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We empirically address the question of how stock prices respond to changes in demand. We quantify the
relations between price change G over a time interval Dt and two different measures of demand fluctuations:
~a! F , defined as the difference between the number of buyer-initiated and seller-initiated trades, and ~b! V ,
defined as the difference in number of shares traded in buyer- and seller-initiated trades. We find that the
conditional expectation functions of price change for a given F or V, ^G&F and ^G&V ~‘‘market impact
function’’!, display concave functional forms that seem universal for all stocks. For small V, we find a
power-law behavior ^G&V;V1/8 with d depending on Dt ~d'3 for Dt55 min, d'3/2 for Dt515 min and
d'1 for large Dt!. We find that large price fluctuations occur when demand is very small—a fact that is
reminiscent of large fluctuations that occur at critical points in spin systems, where the divergent nature of the
response function leads to large fluctuations.
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Stock prices respond to fluctuations in demand, just as the
magnetization of an interacting spin system responds to fluc-
tuations in the magnetic field. Periods with a large number of
market participants buying the stock imply mainly positive
changes in price, analogous to a magnetic field causing spins
in a magnet to align. Thus, understanding the dynamics of
stock price fluctuations involves quantifying and understand-
ing the relationship between price fluctuations and demand.
Here, we quantify how price fluctuations depend on demand
@1–3#, and find a strikingly nonlinear relationship with a spe-
cific functional form that is not altogether unlike the depen-
dence of magnetization on field strength. Our findings for the
behavior of this dependence near zero demand are consistent
with the intriguing possibility that large price fluctuations
and their scale-free behavior arise not merely from external
influences, but also from the ‘‘singular’’ response of the co-
operative system, just as singularities near critical points of
magnets arise from the intrinsic behavior of the system itself.

To quantify fluctuations in demand, we distinguish buyer-
initiated and seller-initiated trades defined by which of the
two participants in the trade, the buyer or the seller, is more
eager to trade. When such a distinction does not exist, we
label the trade as indeterminate. We identify buyer- and
seller-initiated trades using the bid and ask quotes SB(t) and
SA(t) at which a market maker is willing to buy or sell,
respectively. For records of the bid-ask quotes, prices, and
number of shares traded, we analyze the data for the 116
most-frequently traded US stocks from for the 2 yr period
1994–1995 @4#. Using the mid-value SM(t)5@SA(t)
1SB(t)#/2 of the prevailing quote @5–7#, we label a trade
buyer initiated if S(t).SM(t), and seller initiated if S(t)
,SM(t). For trades occurring exactly at SM(t), we use the
sign of the change in price from the previous trade to deter-
mine whether the trade is buyer or seller initiated, while if
the previous trade is at the current trade price, the trade is
labeled indeterminate @5,8#. Accordingly, for each trade i, we
define the variable

a i[H 1 ~buyer initiated!

0 ~ indeterminate!

21 ~seller initiated!.

~1!

We quantify demand fluctuations by analyzing two quan-
tities: ~a! the number imbalance ~difference between the
number of buyer-initiated and seller-initiated trades @9,10# in
a time interval @ t ,t1Dt#),

F5FDt~ t ![(
i51

N

a i , ~2a!

and ~b! the volume imbalance ~difference between the num-
ber of shares traded in buyer-initiated and seller-initiated
trades in the interval Dt),

V5VDt~ t ![(
i51

N

q ia i , ~2b!

where q i is the number of shares traded in trade i, and N
5NDt(t) is the number of trades in Dt .

To choose a time scale in which to analyze the depen-
dence of price fluctuations on demand, we first compute the
correlation functions ~Fig. 1! ^F(t)G(t1t)& and ^V(t)G(t
1t)&, where G(t)[GDt(t) is the stock price change over

FIG. 1. Cross correlation functions @^F(t)G(t1t)&
2^F(t)&^G(t)&#/sGsF ~open circles! and @^V(t)G(t1t)&
2^V(t)&^G(t)&#/sGsV ~closed circles! computed using 5 min
time series for F , V , and G. We find short-range time dependence
which after '15 min reaches noise levels ~dashed lines!.
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FIG. 2. ~a! Conditional expectation ^G&F of the price change for a given value of F for five typical stocks over a time interval Dt
515 min. Both G and F are normalized to have zero mean and unit variance. ~b! Conditional expectation ^G&V for the same five stocks as
in part ~a!. We normalize G to have zero mean and unit variance. Since V has a tail exponent z53/2 which implies divergent variance, we
normalize V by the first moment ^uV2^V&u&. ~c! ^G&F averaged over all 116 stocks studied. The solid curve shows a fit to the function
A0 tanh(A1F), with A050.7160.01 and A150.5860.01, where the fit is performed with tolerance 50.01 @22#. The dotted lines ~nearly
indistinguishable from the solid curve! show A0 tanh(A1F) for the bounding values of A0. ~d! Same as ~c!, on a log-log plot for F.0 ~filled
symbols! and F,0 ~empty symbols! for Dt515 min and 195 min ~shifted vertically for clarity!. The solid curves show fits to
A0 tanh(A1F), which agree well with the data. ~e! Conditional expectation ^G&V averaged over all 116 stocks. We calculate G and V for
Dt515 min. The solid line shows a fit to the function B0 tanh(B1V). ~f! ^G&V on a log-log plot for different Dt . For small V , ^G&V

.V1/d. For Dt515 min find a mean value 1/d50.6660.02 by fitting ^G&V for all 116 stocks individually. The same procedure yields
1/d50.3460.03 at Dt55 min ~interestingly close to the value of the analogous critical exponent in mean field theory!. The solid curve
shows a fit to the function B0 tanh(B1V). For small V , B0 tanh(B1V);V, and therefore disagrees with ^G&V , whereas for large V the fit

shows good agreement. For Dt5195 min ( 1
2 day! ~squares!, the hyperbolic tangent function shows good agreement.
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the interval Dt . We find significant dependence at t50,
while for utu.0, both correlation functions decay rapid-
ly and cease to be statistically significant beyond t
'15 min—thereby setting a short time scale for the re-
sponse of price changes to fluctuations in demand.

Next, we shall examine the relationships

^G&F[E~GuF !, ~3a!

^G&V[E~GuV !, ~3b!

which give the equal-time expectation values of G(t) for a
given F(t) or V(t). Figures 2~a! and 2~b! show ^G&F and
^G&V for five typical stocks for Dt515 min. We find that
both ^G&F and ^G&V are nonlinear, displaying concave cur-
vature with increasing F and V @11–14#, and ‘‘flattening’’ at
large values @15#.

Figure 2~c! shows the average behavior of ^G&F for all
stocks. The error bars correspond to one standard deviation
for each F bin. We find that ^G&F is consistent with the
functional form

^G&F5A0 tanh~A1F !, ~4!

where A0 is a constant that denotes the level of ‘‘saturation,’’
and A1 determines the average price change for unit change
in F . In the case of a spin system, the saturation at large
values for the analogous curve—magnetization vs field—is
due to the fixed number of spins. The apparent saturation of
^G&F is surprising in the present context, since there is no
clear upper limit either on the price change, or on the number
of trades. We find that ^G&F for a range of Dt , also displays
good agreement with Eq. ~4! @Fig. 2~d!#.

We next focus on ^G&V @Fig. 2~e!#. We find that the func-
tion ^G&V , like ^G&F , is consistent with Eq. ~4! @1,16,17#.
However, near V50, ^G&V shows not a strict linear behav-
ior for small V as we expect for tanh V, but rather a power-
law ^G&V;V1/d @Fig. 2~f!#. We find that 1/d depends on Dt
@Fig. 2~f!#: d'3 for Dt55 min and d'3/2 for 15 min, and
d→1 for larger Dt ~agreeing well with tanh V) @16#. On a
trade-by-trade basis, we find values of 1/d ranging from 0.2
up to 0.6 for different stocks.

Next, we analyze the dependence of the number of trades
N on demand fluctuations to quantify how large volume im-
balances generate trades. Figure 3~a! shows that the equal-
time expectation value ^N&F shows a linear increase with F .
The dependence of N on volume imbalance V is nonlinear;
^N&V displays a ‘‘cusp’’ at V50 followed by a sharp in-
crease and saturation at large values @Fig. 3~b!#. We further
analyze the small-V behavior of ^N&V and find the relation-
ship N;Vg for each stock. We obtain a mean value of g
50.1760.02 for all stocks analyzed.

FIG. 3. ~a! Conditional expectation ^N&F of the number of
trades for a given F averaged over all 116 stocks, shows approxi-
mately linear behavior with increasing F . ~b! ^N&V averaged over
all 116 stocks shows strikingly nonlinear behavior. The solid line
shows a fit to the function C02C1 exp(2C2V) ~which has the same
large V behavior as a hyperbolic tangent!. For both parts ~a! and
~b!, we calculate G, F and V over Dt515 min. Both F and G are
transformed to have zero mean and unit variance, whereas V is
normalized by its first moment.

FIG. 4. ~a! Conditional expectation ^x&F , where x is calculated
using Eq. ~5!, shows large values near F50 and decay for increas-
ing F . The solid lines show a fit to the function D0 sech2(D1F).
~b! Number of events with uGu.5 standard deviations for a given
F shows large values at F50.
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In spin systems, the amplitude of spin fluctuations is re-
lated to the susceptibility, which quantifies the response of
the system to fluctuations in the magnetic field. In our prob-
lem, a certain change DF in demand F ~analog of the field!
causes a response d^G&F /dFDF , which we find to be larg-
est at F50 ~Fig. 2!, suggesting that the nonlinear shape of
^G&F can give rise to large fluctuations ~large ‘‘volatility’’
@18#! when F is small. The average amplitude of fluctuations
in G[( i51

N dp i is given by the variance

x2[^dp i
2&2^dp i&

2, ~5!

where dp i is the price change due to trade i and ^•••& de-

notes the average computed over the interval Dt . Figure 4~a!
shows that ^x&F displays large values near F50 and a rapid
decay for increasing F . Figure 4~b! shows the dependence
on F of the number of events with price change uGu.5
standard deviations. Interestingly, we find that a majority of
the large events occur at F50, consistent with previous em-
pirical results @19# which show that the power-law distribu-
tion of price changes @20# mainly arises from x . Our findings
are reminiscent of phase transitions in spin systems, where
the divergent behavior of the response function at the critical
point ~zero magnetic field! leads to large fluctuations @21#.
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