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Economic fluctuations and anomalous diffusion
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We quantify the relation between trading activity — measured by the number of transactionsNDt—and the
price changeGDt for a given stock, over a time interval@ t, t1Dt#. To this end, we analyze a database
documenting every transaction for 1000 U.S. stocks for the two-year period 1994–1995. We find that price
movements are equivalent to a complex variant of classic diffusion, where the diffusion constant fluctuates
drastically in time. We relate the analog for stock price fluctuations of the diffusion constant—known in
economics as the volatility—to two microscopic quantities:~i! the number of transactionsNDt in Dt, which is
the analog of the number of collisions and~ii ! the varianceWDt

2 of the price changes for all transactions inDt,
which is the analog of the local mean square displacement between collisions. Our results are consistent with
the interpretation that the power-law tails ofP(GDt) are due toP(WDt), and the long-range correlations in
uGDtu are due toNDt.

PACS number~s!: 05.40.Fb, 05.45.Tp, 89.90.1n
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Consider the diffusion@1# of an ink particle in water.
Starting out from a point, the ink particle undergoes a r
dom walk due to collisions with the water molecules. T
distance covered by the particle after a timeDt is

XDt5(
i 51

NDt

dxi , ~1a!

where dxi are the distances that the particle moves in
tween collisions, andNDt denotes the number of collision
during the intervalDt. The distributionP(XDt) is Gaussian
with a variance ^XDt

2 &5NDt WDt
2 [DDt, where the local

mean square displacementWDt
2 [^(dxi)

2& is the variance of
the individual stepsdxi in the interval@ t, t1Dt#, andD is
the diffusion constant.

For the classic diffusion problem considered above,~i! the
probability distributionP(NDt) is a ‘‘narrow’’ Gaussian, i.e.,
has a standard deviation much smaller than the mean^NDt&,
and Dt is such that̂ NDt& is sufficiently large,~ii ! the time
between collisions of an ink particle are not strongly cor
lated, soNDt at any future timet1t depends at most weakl
on NDt at time t—i.e., the correlation function
^NDt(t)NDt(t1t)& has a short-range exponential decay,~iii !
the distributionP(WDt

2 ) is also a narrow Gaussian,~iv! the
correlation function^WDt(t)WDt(t1t)& has a short-range
exponential decay, and~v! the variablee[XDt /(WDtANDt)
is uncorrelated and Gaussian distributed. These condit
imply thatXDt is Gaussian distributed and short-range cor
lated.

An ink particle diffusing under more general conditions
such as in a bubbling hot spring, where the characteristic
bubbling depend on a wide range of time and length scale
would result in a quite different distribution ofXDt . In the
following, we will present empirical evidence that the mov
ment of stock prices is equivalent to a complex variant
classic diffusion, specified by the following conditions:~i!
P(NDt) is not a Gaussian, but has a power-law tail,~ii ! NDt
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has long-range power-law time-correlations,~iii ! P(WDt
2 ) is

not a Gaussian, but has a power-law tail,~iv! the correlation
function ^WDt(t)WDt(t1t)& is short ranged, and~v! the
variable e[XDt /(WDtANDt) is Gaussian distributed an
short-range correlated. Under these conditions, the statis
properties ofXDt will depend on the exponents character
ing these power laws.

Just as the displacementXDt of a diffusing ink particle is
the sum ofNDt individual displacementsdxi , so also the
stock price changeGDt is the sum of the price changesdpi
of the NDt transactions in the interval@ t,t1Dt#,

GDt5(
i 51

NDt

dpi . ~1b!

Figure 1~a! showsNDt for classic diffusion and for one stoc
~Exxon Corporation!. The number of trades for Exxon dis
plays several events the size of tens of standard deviat
and hence is inconsistent with a Gaussian process@2#.

~i! We first analyze the distribution ofNDt @Fig. 1~b!#.
Figure 1~c! shows that the cumulative distribution ofNDt
displays a power-law behaviorP$NDt.x%;x2b. For the
1000 stocks analyzed@3#, we obtain a mean valueb53.40
60.05. Note thatb.2 is outside the Le´vy stable domain
0,b,2.

~ii ! We next determine the correlations inNDt . We find
that the correlation function̂NDt(t)NDt(t1t)& is not expo-
nentially decaying as in the case of classic diffusion, b
rather displays a power-law decay@Fig. 1~d!#. This result
quantifies the qualitative fact that if the trading activity (NDt)
is large at any time, it is likely to remain so for a conside
able time thereafter.

~iii ! We then compute the varianceWDt
2 [^(dpi)

2& of
the individual changesdpi due to theNDt transactions in
the interval@ t, t1Dt#, Fig. 2~a!. We find that the distribu-
tion P(WDt) displays a power-law decayP$WDt.x%;x2g
R3023 ©2000 The American Physical Society
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FIG. 1. ~a! The lower panel showsNDt for Exxon Corporation withDt515 min. The upper panel shows a sequence of uncorrel
Gaussian random numbers with the same mean^NDt&'28 and standard deviation ('16), which depicts the number of collisionsNDt for the
classic diffusion problem. Note that in contrast to diffusion,NDt for Exxon shows frequent large events of the magnitude of tens of stan
deviations, which would be ‘‘forbidden’’ for Gaussian statistics.~b! Histogram of the average time interval between trades^dt& for the 1000
stocks studied. In order to ensure that the sampling time intervalDt for each stock contains a sufficient number of transactions, we part
the stocks into six groups~I–VI ! based on̂ dt&. Each group contains approximately 150 stocks. For a specific group, we choose a sa
time Dt at least 10 times larger than the average value of^dt& for that group. We choose the sampling time intervalDt
515, 39, 65, 78, 130, and 390 min, respectively, for groups I–VI.~c! Log-log plot of the cumulative distribution ofNDt for the stocks in each
of the six groups in~b!. Since each stock has a different average value of^NDt&, we use a normalized number of transactionsnDt

[NDt /^NDt&. Each symbol shows the cumulative distributionP$nDt.x% of the normalized number of transactionsnDt for all stocks in each
group. An analysis of the exponents obtained by fits to the cumulative distributionsP$NDt.x% of each of the 1000 stocks yields an avera
valueb53.4060.05. ~d! In order to accurately quantify power-law time correlations inNDt , we use the method of detrended fluctuatio
@9#. We plot the detrended fluctuationsF(t)—defined as the root-mean-square deviation of the integrated signal around a linear fi
window of lengtht—as a function of the time scalet, for each of the six groups. Absence of long-range correlations would implyF(t)
;t0.5, whereasF(t);tn with 0.5,n<1 shows a power-law decay of the correlation function with exponentnc5222n. For each group,
we plotF(t) averaged over all stocks in that group. In order to detect genuine long-range correlations, the U-shaped intraday patteNDt

has been removed by dividing eachNDt by the intraday pattern@9#. We obtain the mean valuen50.8560.01 from the exponentsn obtained
by power-law fits toF(t) for each of the 1000 stocks.
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@Fig. 2~b!#. For the 1000 stocks analyzed, we obtain a me
value of the exponentg52.960.1.

~iv! Next, we quantify correlations inWDt . We find that
the correlation function^WDt(t) WDt(t1t)& shows only
weak correlations@Fig. 2~c!#. This means thatWDt at any
future timet1t depends at most weakly onWDt at time t.

~v! Finally, we consider a statistical property that is ‘‘lo
cal’’ in time. Supposedpi are chosenonly from the interval
@ t, t1Dt#, and let us hypothesize thatthesedpi are mutually
independent, with a common distributionP(dpi utP@ t,t
1Dt#) having a finite varianceWDt

2 . Under this hypothesis
the central limit theorem, applied to the sum ofdpi in Eq.
~1b!, implies that the ratio

e[
GDt

WDtANDt

~2!
nmust be a Gaussian-distributed random variable with z
mean and unit variance@4#. Indeed, for classic diffusion
XDt /(WDtAND) is Gaussian-distributed and uncorrelat
@Fig. 3~a!#. We confirm the validity of this hypothesis b
analyzing~i! the distributionP(e), which we find to be con-
sistent with Gaussian behavior@Fig. 3~b!#, and~ii ! the corre-
lation function^e(t) e(t1t)&, for which we find only short-
range correlations@Fig. 3~c!#.

Thus far, we have seen that the data for stock price mo
ments support the following results:~i! the distribution of
NDt decays as a power law,~ii ! NDt has long-range correla
tions,~iii ! the distribution ofWDt decays as a power law,~iv!
WDt displays only weak correlations, and~v! the variable
e[GDt /(WDtANDt) is Gaussian-distributed and uncorr
lated, i.e., the price changeGDt at any time~for a given value
of NDt and WDt) is consistent with a Gaussian-distribute
random variable@2,5# with an ‘‘instantaneous’’ variance



-

p-
d

va

ize

n
o
-

s

f
b
lu

th

e
and

o
dis-

osis

h

s to

RAPID COMMUNICATIONS

PRE 62 R3025ECONOMIC FLUCTUATIONS AND ANOMALOUS DIFFUSION
FIG. 2. ~a! Standard deviationWDt computed from price
changesdpi due to every transaction in the interval@ t, t1Dt# for
Exxon Corporation forDt515 min ~lower panel! in contrast to
uncorrelated Gaussian random numbers with the same mean
^WDt&'0.08 and variance~upper panel!. Intervals having fewer
than ten transactions are not used for computingWDt . The time
series ofWDt for Exxon shows a number of large events of the s
of tens of standard deviations. Note that the large values ofNDt in
Fig. 1~a! do not correspond to large values ofWDt , showing that
NDt and WDt are only weakly correlated~we find ^NDt WDt&
50.16 for the 1000 stocks studied!. ~b! Log-log plot of the cumu-
lative distribution of WDt for each of the six groups defined i
Fig. 1~b!. Since the average value^WDt& changes from one stock t
another, we normalizeWDt by ^WDt&. Each symbol shows the cu
mulative distribution of the normalizedWDt for all stocks in each
group. We analyze the power-law exponentsg obtained by fits to
the cumulative distributions ofWDt of each of the 1000 stock
separately, and find an average valueg52.960.1. ~c! Log-log plot
of the detrended fluctuationF(t) for the six groups as a function o
the time lagt. We calculate the detrended fluctuation exponents
fitting F(t) for each stock separately and find an average va
m50.6060.01, significantly smaller than our resultn50.85
60.01 for NDt . The same procedure forVDt yields the value 0.80
60.01 for its detrended fluctuation exponent, consistent with
value ofn50.8560.01 forNDt .
NDt WDt
2 .

Next, we explore the implications of our empirical find
ings. Namely, we show how the statistical properties@6–9#
of price changesGDt can be understood in terms of the pro
erties ofNDt and WDt . We will argue that the pronounce
tails of the distribution of price changes@6,7# are largely due
to WDt and the long-range correlations of the volatility@8,9#
are largely due to the long-range correlations inNDt . By
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FIG. 3. ~a! Time series ofe[GDt /(WDtANDt) for Exxon Cor-
poration forDt515 min ~lower panel! contrasted with a sequenc
of uncorrelated Gaussian random numbers with the same mean
variance, which depictsXDt /(WDtANDt) for classic diffusion~up-
per panel!. ~b! Positive tail of the cumulative distribution ofe for
the six groups. We normalizee by its standard deviation in order t
compare different stocks. Each symbol shows the cumulative
tributions of the normalizede for all stocks in each of the six
groups. The negative tail~not shown! displays similar behavior. For
the 1000 stocks studied, we obtain the average value of kurt
3.4660.03 and skewness 0.01860.002.~c! Log-log plot of the de-
trended fluctuationF(t) averaged for all stocks belonging to eac
of the six groups. We obtain the mean valueh50.4860.01 from
the detrended fluctuation exponents obtained by power-law fit
F(t) for each stock.
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contrast, in classic diffusionNDt andWDt do not change the
Gaussian behavior ofXDt because they have only uncorr
lated Gaussian fluctuations@2,4#.

Consider first the distribution of price changesGDt ,
which decays as a power lawP$GDt.x%;x2a with an
exponenta'3 @7#. Above, we reported that the distribu
tion P$NDt.x%;x2b with b'3.4 @Fig. 1~c!#. Therefore,
P$ANDt.x%;x22b with 2b'6.8. Equation~2! then im-
plies thatNDt alone cannot explain the valuea'3. Instead,
a'3 must arise from the distribution ofWDt , which indeed
decays with approximately the same exponentg'a'3
@Fig. 2~b!#. Thus the power-law tails ofP(GDt) originate
from the power-law tail ofP(WDt).

Next, consider the long-range correlations found for
volatility VDt @8,9#, which is the analog of the diffusion con
stantD. Just as in classic diffusion, where the diffusion co
stantD is related to the variance ofXDt through the relation
DDt[^XDt

2 &5NDt WDt
2 , so the volatility is defined as th

‘‘local’’ standard deviation ofGDt through the relationVDt
2

[^GDt
2 &5NDt WDt

2 . Above, we reported that the number
transactionsNDt displays long-range correlations, where
-

,

-

lt,
e

-

WDt displays only weak correlations~Figs. 1 and 2!. There-
fore, the long-range correlations inVDt should arise from
those found inNDt . Indeed, we find that the correlations
VDt decay as a power law with an exponent similar to that
NDt . Hence, while the power-law tails inP(GDt) are due to
the power-law tails inP(WDt), the long-range correlations o
VDt are due to those ofNDt .

In summary, we have found that stock price moveme
are analogous to a complex variant of classic diffusio
where the analog of the diffusion constant fluctuates dra
cally in time. Furthermore, we have quantified and emp
cally demonstrated the relation between stock price chan
and trading activity. The implications of our results for th
number of transactionsNDt and the local standard deviatio
WDt are of potential interest. The fluctuations inNDt reflect
the trading activity for a given stock and its power-law d
tribution and long-range correlations may be related to ‘‘a
lanches,’’ where trades beget new trades@10#. The fluctua-
tions in WDt reflect several factors:~i! the level of liquidity
of the market,~ii ! the risk aversion of the market partic
pants, and~iii ! the uncertainty about the fundamental val
of the asset.
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