
Graph Partitioning Induced Phase Transitions

Gerald Paul,1,* Reuven Cohen,1,2 Sameet Sreenivasan,1,3 Shlomo Havlin,1,4 and H. Eugene Stanley1

1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
4Minerva Center and Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel

(Received 14 February 2007; published 10 September 2007)

We study the percolation properties of graph partitioning on random regular graphs with N vertices of
degree k. Optimal graph partitioning is directly related to optimal attack and immunization of complex
networks. We find that for any partitioning process (even if nonoptimal) that partitions the graph into
essentially equal sized connected components (clusters), the system undergoes a percolation phase
transition at f � fc � 1� 2=k where f is the fraction of edges removed to partition the graph. For
optimal partitioning, at the percolation threshold, we find S� N0:4 where S is the size of the clusters and
‘� N0:25 where ‘ is their diameter. Also, we find that S undergoes multiple nonpercolation transitions for
f < fc.
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The graph partitioning problem deals with assigning
vertices in a graph to different partitions such that no
partition is greater than a given size. The optimal solution
is one which minimizes the fraction of edges f that must be
removed such that there are no edges between partitions
[1].

Graph partitioning is of interest not only because of the
large amount of previous research done [1–7] but also
because optimal partitioning is equivalent to optimal attack
or immunization of a complex network. That is, the perco-
lation threshold fc, at which global connectivity is lost,
will be lower than that for any other type of attack or
immunization and the measure of fragmentation F [8] for
all values of f will be higher than for any other type of
attack or immunization [9].

The study of optimal attack is relevant to both determin-
ing how to attack a network and how to best design a
network. The attacker can compare the complexity of a
proposed strategy to the complexity of an optimal attack
and decide whether the incremental complexity of the
optimal attack is justified. The study is also of value to
the network designer; for any given network design under
consideration, study of the optimal attack against the
network tells the designer what the minimum cost will
be to the potential attacker. The network designer can
then ensure that a network is not over-engineered (i.e.,
designed for a network which far exceeds the capabilities
of the attacker). Because immunization is equivalent
to network attack, our work is applicable to the problem
of how to effectively immunize populations against disease
with minimal cost. This is an important issue; the number
of deaths caused by major epidemics dwarfs the total
number of deaths on all past battlefields [10].

Here we study graph partitioning from the standpoint of
statistical physics. To make contact with percolation theory
[11,12], we identify the number of edges removed as the

control variable and study the inverse problem: Given that
we are allowed to remove a fraction f of the edges from the
graph, how can we partition the graph to minimize the size
of the largest partition? We denote as S the size of the
largest connected component (cluster) which results from
the partitioning [13]. Then, S plays the role of order
parameter and we are interested in the behavior of S as a
function of f. We ask if there is a critical value fc such that
for f < fc, S� N while for f > fc, S scales slower than
O�N�. That is, does the graph undergo a percolation phase
transition? If so, what is the percolation threshold fc and
what are the critical exponents associated with the phase
transition.

We study random k-regular graphs, random graphs the
vertices of which all have the same degree k. The graphs
are constructed using the configuration model [14–16]. We
study these graphs because of their intrinsic interest and
because these graphs are examples of expander graphs
which are extremely robust to node or edge removal
[17,18]. They are therefore a good testbed for optimal
graph partitioning.

We find that, in fact, a percolation transition does exist
and we analytically determine fc. We also estimate critical
exponents associated with the transition. In addition, how-
ever, we find that for f < fc the graph undergoes a large
number of first order transitions related to the partitioning
process.

Percolation threshold.—The percolation threshold can
be determined analytically as follows. In Refs. [19,20]
it was argued that for a random graph having a degree
distribution P�k� to have a spanning cluster, a vertex j
which is reached by following a link (from vertex i) on
the giant cluster must have at least one other link, on
average to allow the cluster to exist—otherwise the
spanning cluster is fragmented. Thus at the critical
point,
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 hkiji$ ji �
X

ki

kiP�kiji$ j� � 2 (1)

where the angular brackets denote an ensemble average, ki
is the connectivity of node i, and P�kiji$ j� is the condi-
tional probability that node i has connectivity ki, given that
it is connected to node j.

We will show below that, for large N at fc, all partitions
are essentially the same size and that each partition con-
sists of one cluster [21]. Then, to achieve Eq. (1) the
average degree in each cluster must be 2 and pc the fraction
of edges which must be present is

 pc � 1� fc �
2

k
: (2)

This is to be compared to the random site or bond perco-
lation threshold pc � 1=�k� 1� [19].

We can gain insight into the structure of the spanning
clusters by noting that for tree graphs with n vertices

 hki �
2�n� 1�

n
(3)

which approaches 2 as n! 1. For finite graphs, however,
to satisfy hki � 2, there must be on average one loop in
each graph. Thus, at the percolation threshold, the clusters
contain on average one loop. Our problem can be restated
as follows: How do we partition a graph into the largest
number of equal sized partitions each composed of one
cluster with on average one loop per cluster? The larger the
number of partitions (and thus the smaller the partition
size), the closer the solution is to the optimal one. Different
types of partitioning that maintain one cluster per partition
will result in the same critical point but the scaling of the
cluster size at the critical point may depend on the opti-
mality of the partitioning.

Optimal partitioning.—We use the METIS graph parti-
tioning program [6] which provides close to optimal graph
partitioning. For the same random graph we run the pro-
gram at least 100 times over the range of partition sizes in
which we are interested. After each partitioning we iden-
tify the clusters in the graph, determine the size of the
largest cluster, and note the number of edges needed to be
removed for the partitioning. For each value of the number
of edges, we maintain the minimum value of the size of
largest cluster in the partitioning.

Figure 1(a) illustrates the behavior of s � S=N versus f
for various values of k [22]. In what follows we will
analyze the case k � 3 in depth; similar results are ob-
tained for other values of k. In the inset in Fig. 1(a) for
k � 3 and various values ofN we plot s versus f. Below fc
the plots collapse indicating that here S� N. In the vicinity
of and above fc the plots no longer collapse, a manifesta-
tion of S scaling more slowly than N.

In Fig. 1(b), for N � 106, we plot P�S� the distribution
of cluster sizes S versus S at the threshold predicted by
Eq. (2) fc � 1=3. As expected, the distribution is very

strongly peaked—almost all clusters are the same size;
the inset shows the distribution of sizes of blobs which are
discussed below.

In Fig. 2(a) we plot Sc the value of S at the percolation
threshold versus N. The plot’s slope is consistent with

 Sc � N
x; (4)

where x � 0:4. In Fig. 2(b), we plot Sc versusN for various
values of f and see that the straightest plot is for fc � 1=3,
the predicted critical threshold.

In Fig. 2(a) we also plot ‘ the diameter, the maximum
chemical distance between any two vertices of a cluster, of
the critical clusters versus N. The slope of the plot is
consistent with

 ‘� Nz; (5)

where z � 0:25. From Eqs. (4) and (5) we obtain

 Sc � ‘dl ; (6)

where dl � x=z � 1:6. The exponent dl is a measure of the
compactness of the clusters: Clusters with dl � 1 are
essentially chains; higher values of dl correspond to
more dense structures.

Figure 3(b) is a representative critical cluster obtained
from partitioning. Note the single loop required by Eq. (1)
and its ‘‘stringy’’ structure, the manifestation of dl � 1:6.
In Fig. 3(a) we plot the distribution of the number of loops
per cluster P�nloop� and note that it is fairly narrow with the

FIG. 1 (color online). (a) Normalized largest cluster size, s �
S=N, versus fraction of edges removed, f, for random regular
graphs with N � 104 vertices of degree (from left to right) k �
3, 6, 10, and 20. Vertical lines at the x axis mark the predicted
values of fc � 1� 2=k from left to right for k � 3, 6, 10, and
20. Dashed horizontal lines at s � 1=2, 1=3, 1=4, and 1=5 are the
values of s for which the first few nonpercolation transitions take
place. Inset: For (from top to bottom on right) N � 104, 3� 104,
and 105 and k � 3, s versus f. Data collapse until f is in the
vicinity of fc � 1=3 (indicated by vertical line). (b) ForN � 106

and k � 3 at criticality, P�S�, the distribution of cluster sizes S.
The inset is a plot of P�SB�, the distribution of blob sizes, SB, for
N � 106 and k � 3.
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most probable value being 1. Thus, not only is the average
number of loops per cluster 1, but the most probable
number is also 1.

We next determine the fractal dimension of the spanning
clusters when the clusters are embedded in Euclidean
space of dimension equal to the upper critical dimension.
The upper critical dimension dc is defined such that for
dimension d 	 dc, all critical exponents are unchanged. At
or above the critical dimension the exponent ~� is defined
by [12]

 r� ‘~�; (7)

where r is Euclidean distance. At the percolation threshold,
~� is expected to be 1=2, the same value as for a random

walk (or for a network embedded in a very high dimen-
sional lattice, such that spatial constraints are irrelevant)
[12].

Using Eq. (6) with dl � 1:6 and Eq. (7) with ~� � 1=2,
we can determine the fractal dimension of the percolation
clusters at criticality defined by Sc � rdf to be

 df �
d‘
~�
� 3:2: (8)

We now determine the upper critical dimension dc.
Using the fact that in Euclidean space N � rd, we find
Sc � Ndf=dc � N0:4 and thus dc � 8, which interestingly is
the critical dimension for lattice animals and branched
polymers [23,24].

We can learn more about the fractal structure of the
spanning cluster at fc by analyzing the 2-connected com-
ponents (blobs) [25] within the spanning clusters. This is
equivalent to analyzing the loops within the spanning
clusters because the typical cluster contains 1 loop which
is the 2-connected component in the cluster. In Fig. 2(a) we
plot the most probable blob size (equivalent to the length of
loops), S
B, versus N. The scaling is consistent with S
B �
N0:25 similar to the scaling of the diameter of the whole
cluster. From this we infer that the diameter of the cluster is
driven by the size of the loops.

Nonoptimal partitioning.—We find that for partitioning
in which we ensure that each partition consists of one
cluster but no attempt is made to minimize the number of
edges between partitions, as predicted above, fc in this
case is also 1� 2=k but at criticality S� N1=2. That is, the
clusters at criticality are larger than those at criticality for
optimal partitioning. The argument that the exponent is
exactly 1=2 is as follows: We ask how large a cluster must
be to have on average one loop. Consider a cluster of size
S. The total number of edges associated with vertices in the
cluster is kS. Connectivity among vertices in the cluster is
provided by S� 1 of the edges and others (also of order S)
are either removed (connected to other partitions) or con-
nected back to the cluster forming a loop. Because the
graph is random and we partition randomly (subject to the
constraint that the partitions consist of one cluster each),
the probability that one of these edges is connected back to
the cluster is

 Ploop � S
S
N
: (9)

Setting Ploop � 1 we find S� N1=2.
Random partitioning.—Random partitioning is achieved

by assigning vertices to partitions randomly and is equiva-
lent to random site percolation [26], for which the well
known result fc � 1� 1=�k� 1� holds [19,20]. In con-
trast to the optimal and the nonoptimal partitioning con-
sidered above, for random partitioning, partitions contain
clusters of all sizes (including very small ones). Equa-
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FIG. 3 (color online). (a) At criticality for N � 105 and k � 3,
P�nloop� distribution of number of loops per cluster, nloop. (b) For
N � 105 and k � 3, typical cluster at criticality containing 1
loop decorated by trees.
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FIG. 2 (color online). (a) Largest cluster size at criticality, Sc
(squares), diameter of largest cluster, ‘ (circles), and most
probable blob size S
B (triangles), versus number of vertices N
in graph. (b) For k � 3, largest cluster size for (from top to
bottom) values of f � 0:331, 0.332, 0.333, 1=3 (solid line),
0.335, 0.337, and 0.34, versus number of vertices N in graph.
The straightest plot is for f � 1=3, the predicted value of fc.
(c) Same as (b) for k � 6. For (from top to bottom) values of
f � 0:64, 0.65, 0.66, 2/3 (solid line), 0.68, 0.69, and 0.70, versus
number of vertices N in graph. The straightest plot is for f �
2=3, the predicted value of fc.
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tion (2) holds for the spanning cluster in each partition but
does not hold for all clusters and fc is therefore larger.

Nonpercolation transitions.—In Fig. 1(a), we see that
the order parameter is discontinuous at values of s �
1=2; 1=3; . . . , qualifying these points as first order phase
transitions. However, these discontinuities, which occur
where the number of partitions changes are not percolation
transitions—the scaling of s with N does not change. The
behavior at these transitions (and the general shape of the
segments of the plots) can be understood as follows:
Consider the region of the plot corresponding to two
partitions (1=2< s< 1) and assume we reduce the size
of the larger partition (increasing the size of the smaller
partition) by moving selected vertices one-by-one from the
larger partition to the smaller partition [27]. Initially, the
number of edges needed to be removed when we move a
vertex is k—all edges adjacent to the moved vertex must
be removed. As the size of the smaller partition increases,
we can select a vertex requiring fewer of its edges to be
removed because some of its edges already have ends in
the smaller partition. At some point, the number of edges to
the smaller partition of a vertex to be moved is equal to the
number of the vertex’s edges to the larger partition—thus,
there is zero cost to the move [28]. This continues to be the
case until the partitions are of equal size, resulting in the
discontinuity.

Discussion.—Random regular graphs, due to their de-
gree homogeneity, are the most difficult to attack or im-
munize. We have chosen to study these graphs to prove the
feasibility and efficiency of our partitioning method for
attack or immunization for this baseline class of network.
Our optimal partitioning method suggests a new direction
for studying and improving strategies for attack or immu-
nization of many types of complex networks. It is of
interest from an application standpoint to study also such
networks as scale-free networks which represent many real
world systems. Because our method is optimal we expect
significant improvement over known attack or immuniza-
tion strategies for these networks. We also believe that our
method may be of value in finding network communities
since it partitions the network into strongly connected
components.
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