(m)), we claim that there
are not only cross-correlations, but there are long-range
cross-correlations. However, the cross-correlations test of
equation (6) should be used to test the presence of cross-
correlations only qualitatively. In order to test the presence
of cross-correlations quantitatively – to estimate the cross-
correlation exponent – we suggest to employ the DCCA
method of equation (1).

Next we show how the cross-correlation test of equa-
tion (6) might be useful to estimate the strength and sig-
nificance of cross-correlations found in data. By using the
two-component ARFIMA process of equations (2a, 2b),
we generate four different pairs of time series {yi} and
{y′

i}, where each pair is characterized by different values
of ρ, while W is constant. We exclude the periodic term
for now, so A1 = A2 = 0. In Figure 3 for each pair of time
series we show the cross-correlation test of equation (6)
(filled symbols) for different degrees of freedom m. In or-
der to show the strength of cross-correlations, for different
values of m, we also show the critical values of the χ2(m)
distribution at the 5% level of significance. We note that,
for a given value of m, the deviation between the test of
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Fig. 3. QCC(m) for different degrees of freedom m be-
fore (filled symbols) and after (open symbols) Fourier phase-
randomization of the QCC(m). For each of four values of ρ, the
two-component ARFIMA process of equations (2a, 2b) gen-
erates the pair of time series {yi} and {y′

i} where m = 2i,
and i = 2, ..., 8, and fixed W = 0.5. For the sinusoidal am-
plitude we take A1 = A2 = 0. The time series {yi} and {y′

i}
are N = 5 × 104 data points each. The solid line denotes the
critical values for the χ2(m) distribution at the 5% level of
significance. For each of four pairs ({yi}, {y′

i}), we calculate
the cross-correlations Xi, and the QCC(m) test statistic. The
more positive is the difference between the QCC(m) test and
the critical value of the χ2(m) distribution, the stronger are
the cross-correlations for a given m. For each value of ρ, we
phase randomize the original time series {y′

i}, and obtain the
surrogate time series {ỹ′

i}. Then for each pair of time series
({yi}, {ỹ′

i}), we calculate the QCC(m) test statistic of equa-
tion (6). We also show the critical values for χ2(m) distribution
at the 5% level of significance. Fourier phase-randomization re-
duces the linear cross-correlations, since after a Fourier phase-
randomization procedure (open symbols), we find that for
each pair ({yi}, {ỹ′

i}), the cross-correlations measured by the
QCC(m) test are substantially reduced – in fact, the cross-
correlations practically vanish for time series with smaller ρ
values.

equation (6) and the critical value of χ2(m) increases with
ρ, if W is kept fixed. We also note that, for each time se-
ries (specified by ρ), the test of equation (6) is larger than
the critical value of χ2(m) for a broad, but finite range
of m. We propose that, if for a broad range of values of
m the values of the test of equation (6) between the two
time series are larger than the critical values of the χ2(m)
distribution, the cross-correlations are considered signifi-
cant.

Often it is unclear to what degree the time series gener-
ated by a stochastic process exhibits linear and nonlinear
correlations. Linear (nonlinear) auto-correlations are de-
fined as those correlations which are not destroyed (are de-
stroyed) by a Fourier phase-randomization of the original
time series [28,44,45]. The Fourier phase-randomization

procedure [44] works as follows: (i) perform a Fourier
transform of the original time series; (ii) randomize the
Fourier phases (thereby eliminating the nonlinearities of
the original time series) but keep the Fourier amplitudes
unchanged (thereby preserving the power spectrum and
the linear properties of the original time series); and (iii)
perform an inverse Fourier transform to obtain a surrogate
time series.

For the four pairs of time series {yi} and {y′
i} of equa-

tions (2a, 2b), in Figure 3 we show the cross-correlations
test for different degrees of freedom after (open symbols)
performing Fourier phase-randomization. To emphasize
the impact of a phase randomization on cross-correlations
we also show the critical values of χ2(m) for different de-
grees of freedom. We show that after a Fourier phase-
randomization (open symbols) cross-correlations are re-
duced [10] – for each pair of time series and for each m,
the test is substantially reduced compared to the case be-
fore the Fourier phase randomization. Thus, while the
Fourier phase-randomization procedure preserves linear
auto-correlations [28,44], the same method substantially
reduces the linear cross-correlations.

We next discuss how to quantify the scaling expo-
nent of power-law cross-correlations between two time
series, and how it relates to the DFA exponents calcu-
lated for each of two cross-correlated time series, which
we generate by using the two-component process of equa-
tions (2a, 2b). Here, we assume there are no sinusoidal
trends, A1 = A2 = 0. In Figures 4a, 4b, the DFA func-
tions are given for each time series {yi} and {y′

i} of 105

data points and ρ1 = 0.4 and ρ2 = 0.1. We set the cross-
correlation coupling parameter to W = 0.95 (Fig. 4a) and
W = 0.05 (Fig. 4b). In each figure we show that both time
series {yi} and {y′

i} are power-law auto-correlated, and are
also power-law cross-correlated. From the definition of the
process of equations (2a, 2b) it is clear that with decreas-
ing value of W (from 1 to 0.05), each of the two processes
yi and y′

i becomes a mixture of two ARFIMA processes.
Particularly, for the process y′

i, the DFA correlation ex-
ponent λDFA virtually does not change with varying the
parameter W − λDFA ≈ 0.6 = 1/2 + ρ2 [46]. In contrast,
for the process yi, the DFA correlation exponent λDFA

gradually decreases from λDFA ≈ 0.9 = 1/2 + ρ1 (when
W = 1, not shown) toward λDFA ≈ 0.6 (when W = 1/2)
corresponding to the y′

i process [46].
Next we focus on the DCCA cross-correlation expo-

nent λDCCA. We show in Figures 4a, 4b that, by vary-
ing the cross-correlation coupling parameter W , λDCCA

follows the DFA exponent λDFA corresponding to the
yi process. By decreasing the value of W from W = 1
to W = 0.5, both the DFA correlation exponent λDFA

corresponding to the yi process and the DCCA cross-
correlation exponent λDCCA gradually decrease toward
λDFA ≈ 0.6. Generally, for different time series of the
process with parameters ρ1 and ρ2, where ρ1 > ρ2, we
find that λDCCA is closer to the DFA exponent λDFA cor-
responding to the yi process (larger ρ).

A necessary condition for power-law cross-correlations
with a unique power-law exponent is that FDCCA(n)
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Fig. 4. DFA and DCCA scaling functions FDFA(n) and
FDCCA(n), respectively, versus time scale n. We generate the
time series {yi} and {y′

i} defined by the two-component process
of equations (2a, 2b) with ρ1 = 0.4 and ρ2 = 0.1. We exclude
the sinusoidal amplitude, so A1 = A2 = 0. We show the two
DFA functions, FDFA(n) ∝ nλDF A , and the DCCA function,
FDCCA(n) ∝ nλDCCA , for (a) W = 0.95 and (b) W = 0.5.
The closer W is to 0.5, the more the two processes yi and y′

i

become alike. λDCCA gradually decreases toward λDF A ≈ 0.6.
Generally, by varying W , λDCCA becomes closer to λDF A cor-
responding to yi, but eventually the λDF A value corresponding
to yi tends to the λDF A value corresponding to y′

i.

does not change sign with increasing n, i.e. FDCCA(n) =
AnλDCCA where A is constant. To this end, we find that
the process of equations (2a, 2b) with W = 0.99 gen-
erates two particular time series {yi} and {y′

i} where
FDCCA(n) versus n starts to oscillate, indicating the loss of
a unique power-law dependence. Thus, even though there
are cross-correlations between {yi} and {y′

i}, the cross-
correlations are weak because the cross-correlations cou-
pling parameter W is close to 1. For the limiting case
W = 1, the processes yi and y′

i are decoupled, and thus
not cross-correlated, and each of two processes yi and y′

i
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Fig. 5. QCC(m) versus the number of degrees of freedom m for
different values of the cross-correlation coupling W . For each
W , we generate one pair of time series {yi} and {y′

i} defined by
equations (2a, 2b). Each time series is comprised of N = 104

data points. There is no sinusoidal trend, so A1 = A2 = 0. We
also show the curve of the critical values of χ2(m) distribution
at the 5% level of significance. Parameters are ρ1 = 0.2 and
ρ2 = 0.4. For W = 0.5, the cross-correlations between {yi}
and {y′

i} are strongest and, for a wide range of m values, the
curve of the test statistic of equation (6) for W = 0.5 is above
all other curves including the curve of the critical values of
χ2(m) distribution. For values of W very close to 1, the cross-
correlations between {yi} and {y′

i} become very weak, below
the curve of the critical values of χ2(m) distribution.

becomes a separate ARFIMA process controlled by pa-
rameters ρ1 and ρ2, respectively.

Next we analyze the cross-correlation tests between
time series {yi} and {y′

i}, with varying W and fixed ρ
parameters. We generate three pairs of time series {yi}
and {y′

i} with parameters ρ1 = 0.2 and ρ2 = 0.4, and
varying W . For each pair of time series (104 data points
each), we perform the test given in equation (6) for dif-
ferent degrees of freedom, m. In Figure 5, the results of
the test are plotted versus m, for each pair of time series.
We also show the critical values of the χ2(m) distribution
versus m at the 5% level of significance. Note that for the
pairs of time series investigated with W equal to 0.5 and
0.95, the curves of the test statistic are above the curve of
the critical values of the χ2(m) distribution. Now we find
that for a very small cross-correlation coupling parame-
ter (W = 0.99), the values of the test of equation (6) are
very close to the critical values of the χ2(m) distribution.
Generally, except for values of W very close to 1, for a
broad range of m values, the difference between the value
of the test of equation (6) and the corresponding criti-
cal value of the χ2(m) distribution is positive (QCC(m) >
χ2

0.95(m)). If the values of the test of equation (6) calcu-
lated between two time series are smaller than the criti-
cal values of the χ2(m) distribution, QCC(m) < χ2

0.95(m),
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the cross-correlations between two time series are insignif-
icant.

Next we apply the detrended cross-correlations anal-
ysis (DCCA) to investigate cross-correlations between
time series where each time series is auto-correlated and
sinusoidal. In Figure 6 we present three DCCA functions
FDCCA(n) obtained for three pairs of cross-correlated time
series {yi} and {y′

i} with sinusoidal trends generated by
the process of equations (2a, 2b), with ρ = 0.4, W = 0.5,
A1 = A2 = 0.3, and varying T . We find from Figure 6
that each DCCA function FDCCA(n) shows a crossover
at time scale n2CC ≈ T similar to the findings for DFA
functions [24]. We next study numerically if the relation
n2CC ≈ T holds independently of the values of A, W ,
and ρ. We also find that the crossover bump becomes
more pronounced with increasing A, but the crossover
time scale n2CC does not depend on A. We also find that
the crossover time scale n2CC virtually does not depend
on ρ.

The correct interpretation of the scaling results is
crucial for understanding the system that is analyzed.
If the real-world time series is both correlated and pe-
riodic, periodicities should be eliminated before analyz-
ing the correlations of the time series. First we generate
two cross-correlated time series generated by the process
of equations (2a, 2b) with ρ = 0.4 when periodicity is
present in the time series. For the sake of simplicity, we
set T1 = T2 = T = 103. We show the DCCA function
FDCCA(n) in Figure 7, and we find a crossover at scale
n2CC ∝ T .
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Fig. 7. DCCA function FDCCA(n) after global and local si-
nusoidal detrending approaches. We generate two time series
{yi} and {y′

i} of the periodic two-component ARFIMA pro-
cess of equations (2a, 2b) with ρ = ρ1 = ρ2 = 0.4, W = 0.5,
A1 = A2 = 0.3, and T1 = T2 = T = 103. We see that
FDCCA(n) of yi and y′

i exhibit a bump similar to that charac-
teristic for DFA functions obtained for time series with periodic
trends. After performing a global minimization of

∑N
i=1(yi −

A1 sin(2π/T i + φ1))
2 and

∑N
i=1(y

′
i −A2 sin(2π/T i + φ2))

2, we
find the parameters of the first harmonic (Ai, φi, Ti) in both
time series {yi} and {y′

i}. Then, we define two new time series,
Yi = yi−A1 sin(2π/T i+φ1) and Y ′

i = y′
i −A2 sin(2π/T i+φ2).

{Yi} and {Y ′
i } exhibit a “pure” power-law cross-correlation,

with expected power-law exponent λDCCA = λDF A = 0.5+ρ =
0.9, since both time series are defined by the same ρ parameter.

Next, we investigate the influence of global detrend-
ing on DCCA results. By global fit we assume one fit
for the entire time series in contrast to a local detrend-
ing approach where local fits are accomplished for win-
dows of different sizes. To eliminate periodicities in the
original time series, we globally detrend the periodic-
ity –

∑N
i=1[yi − A1 sin(2π/T i + φ1)]2 and

∑N
i=1[y

′
i −

A2 sin(2π/T i + φ2)]2 – and find the parameters (Ai, φi,
and T ) in both time series {yi} and {y′

i}. Then, we
define the globally detrended time series Yi ≡ yi −
A1 sin (2π/T i + φ1), and Y ′

i ≡ y′
i − A2 sin (2π/T i + φ2).

We find in Figure 7 that FDCCA(n) practically loses the
bump characteristic at the crossover scale, allowing us to
calculate the cross-correlations exponent λDCCA.

In this paper, we propose a new test to quantify the
presence of cross-correlations. We propose that both the
cross-correlation test and the detrended cross-correlations
analysis (DCCA) should be used together to measure
the degree of cross-correlations between different time se-
ries. We demonstrate that a good indication for the pres-
ence of cross-correlations is if the results of the statis-
tical test of equation (6) exceeds the critical value of
the χ2(m) distribution at the given level of significance.
We study long-range power-law cross-correlations between
two time series, each power-law auto-correlated, in the
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presence of a periodic sinusoidal trend. We show that due
to the sinusoidal trend, a spurious crossover exists in the
DCCA cross-correlations plots. We study the impact of a
Fourier phase-randomization on the cross-correlation test
and show that the cross-correlations between two cross-
correlated time series practically vanish by a Fourier phase
randomization.

We thank the Ministry of Science of Croatia, NIH, and NSF
for financial support.

Appendix A: Analytical cross-correlations derivation

Consider two stationary time series {yj} and {y′
j}, denote

the covariance by {Xj}∞j=−∞, and denote the cross power
spectrum by sY Y ′(ω). Due to the cross-correlation the-
orem, sometimes called the Wiener-Khintchine theorem,
the cross covariance function and the cross power spec-
trum are one-to-one related by

sY Y ′(ω) =
1
2π

∞∑
j=−∞

Xj exp(−iωj). (A.1)

A similar relationship exists for the auto-covariance func-
tion and the power spectrum for a single time series.

As an example, let us define two cross-correlated mov-
ing average MA(1) processes

yi ≡ (1 + θ1L)ηi ≡ Ψ(L)ηi, (A.2)

y′
i ≡ (1 + θ2L)ηi ≡ Ψ̃(L)ηi, (A.3)

where ηi is an (i.i.d.) process with expectation value
E(η) = 0 and variance E(η2) − E2(η) = σ2, and L de-
notes the backward (lag) operator defined by Lηi = ηi−1,
i.e., it simply relates two adjacent discrete-time coordi-
nates i and i − 1. Clearly, Ψ(L) and Ψ̃(L) are two linear
polynomials in L.

For this example, one can easily calculate the only
non-vanishing cross-covariances X0 ≡ E(yiy

′
i) = E(η2

i +
θ1θ2η

2
i−1) = 1 + θ1θ2; X1 ≡ E(yiy

′
i+1) = θ2σ

2, and
X−1 ≡ E(yiy

′
i−1) = θ1σ

2. By using equation (A.1) for
the power spectrum of two MA(1) processes we obtain
sY Y ′(ω) = σ2

2π [X0+X1 exp(iω)+X−1 exp(−iω)]. If exp(iω)
is replaced by the complex number z, we obtain

sY Y ′(ω) =
1
2π

[X0 + X1z + X−1z
−1]

=
1
2π

[1 + θ2z][1 + θ1z
−1]. (A.4)

Using equations (A.2) and (A.3) the previous equation
can be expressed as [47]: sY Y ′(ω) = 1

2π Ψ̃(z)Ψ(z−1). This
relation for finding sY Y ′ generally extends to the MA(∞)
processes yi and y′

i, where e.g. yi = Ψ(L)ηi and Ψ(L) =
a0 + a1L + a2L

2 + ...

The ARFIMA process yi can not only be represented
in the AR representation, but also in the MA(∞) repre-
sentation:

yi = (1 − L)−dηi =
∞∑

j=0

Γ (j + ρ)
Γ (ρ)Γ (j + 1)

ηi−j , (A.5)

where ρ need not be an integer, provided ρ < 1/2, where
the last expression is obtained after binomial expansion,
E(η) = 0, and E(η2) − E2(η) = σ2.

Consider a two-component ARFIMA process {yi}
and {y′

i} defined yi ≡ ∑∞
j=1 aj(ρ1)yi−j + ηi, y′

i ≡∑∞
j=1 aj(ρ2)y′

i−j + ηi with parameters ρ1 and ρ2. For the
cross power spectrum we obtain:

sY Y ′(ω) = (1 − exp(iω))−ρ1(1 − exp(−iω))−ρ2

=
∞∑

k=0

∞∑
k′=0

ak(ρ1)ak′(ρ2) exp(i(k − k′)ω), (A.6)

where ak(ρ) = Γ (k+ρ)/[Γ (ρ)Γ (k+1)] as defined in equa-
tion (A.5). Taking the inverse Fourier transform of the
cross power spectrum, we obtain

Xn =
1
2π

∫ π

−π

sXY (ω) exp(iωn)dω

=
σ2

2π

1
2π

∞∑
k=0

∞∑
k′=0

ak(ρ1)ak′ (ρ2)
∫ π

−π

exp(i(n+k−k′)ω)dω

=
σ2

2π

∞∑
k=0

∞∑
k′=0

ak(ρ1)ak′(ρ2)δ(n + k − k′)

=
σ2

2π

∞∑
k=0

ak(ρ1)an+k(ρ2). (A.7)

By using Stirling’s expansion we obtain ak(ρ) ∝ kρ−1 and
thus Xn ∝ ∑∞

k=0 kρ1−1(n + k)ρ2−1, which can be approx-
imated by Xn ∝ ∫ ∞

0
dk kρ1−1(n + k)ρ2−1. By defining a

new variable k/n = t we obtain

Xn ∝ nρ1+ρ2−1

∫ ∞

0

tρ1−1(t + 1)ρ2−1dt. (A.8)

If long-range power-law cross-correlations exist, we ob-
tain Xn ∝ n−γCC for the asymptotic regime n � 1, i.e.,
by using equation (A.8) we obtain γCC = 1 − ρ1 − ρ2.
The parameter γCC and parameter λDCCA of the co-
variance growth (see Eq. (1)) are related as λDCCA =
1 − 0.5 γCC [11]. Hence, we obtain the result of equa-
tion (8), λDCCA = H1+H2

2 , where H1 and H2 are the Hurst
exponents related to the processes {yi} and {y′

i}, respec-
tively, and where H1 = 0.5 + ρ1 and H2 = 0.5 + ρ2 [37].
Hence, we find analytically that the time series yi and y′

i
are long-range power-law cross-correlated (besides being
long-range power-law auto-correlated), where the expo-
nent λDCCA is equal to the arithmetic mean of the two
Hurst exponents H and H ′.



250 The European Physical Journal B

References

1. M. Campillo, A. Paul, Science 299, 547 (2003)
2. B. LeBaron, W.B. Arthur, R. Palmer, J. Econ. Dyn.

Control 23, 1487 (1999)
3. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)
4. L. Laloux et al., Phys. Rev. Lett. 83, 1467 (1999)
5. V. Plerou et al., Phys. Rev. Lett. 83, 1471 (1999); V.

Plerou et al., Phys. Rev. E 66, 066126 (2002)
6. L. Kullmann, J. Kertesz, K. Kaski, Phys. Rev. E 66,

026125 (2002)
7. T. Mizunoa, H. Takayasu, M. Takayasu, Physica A 364

336 (2006)
8. M. Tumminello, T. Aste, T. Di Matteo, R.N. Mantegna,

Proceedings of the National Academy of Sciences of the
United States of America (PNAS) 102, 10421 (2005)

9. R. Coelho, S. Hutzler, P. Repetowicz, P. Richmond,
Physica A 373, 615 (2007)

10. B. Podobnik et al., Eur. Phys. J. B 56, 47 (2007)
11. B. Podobnik, H.E. Stanley, Phys. Rev. Lett. 100, 084102

(2008)
12. T. Conlon, H.J. Ruskin, M. Crane, Physica A 388 705

(2009)
13. S. Arianos, A. Carbone, J. Stat. Mech. P03037 (2009)
14. P. Sieczka, J.A. Holyst, Physica A 388, 1621 (2009)
15. P. Samuelsson et al., Phys. Rev. Lett. 91, 157002 (2003);

A. Cottet et al., Phys. Rev. Lett. 92, 206801 (2004)
16. H.E. Hurst, Proc. Inst. of Civ. Eng. 1, 519 (1951)
17. F. Caserta et al., Phys. Rev. Lett. 64, 95 (1990); D.C.

Hong et al., Phys. Rev. B 30, 4083 (1984)
18. T. Vicsek, Fractal Growth Phenomenon, 2nd edn. (World

Scientific, Singapore, 1993)
19. Fractals in Science, edited by A. Bunde, S. Havlin

(Springer, Berlin, 1994)
20. J.B. Bassingthwaighte, L.S. Liebovitch, B.J. West, Fractal

Physiology (Oxford U. Press, New York, 1994)
21. H. Takayasu, Fractals in the Physical Sciences (Manchester

U. Press, Manchester, 1997)
22. D. Markovic, M. Koch, Water Resour. Res. 41, 09420

(2005); D. Markovic, M. Koch, Geophys. Res. Lett. 32,
17401 (2005)

23. C.-K. Peng et al., Phys. Rev. E 49, 1685 (1994)
24. K. Hu et al., Phys. Rev. E 64, 011114 (2001)
25. Z. Chen et al., Phys. Rev. E 65, 041107 (2002)
26. Z. Chen et al., Phys. Rev. E 71, 011104 (2005)
27. L. Xu et al., Phys. Rev. E 71, 051101 (2005)
28. P.Ch. Ivanov et al., Chaos 11, 641 (2001)
29. Y. Liu et al., Physica A 245, 437 (1997); Y. Liu et al.,

Phys. Rev. E 60, 1390 (1999); P. Cizeau, Phys. Rev. E
245, 441 (1997); P.Ch. Ivanov et al., Phys. Rev. E 69,
056107 (2004)

30. S. Buldyrev et al., Biophys. J. 65, 2673 (1993); S. Buldyrev
et al., Phys. Rev. E 47, 4514 (1993)

31. K. Ivanova, M. Ausloos, Physica A 274, 349 (1999); K.
Ivanova, J. Geophys. Res. 108, 4268 (2003)

32. Z. Chen et al., Phys. Rev. E 73, 031915 (2006)
33. C.W.J. Granger, J. Econometrics 14, 227 (1980)
34. C.W.J. Granger, R. Joyeux, J. Time Series Analysis 1, 15

(1980)
35. J. Hosking, Biometrika 68, 165 (1981)
36. B. Podobnik et al., Phys. Rev. E 71, 025104(R) (2005)
37. B. Podobnik et al., Phys. Rev. E 72, 026121 (2005)
38. R.H. Shumway, D.S. Stoffer, Time Series Analysis anf Its

Applications, Springer Texts in Statistics (Springer-Verlag,
New York, 2000)

39. R.L. Anderson, Annals Math. Statistics 13, 1 (1942)
40. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series

Analysis: Forecasting and Control (Prentice Hall, New
Jersey, 1994)

41. G.M. Ljung, G.E.P. Box, Biometrika 65, 297 (1978)
42. H. Tastan, Physica A 360, 445 (2006); K.M. Wang, T.B.N.

Thi, Physica A 376, 422 (2007); M.C. Lee, C.L. Chiu, Y.H.
Lee, Physica A 377, 199 (2007); A. Kasman, S. Kasman,
Physica A 387, 2837 (2008); C.H. Tseng, S.T. Cheng, Y.H.
Wang, J.T. Peng, Physica A 387, 3192 (2008)

43. www.yahoo.finance

44. J. Theiler et al., Physica D 58, 77 (1992)
45. P.Ch. Ivanov et al., Nature 383, 323 (1996)
46. B. Podobnik et al., Physica A 387, 3954 (2008)
47. W.W.S. Wei, Time Series Analysis Univariate and

Multivariate Methods (Addison-Wesley, Prentice Hall,
2006)


