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NON-EQUILIBRIUM DYNAMICS AS AN INDISPENSABLE 
CHARACTERISTIC OF A HEALTHY BIOLOGICAL SYSTEM 

Abstract--Healthy systems in physiology and medicine are remarkable for their structural variability and 
dynamical complexity. The concept of fractal growth and form offers novel approaches to understanding 
morphogenesis and function from the level of the gene to the organism. For example, scale-invariance and 
long-range power-law correlations are features of non-coding DNA sequences as well as of healthy 
heartbeat dynamics. For cardiac regulation, perturbation of the control mechanisms by disease or aging 
may lead to a breakdown of these long-range correlations that normally extend over thousands of 
heartbeats. Quantification of such long-range scaling alterations are providing new approaches to problems 
ranging from molecular evolution to monitoring patients at high risk of sudden death. 

We briefly review recent work from our laboratory concerning the application of fractals to two apparently 
unrelated problems: DNA organization and beat-to-beat heart rate variability. We show how the 
measurement of long-range power-law correlations may provide new understanding of nucleotide 
organization as well as of the complex fluctuations of the heartbeat under normal and pathologic 
conditions. 

Long-Range Correlations in Nucleotide Sequences 
GENOMIC SEQUENCES contain numerous "layers" of information. While the means of encoding some 
of these instructions is understood (for example, the codes directing amino acid assembly and intron/exon 
splicing, etc.), relatively little is known about other kinds of information encrypted in the DNA molecule. 
In higher eukaryotic organisms, only a small portion of the total genome length is actually used for protein 
coding. The role of introns and the intergenomic sequences that constitute a large portion of these DNA 
polymers remains unknown. 

Recently we (Peng, et al., 1992a) proposed a novel method for studying the global organizational 
properties of genomic sequences by constructing a 1:1 map of the sequence onto a "DNA walk." Consider 



EBSCOhost http://web.ebscohost.com.ezproxy.bu.edu/ehost/delivery?vid=5&h...

2 of 8 08/28/07 09:36

a one-dimensional walker (Mortroll and Shlesinger, 1984) dictated by the sequential order of nucleotides. 
The walker steps up [u(i) = +1] if a pyrimidine occurs at position a linear distance i along the DNA chain, 
while the walker steps down [u(i) = -l] if a purine occurs at position i. The question we ask is whether such 
a walk displays only short-range correlations (as in an n-step Markov chain) (Tavare and Giddings, 1989) 
or long-range correlations (as in critical phenomena and other scale-free "fractal" phenomena). 

This DNA walk provides a novel graphical representation for each DNA sequence and permits the degree 
of correlation in the nucleotide sequence to be directly visualized (Figure 1). A useful quantity that 
measures the degree of the correlation is obtained by calculating the "net displacement" y(n) of the walker 
after n steps, which is the sum of the unit steps u(i) for each step i, 

[Multiple line equation(s) cannot be represented in ASCII text] (1) 

A useful statistical description of any "landscape" can then be derived by considering a sliding window of 
size I through the landscape and measuring the change of the "altitude" across this window, i.e., 

delta y1 = y(n+l)-y(n) (2) 

where n indicates the starting position of the window. We define the fluctuation measurement, F(l), as the 
standard deviation of the quantity delta yl. 

The calculation of F(l) can distinguish three possible types of behavior: (i) If the nucleotide sequence were 
random, then the landscape has the same statistical properties as that generated by a normal random walk, 
i.e., F(l) -l 1/2. (ii) If there were a local correlation extending up to a characteristic range (such as in 
Markov chains), then the behavior F(l) -I 1/2 would be unchanged from the purely random case (for l 
>>1). (iii) If there is no characteristic length (i.e., if the correlation is "infinite-range"), then the 
fluctuations will be described by a power law 

F(l) - l alpha (3) 

with alpha not equal to 1/2 (Stanley, 1971). If alpha > 1/2, then it indicates persistent correlation, i.e., one 
type of nucleotide (purine or pyrimidine) is likely to be close to another close to another of the same type. 
In contrast, alpha < 1/2 indicates that the nucleotides are organized such that purines and pyrimidines are 
more likely to alternate ("anti-correlation") (Havlin, et al., 1988). 

The power-law form of equation (3) implies a self-affine (fractal) property in the DNA walk landscape. To 
visualize this finding, one can magnify a segment of the DNA walk to see if it resembles (in a statistical 
sense) the overall pattern. Figure l(a) shows the DNA walk representation of a gene and Figure l(b) shows 
a magnification of the central portion. Figure l(c) is the further magnification of a sub-region of Figure lb. 
Note the similar fluctuation behavior on all three different length scales. 

We calculate alpha from the slope of double logarithmic plots of the mean square fluctuation F(l) versus l 
(Figure 2). Measurement of this exponent for a broad range of representative genomic and cDNA 
sequences across the phylogenetic spectrum reveals that long-range correlations (alpha > 1/2) are 
characteristic of intron-containing genes and non-transcribed genomic regulatory elements (Peng, et al., 
1992a; Peng, et al., 1992b; Peng, et al., 1993). The finding of long-range correlations in intron-containing 
genes appears to be independent of the particular gene or the encoded protein--it is observed in genomic 
sequences as disparate as myosin heavy chain, beta globin, adenovirus and yeast chromosome III (Peng, et 
al., 1992a, Munson, Taylor and Michaels, 1992). 

In contrast, for cDNA sequences (i.e., the spliced together coding sequences) and genes without introns, 
we find that alpha *(This character cannot be represented into ASCII Text.) 1/2, indicating no long-range 
correlation (Figure 2). In fact, the lack of long-range correlations in coding regions is not very surprising 
that an uncorrelated sequence can carry more information than a correlated sequence (Peng, 1992a). On 
the other hand, the existence of long-range correlations in the non-coding regions is paradoxical and 
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suggests a new organizational role for so-called "junk DNA." Ongoing investigations are directed at 
studying the implications of these correlations for DNA structure and function, as well as for molecular 
evolution (Buldyrev, et al., 1993a, 1993b). Since power-law behavior represents a scale-invariant (fractal) 
property of DNA, it cannot be attributed simply to the occurrence of nucleotide periodicities such as those 
associated with nucleosome packaging. Whether these long-range correlations are related to higher order 
DNA/chromatin structure or to DNA bending and looping remains speculative. 

A complementary approach to interpreting this correlation behavior is to relate it to the dynamic processes 
that modify nucleotide sequences over time. Buldyrev et al. (1993a, 1993b) recently proposed a 
generalized Levy walk model to account for the genesis of these correlations, as well as a plausible 
evolutionary mechanism based on nucleotide insertion and deletion. 

From a practical viewpoint, the calculation of F (l) for the DNA walk representation provides a new, 
quantitative method to distinguish genes with multiple introns from in-tronless genes and cDNAs based 
solely on their statistical properties. The fundamental difference in correlation properties between coding 
and non-coding sequences also suggests a new approach to rapidly screening long DNA sequences for the 
identification of introns and exons (Ossadnik, et al., 1994). 

Long-Range Correlations in Heartbeat Intervals 
The healthy heartbeat is generally thought to be regulated according to the classical principle of 
homeostasis whereby physiologic systems operate to reduce variability and achieve an equilibrium-like 
state (Cannon, 1929). However, our recent findings (Peng, et al., 1993) indicate that under normal 
conditions, beat-to-beat fluctuations in heart rate display the kind of long-range correlations typically 
exhibited by dynamical systems far from equilibrium. Since the heartbeat is under neuroautonomic 
control, our findings also imply that this feedback system is operating in a non-equilibrium state. Our 
results demonstrate that such power-law correlations extend over thousands of heart beats in healthy 
subjects. In contrast, heart rate time series from patients with severe congestire heart failure show a 
breakdown of this long-range correlation behavior,. with the emergence of a characteristic short-range 
time scale. Similar alterations in correlation behavior may be important in modeling the transition from 
health to disease in a wide variety of pathologic conditions. 

Clinicians traditionally describe the normal activity of the heart as "regular sinus rhythm." But in fact, 
rather than being metronomically regular, cardiac interbeat intervals normally fluctuate in a complex, 
unpredictable manner. Much of the analysis of heart rate variability has focused on short-term oscillations 
associated with respiration (0.15-0.40 Hz) and blood pressure control (0.01-0.15 Hz). Fourier analysis of 
lengthy heart rate data sets from healthy individuals typically reveals a 1/f-like spectrum for lower 
frequencies (<0.01 Hz), and some alterations in spectral features have been reported with a variety of 
pathologies. However, the long-range correlation properties of physiologic and pathologic heart rate time 
series had not been systematically described. 

The mechanism underlying complex heart rate variability is related to competing neuroautonomic inputs. 
Parasympathetic stimulation decreases the firing rate of pacemaker cells in the heart’s sinus node. 
Sympathetic stimulation has the opposite effect. The nonlinear interaction between these two branches of 
the nervous system is the postulated mechanism for the type of erratic heart rate variability recorded in 
healthy subjects (even during resting or sleeping hours), although non-autonomic factors may also be 
important. 

Our analysis is based on the dignitized electrocardiograms of beat-to-beat heart rate fluctuations over long 

time intervals (up to 24 h equal 105 beats) recorded with an ambulatory (Holter) monitor. The time series 
obtained by plotting the sequential intervals between beat n and beat n + 1, denoted by B(n), typically 
reveals a complicated type of variability. To quantitatively study these dynamics over large time scales, we 

pass the time series through a digital filter that removes fluctuations of frequencies > 0.005 beat-1, and plot 
the result, denoted by BL(n), in Figure 3. We observe a more complex pattern of fluctuations for a 

representative healthy adult (Figure 3a) compared to the pattern of interbeat intervals for a subject with 
severe heart disease associated with congestive heart failure (Figure 3b). These heartbeat time series 
produce a contour reminiscent of the irregular "landscapes" of DNA walks (Figure 1). 
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To apply the previous fractal landscape analysis, we can make a simple mapping such that BL(n) for the 

heartbeat is equivalent to y(n) for DNA. Thus we can measure the heartbeat fluctuation F (l) the same way 
as in a DNA walk, where l indicates the size of the observational window (number of beats). Figure 4 is a 
log-log plot of F(l) vs l for the data in Figures 3. This plot is approximately linear over a broad 

physiologically relevant time scale (l-200 to 400 beats) implying that F(l) - lalpha. 

We find that the scaling exponent alpha is markedly different for the healthy and diseased states; for the 
healthy heartbeat data, A is close to 0, while alpha is close to 0.5 for the diseased case in this example. As 
we discussed previously, alpha = 0.5 corresponds to a random walk (Brownian motion). Thus the 
low-frequency heartbeat fluctuations for the diseased state can be interpreted as a stochastic process, in 
which case the interbeat increments l(n) equivalent to B(n+l)-B(n) corresponding to u(n) in the DNA case) 
are uncorrelated for l > 200. For the healthy subject, the interbeat increments are anti-correlated 
(alpha<0.5). 

To study further the correlation properties of the time series, we choose to study l(n). Since I(n) is 
stationary, we can apply standard spectral analysis techniques (Buldyrev, 1993). Figures 5a and 5b show 
the power spectra SI(f), the square of the Fourier transform amplitudes for l(n), derived from the same data 

sets (without filtering) used in Figure 3. The fact that the log-log plot of SI(f) vs f is linear implies 

Sl(f) = fbeta

The exponent beta is related to alpha by beta = 1 -2alpha (Havlin, et al., 1988). 

For the data set from the patient with severe heart disease, we observe a fiat spectrum (beta approximate 
equals to 0) in the low frequency region (Figure 5b) confirming that l(n) values are not correlated over 
long time scales (low frequencies). Therefore, l(n), the first derivative of B(n), can be interpreted as being 
analogous to the velocity of a random walker, which is uncorrelated on long time scales, while B(n) 
values--corresponding to the position of the random walker--are correlated. This correlation, however, is 
of a trivial nature since it is simply due to the summation of uncorrelated random variables. 

In contrast, for the data set from the healthy subject (Figure 5a), we obtain beta*[This character cannot be 
represented into ASCII Text]1, indicating non-trivial long-range correlations in B(n)--these correlations 
are not the consequence of summation over random variables or artifacts of non-stationarity. Furthermore, 
the "anti-correlation" properties of I(n), indicated by the positive beta value, are consistent with a 
nonlinear feedback system that "kicks" the heart rate away from extremely high or low values. This 
tendency, however, does not only operate on a beat-to-beat basis (local effect) but over a wide range of 
time scales, a fractal property of cardiac regulation. 

We (Peng, et al, 1993) analyzed data from two different groups of subjects: 10 adults without clinical 
evidence of heart disease (age range: 32--64 years, mean 44) and 10 adults with severe heart failure (age 
range: 22--63 years; mean 54). Data from patients with heart failure due to severe left ventricular 
dysfunction are likely to be particularly informative in analyzing correlations under pathologic conditions 
since these individuals have well-defined abnormalities in both the sympathetic and parasympathetic 
control mechanisms that regulate beat-to-beat variability. Furthermore, such patients are at very high risk 
for sudden death. Both exponents (alpha and beta) were significantly different between the diseased and 
normal groups (Peng, et al., 1993). 

Previous studies have demonstrated marked changes in short-range heart rate dynamics in heart failure 
compared to healthy function, including the emergence of intermittent relatively low frequency (- 1 
cycle/min) heart rate oscillations associated with the well-described syndrome of periodic (Cheyne-Stokes) 
respiration, an abnormal waxing and waning breathing pattern often associated with low cardiac output. 
This pathologic, characteristic time scale is indicated by a vertical arrow in Figure 5b. 

The long-range power-law correlations in healthy heart rate dynamics may be adaptive for at least two 
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reasons (West and Goldberger, 1986 and 1987; Goldberger, Righey and West, 1990): (i) the long-range 
correlations serve as an newly described organizing principle for highly complex, non-linear processes that 
generate fluctuations on a wide range of time scales, and (ii) the lack of a characteristic scale helps prevent 
excessive mode-locking that would restrict the functional responsiveness (plasticity) of the organism. 
Support for these two related conjectures is provided by observations from severely pathologic states, such 
as heart failure where the breakdown of long-range correlations is often accompanied by the emergence of 
a dominant frequency mode (e.g., the Cheyne-Stokes frequency). Analogous transitions to highly periodic 
behavior have been observed in a wide range of other disease states including certain malignancies, 
sudden cardiac death, epilepsy, fetal distress syndromes and with certain drug toxicities (West and 
Goldberger, 1987; Goldberger, Righey and West, 1990). 

Important unanswered questions currently under study include: What are the physiological mechanisms 
underlying such long-range correlations in cardiac beat-to-beat intervals? Are these fluctuations entirely 
stochastic or do they represent the interplay of deterministic and stochastic mechanisms (Rigney, et al., 
preprint)? How do these findings relate to the suggestion that some features of normal heart rate variability 
are due to chaotic dynamics (Righey, et al., 1993; Righey, Mietus and Goldberger, 1990; Skinner, 
Carpeggiani, Landisman and Fulton, 1991 and Goldberger, 1991)? 

From a practical viewpoint, these findings may have implications for physiological monitoring and in 
particular for cardiac rhythm analysis. The complete breakdown of normal long-range correlations in any 
physiological system could theoretically lead to three possible dynamical states (Figure 6): (i) a random 
walk (brown noise), (ii) highly periodic behavior, or (iii) completely uncorrelated behavior (white noise). 
Cases (i) and (ii) both indicated only "trivial" long-range correlations of the types observed in severe heart 
failure. Case (iii) may correspond to certain cardiac arrhythmias such as atrial fibrillation. More subtle or 
intermittent degradation of long-range correlation properties may provide an early warning of incipient 
pathology, including an increased risk of sudden cardiac death. A breakdown of long-range correlations 
may also be an important marker of aging (Lipsitz and Goldberger, 1992). Finally, we observe that the 
long-range power-law correlations present in the healthy heartbeat imply that the underlying control 
mechanisms actually drive the system away from a single steady state. Therefore, the classical theory of 
hoeostasis, according to which stable physiological processes seek to maintain "constancy" (Cannon, 
1929), and its more recently proposed modifications under the rubric of "hemodynamics," need to be 
revised and extended to account explicitly for this far from equilibrium behavior. 
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GRAPHS: FIG 1. The DNA walk representation for the rat embryonic skeletal myosin heavy chain gene. 
(a) The entire sequence. (b) The magnification of the solid box in (a). (c) The magnification of the solid 
box in (b). The statistical self-affinity of these plots is consistent with the existence of a scale-free or 
fractal phenomenon termed a fractal landscape. In order to observe statistically similar fluctuations within 
successive enlargement, the magnification factor along the vertical direction (M*(This character cannot be 
represented into ASCII Text.)) and horizontal direction (M*(This character cannot be represented into 
ASCII Text.)tttt) follows a simply relation: log M[Multiple line equation(s) cannot be represented in 
ASCII text]. Here alpha = 0.63. Note that these DNA walk representations are plotted so that the end point 
has the same vertical displacement as the starting point. 

GRAPH: FIG. 2. Double logarithmic plot of F(l) versus (l) for rat embryonic skeletal myosin heavy chain 
gene shown in Figure 1 (75% non-coding regions) and its cDNA. Note that the slope (alpha = 0.63) for the 
intron-containing sequence is > 1/2 indicating the presence of long-range correlations. In contrast, the 
slope is 0.5 for the coding sequence (cDNA) indicating the absence of long-range correlations. 
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GRAPHS: FIG. 3. The interbeat interval BL (n) after low-pass filtering for (a) a healthy subject and (b) a 

patient with severe cardiac disease (dilated cardiomyopathy). The healthy heartbeat time series shows 
more complex fluctuations compared to the diseased heart rate fluctuation pattern that is close to random 
walk ("brown") noise. The low-pass filter removes all Fourier components for f>/=fc. The results shown 

here correspond to fc=0.005 beat -1, but similar findings are obtained for other choices of fc</= 0.005. 

This cut-off frequency fc is selected to remove components of heart rate variability associated with 

physiologic respiration or pathologic Cheyne-Stokes breathing as well as oscillations associated with 
baroreflex activation (Mayer waves). (After Peng, et al., 1993b). 

GRAPH: FIG. 4. Double logarithmic plot of F(l) vs n. The circles represent F(l) calculated from data in 
Figure 3(a) and the triangles from data in Figure 3(b). The two best-fit lines have slopes alpha = 0.07 and 
alpha = 0.49 (fit from 200 to 4000 beats). The two lines with slopes alpha = 0 and alpha = 0.5 correspond 
to "l/f noise" and "brown noise," respectively. We observe that F(l) saturates for large l (of the order of 
5000 beats), because the heartbeat intervals are subjected to physiological constraints that cannot be 
arbitrarily large or small. 

GRAPHS: FIG. 5. The power spectra SI(f) for the interbeat interval increment sequences over - 24 hours 

for the same subjects in Figure 3. (a) Data from a healthy adult. The best-fit line for the low frequency 
region has a slope beta = 0.93. The heart rate spectrum is plotted as a function of "inverse beat number" 

(beat -1) rather than frequency (time -1) to obviate the need to interpolate data points. The spectral data are 
smoothed by averaging over 50 values. (b) Data from a patient with severe heart failure. The best-fit line 

has slope 0.14 for the low frequency region, f < f c = 0.005 beat -1 The appearance of a pathologic, 

characteristic time scale is associated with a spectral peak (arrow) at about 10-2 beat -1 (corresponding to 
Cheyne-Stokes respiration). (After Peng, et al., 1993b). 

DIAGRAM: FIG. 6. The breakdown of long-range power law correlations may lead to any of three 
dynamical states: (i) a random walk ("brown noise") as observed in low frequency heart rate fluctuations 
in certain cases of severe heart failure; (ii) highly periodic oscillations, as also observed in Cheyne-Stokes 
pathophysiology in heart failure, and (iii) completely uncorrelated behavior ("white noise"), exemplified 
by the heart rate during atrial fibrillation. 
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