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The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of
interdependent or multiplex networks without tracking the percolation process through each cascading step. In
order to understand how directed dependency links impact criticality, we employ this approach to study the
percolation properties of networks with both undirected connectivity links and directed dependency links. We
find that when a random network with a given degree distribution undergoes a second-order phase transition, the
critical point and the unstable regime surrounding the second-order phase transition regime are determined by
the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and
the boundary between first- and second-order transitions are determined by the proportion of nodes that depend
on no more than one node. This implies that it is maybe general for multiplex network systems, some important
properties of phase transitions can be determined only by a few parameters. We illustrate our findings using
Erdős-Rényi networks.
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I. INTRODUCTION

Complex networks science has become an effective tool
for modeling complex systems. It treats system entities as
nodes and the mutually supporting or cooperating relations
between the entities as connectivity links [1–12]. In many
systems, nodes that survive and fail together form dependency
groups through dependency links. Dependency links denote
the damaging or destructive relations among entities [13–21].
Compared to ordinary networks [5,6,10], networks with
dependency groups or links are more vulnerable and subject to
catastrophic collapse [22,23]. The previous works have studied
the network system in which the dependency groups, with
sizes either fixed at two [22] or characterized by different
classic distributions [23], are formed through undirected
dependency links. The outcome when the dependency links
are directed, however, is more general. For example, in a
financial network where each company has trading and sales
connections (connectivity links) with other companies, the
connections enable the companies to interact with others and
function together as a global financial market, and companies
that belong to the same corporate group strongly depend on the
parent company (i.e., there are directed dependency links), but
the reverse is not true [24]. Another example is in a social
network in which people (followers) follow trends set by
celebrities (pioneers), e.g., popular singers and actors, but the
reverse is not true [25].

We use a self-consistent probabilistic framework [26–29]
to study the percolation phase transitions in a random network
A with both connectivity and directed dependency links.
Randomly removing a fraction 1 − p of nodes in network
A causes (i) connectivity links to be disconnected, causing
some nodes and clusters to fail due to the disconnection to the
network giant component (percolation process), and (ii) failing
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nodes to make their dependent nodes to also fail even though
they are still connected to the network giant component via
connectivity links (dependency process). Thus, the removal
of nodes in the percolation process leads to the failure of
dependent nodes in the dependency process, which in turn
initiates a new percolation process, which further sets off a
dependency process, and so on. We show that this synergy
between the percolation process and the dependency process
leads to a cascade of failures that continues until no further
nodes fail (see Fig. 1).

To fully capture the structure of network A, we introduce
the degree distribution P (k) and, in addition, the directed
dependency degree distribution Q(ko), which is the probability
that a randomly chosen node has ko directed dependency links
connecting to ko nodes, which are supporting this chosen node.
In our model, when i depends on ko nodes, we assume that
if any one of these ko nodes fails, node i will fail too (see
Fig. 1). Usually, this kind of multiplex has both first- and
second-order phase transitions [22,23]. Here we find that Q(ko)
strongly affects the robustness of network A. Specifically, the
percolation threshold pII

c , at which network A disintegrates in
a form of second-order phase transition, is determined solely
by Q(0) for a given Q(ko), and Q(0) + Q(1) characterizes
the boundary between the first-order phase transition and the
second-order phase transition regime.

This paper is organized as the follows. In Sec. II we
introduce the general framework and develop the analytic
formulas to solve the influence of Q(ko) on the percolation
properties of a random network. In Sec. III, we demonstrate
these influences using an ER network.

II. GENERAL FRAMEWORK

For a random network A of size N with both connectivity
links and directed dependency links [see Fig. 1(a)], as in
Ref. [5], we introduce the generating function G0(z) of the
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FIG. 1. Demonstration of the synergy between the percolation
process and the dependency process that leads to a cascade of failures.
The network contains two types of links: connectivity links (solid
black lines) and directed dependency links (dashed red arrows).
(a)→(b) Initial failure: a random node is removed. (c)→(e) Synergy
between percolation process and dependency process: nodes cutoff
from the giant component or depending on failed nodes are removed.
(f) Steady state: the surviving giant component contains four nodes.

degree distribution P (k),

G0(z) =
∑

k

P (k)zk. (1)

Analogously, we have the generating function of the related
branching processes [5],

G1(z) = G
′
0(z)

G
′
0(1)

=
∑

k

kP (k)

〈k〉 zk−1. (2)

Similarly, we introduce the generating function for the directed
dependency degree distribution Q(ko) as

D(z) =
∑
ko

Q(ko)zko . (3)

We designate h(s) the probability distribution of the number
of nodes approachable along the directed dependency links
starting from a randomly chosen node in network A. This
allows us to write the generating function H (z) for h(s), i.e.,

H (z) =
∑

s

h(s)zs. (4)

According to Ref. [30], H (z) also satisfies a self-consistent
condition of the form

H (z) = zD[H (z)]. (5)

A random removal of a fraction 1 − p of nodes triggers
a cascade of failures. When no more nodes fail, network A

reaches its final steady state. At this steady state, we use the
probabilistic approach [29] and define x to be the probability
that a randomly chosen connectivity link leads to the giant
component at one of its ends. If we randomly choose a
connectivity link l and find an arbitrary node n by following l

in an arbitrary direction, the probability that node n has degree
k is

kP (k)∑
k kP (k)

= kP (k)

〈k〉 . (6)

For node n, the root of a directed cluster of size s, to be part of
the giant component, at least one of its other k − 1 outgoing
connectivity links (other than the link first chosen) leads to the
giant component, provided that every other s − 1 node is also
in the giant component because the disconnection of any one
of these s − 1 nodes to the giant component will cause node
n to lose support and fail. Computing this probability, we can
write out the self-consistent equation for x as

x = p

{∑
k

kP (k)

〈k〉 [1 − (1 − x)k−1]

}

×
∑

s

⎧⎨
⎩h(s)

{
p

∑
k

P (k)[1 − (1 − x)k]

}s−1
⎫⎬
⎭, (7)

where p is the probability that a node survives the initial
removal process, 1 − (1 − x)k−1 is the probability that at
least one of the other k − 1 connectivity links of node n

leads to the giant component, h(s) is the probability that
node n is the root of a directed cluster of size s, and
{p ∑

k P (k)[1 − (1 − x)k]}s−1 is the probability that every
other s − 1 node in the directed cluster supporting node n

is also in the giant component. Using the generating functions
defined in Eqs. (1), (2), and (4), we transform Eq. (7) into the
compact form

x = 1 − G1(1 − x)

1 − G0(1 − x)
H {p[1 − G0(1 − x)]}, (8)

which, by viewing p[1 − G0(1 − x)] as a whole and using the
property of H (z) outlined in Eq. (5), can also be written as

x = p[1 − G1(1 − x)]D(H {p[1 − G0(1 − x)]}) ≡ F (x,p).
(9)

For a given p,x can be numerically calculated through iteration
with a proper initial value.

Correspondingly, using similar arguments, the probability
P∞(p) that a randomly chosen node n in the steady state of
network A is in the giant component is

P∞(p) = p

{∑
k

P (k)[1 − (1 − x)k]

}

×
∑

s

h(s)

{
p

∑
k

P (k)[1 − (1 − x)k]

}s−1

= H {p[1 − G0(1 − x)]}, (10)

where 1 − (1 − x)k is the probability that at least one of the k

connectivity links of node n leads to the giant component. Note
that P∞(p) is also the normalized size of the giant component
of network A at the steady state.

We find that there is no giant component at the steady state
of network A, i.e., P∞(p) = 0 when p is smaller than a critical
probability pII

c and above the threshold, the giant component
appears and its size increases continuously from 0 as p

increases. This is typical second-order phase transition behav-
ior and as p → pII

c , P∞(pII
c ) = H {pII

c [1 − G0(1 − x)]} →
0, which suggests x → 0. Thus we can take the Taylor
expansion of Eq. (9) with x → 0 to obtain pII

c as (see
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Appendix A)

pII
c = 1

Q(0)G
′
1(1)

= 〈k〉
Q(0)〈k(k − 1)〉 , (11)

which is consistent with our previous result reported in
Ref. [25] and depends on Q(0) only but not any other terms
from Q(ko).

In some cases, however, there is no giant component at
the steady state of network A, i.e., P∞(p) = 0 when p is
smaller than a critical probability pI

c but above the threshold,
the giant component suddenly appears and its size increases
abruptly from 0 as p increases. This is typical first-order phase
transition behavior. When p = pI

c , the straight line y = x and
the curve y = F (x,p) from Eq. (9) will tangentially touch
each other at (xc,xc) [25]. Thus, the condition corresponding
to the first-order transition is that the derivatives of both sides
of Eq. (9) with respect to x are equal,

1 = dF (x,p)

dx
|x = xc,p = pI

c . (12)

Due to the complexity of Eqs. (9) and (12), numeric methods
are generally used to get pI

c .
Note pI

c = pII
c corresponds to the case where the phase

transition changes from first order to second order when the
conditions for both the first- and second-order transitions are
satisfied simultaneously. By substituting pII

c from Eq. (11)
into Eq. (12) and further evaluating x, we obtain the boundary
between the first-order and second-order phase transitions,
which is characterized by (see Appendix B)

Q(1) = Q(0)G
′′
1(1)

2G
′
0(1)

= Q(0)〈k(k − 1)(k − 2)〉
2〈k〉2

. (13)

Thus, the boundary between first- and second-order transitions
is determined only by the proportion of nodes that do not
depend on more than one node, i.e., the boundary is solely
determined by Q(0) and Q(1) but not any other terms from
Q(ko). This implies that the triple point—the intersection of
first-order phase transition, second-order phase transition, and
the unstable regime is also determined by Q(0) and Q(1).

When removing any fraction of nodes results in the total
collapse of network A, i.e., when pII

c � 1, the network is
unstable. By requiring pII

c = 1 and using Eq. (11), we can
obtain the boundary between the second-order phase transition
and the unstable state,

Q(0) = 1

G
′
1(1)

= 〈k〉
〈k(k − 1)〉 , (14)

which depends solely on the proportion of nodes that do not
depend on other nodes at all, i.e., Q(0).

Similarly, by requiring pI
c = 1 in Eq. (12), we use numerical

calculations to find the boundary between the first-order phase
transition and the unstable state. Therefore, the complete
boundary between the unstable state and the phase transition
state is achieved by joining these two boundaries together.
Moreover, substituting Eq. (13) into Eq. (14), we could obtain
the explicit formula of the triple point, which is the intersection
of these two boundaries:

Q(1) = 〈k(k − 1)(k − 2)〉
2〈k〉〈k(k − 1)〉 . (15)

Note that for scale-free networks with power-law degree
distribution P (k) ∝ k−γ and γ ∈ (2,3], both 〈k(k − 1)〉 and
〈k(k − 1)(k − 2)〉 are divergent. This implies that pII

c = 0 for
any Q(0) according to Eq. (11) and the regime of the second-
order phase transition shrinks toward the origin. Thus, for
scale-free networks, the situation becomes a little bit simple.
Therefore, if Q(0) > 0 one could always see the second-order
phase transition with pII

c = 0 and if Q(0) = 0 the system
undergoes unstable or first-order phase transition.

III. RESULTS ON ER NETWORKS

Section II provided the general framework for random
networks with an arbitrary degree distribution P (k). We here
illustrate it using an Erdős Rényi (ER) network [31–33] with a
Poisson degree distribution P (k) = e−〈k〉〈k〉k/k!, where 〈k〉
is the average degree. We choose this network because it
is representative of random networks, and the generating
function corresponding to the degree distribution P (k) is
G0(z) = e〈k〉(z−1).

A. Second-order phase transitions

Plugging G
′
1(1) = 〈k〉 into Eq. (11), we get the second-

order phase transition point pII
c ,

pII
c = 1

Q(0)〈k〉 . (16)

Therefore, for ER networks, the critical point of second-order
phase transition is indeed determined solely by Q(0) and its
average degree. We support our analytical results by sim-
ulations. We choose 〈k〉 = 8 and D(z) = Q(0) + Q(1)z +
Q(2)z2 with Q(0) fixed at 0.4 and Q(1),Q(2) tunable. Figure 2
shows the size of the giant component P∞(p) as a function of p

with the given 〈k〉 and D(z). Note that in all cases simulation
results (symbols) agree well with numerical results (dotted
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P
∞

Q(0)=0.4;Q(1)=0;Q(2)=0.6
Q(0)=0.4;Q(1)=0.2;Q(2)=0.4
Q(0)=0.4;Q(1)=0.4;Q(2)=0.2
Q(0)=0.4;Q(1)=0.6;Q(2)=0
theory

pII
c

FIG. 2. The size of the giant component P∞(p), as a function
of the fraction of nodes that remain after random removal, p, for
ER networks with 〈k〉 = 8 and D(z) = Q(0) + Q(1)z + Q(2)z2. The
symbols represent simulation results of 104 nodes and the dashed
lines show the theoretical predictions from Eq. (10). The percolation
threshold pII

c is uniquely determined by Q(0).
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lines) and the curves of P∞(p) converge at a fixed value of
pII

c = 0.3125 as predicted by Eq. (16). This convergence of
P∞(p) curves is possible because pII

c is determined solely by
Q(0), which is fixed to be 0.4 in Fig. 2. Note that if there is no
directed dependency links in the network, i.e., Q(0) = 1, we
will get pII

c = 1/〈k〉, which is consistent with the well-known
result obtained in Ref. [3].

B. First-order phase transitions

When networks have a greater proportion of directed
dependency links, an abrupt transition can occur instead of
a continuous transition demonstrated in Fig. 2. To get the pI

c

for the onset of this abrupt transition, we equate the derivatives
of both sides of Eq. (9) with respect to x, i.e.,

1 = d{p(1 − e−〈k〉x)D[H (p(1 − e−〈k〉x)}
dx

|x=xc,p=pI
c
, (17)

where we used the equtions G0(z) = G1(z) = e〈k〉(z−1). Using
Eqs. (9) and (17), we apply numerical methods to get pI

c .
With D(z) = Q(0) + Q(1)z + Q(2)z2, Fig. 3 shows the

size of the giant component P∞(p) as a function of p by
comparing simulation results and theoretical predictions. Note
that they agree with each other very well. Figure 3 shows that
with 〈k〉 = 5 and Q(0) + Q(1) = 1, when Q(0) = 0.4,P∞(p)
undergoes a second-order phase transition at pII

c = 0.5 (�),
but when Q(0) = 0.2,P∞(p) exhibits behavior of a first-
order phase transition at pI

c , satisfying Eq. (17) (�). In
addition, when 〈k〉 = 10,Q(0) = 0.2,Q(1) = 0.7 and Q(2) =
0.1,P∞(p) undergoes a second-order phase transition at pII

c =

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

Q(0)=0.4,Q(1)=0.6,<k>=5
Q(0)=0.2,Q(1)=0.8,<k>=5
Q(0)=0.2,Q(1)=0.7,Q(2)=0.1,<k>=10
Q(0)=0.1,Q(1)=0.8,Q(2)=0.1,<k>=10
theory

P
∞

(p
)

FIG. 3. The size of the giant component P∞(p) as a function of
the fraction of nodes that remain after random removal, p, for ER net-
works. Here we used D(z) = Q(0) + Q(1)z with 〈k〉 = 5 (� and �)
and D(z) = Q(0) + Q(1)z + Q(2)z2 with 〈k〉 = 10 (© and �). The
symbols represent simulation results of 104 nodes and the dashed
lines are the theoretical predictions from Eq. (10). With a relatively
larger Q(0), the network undergoes a second-order phase transition
at pII

c , which only depends on Q(0). However, for relatively smaller
Q(0) and larger Q(1) and Q(2), the network undergoes a first-order
phase transition.

0.5 (©), but when Q(0) = 0.1,Q(1) = 0.8 and Q(2) = 0.1,
P∞(p) undergoes a first-order phase transition at pI

c predicted
by Eq. (17) (�).

C. Boundaries of phase diagram

We fix the average degree 〈k〉 and from Eq. (16) we
conclude that the smaller the Q(0) in the network, the bigger
the pII

c value. If Q(0) is properly small that pII
c ≈ 1, which

corresponds to the case in which the removal of any fraction
of nodes causes a second-order phase transition that totally
disintegrates network A. Thus, by requiring pII

c = 1, and using
Eq. (16) we obtain the boundary between the second-order
phase transition and the unstable state,

1

〈k〉Q(0)
= 1. (18)

In addition, using Eq. (13), we obtain the boundary between
the first-order and second-order phase transitions of network
A,

Q(1) = 〈k〉Q(0)

2
. (19)

Using D(z) = Q(0) + Q(1)z + Q(2)z2 + Q(3)z3 where
Q(0) + Q(1) = 0.9 and 〈k〉 = 10, Fig. 4 plots P∞(pc) as a
function of Q(1) by comparing simulation and numerical
results. The critical value of Q(1)c falls onto Q(1)c = 0.75
as predicted by Eq. (19), delimiting two different transition
regimes. Specifically, if Q(1) < 0.75, P∞(pc) = 0, which
indicates the presence of a second-order phase transition, but
if Q(1) > 0.75, P∞(pc) > 0, which indicates the presence of
a first-order phase transition. We also consider a special case
in which Q(0) + Q(1) = M and use Eq. (19) to determine

0.72 0.74 0.76 0.78 0.8
0

0.05

0.1

0.15

0.2

0.25

Q(1)

Q(0)+Q(1)=0.9,Q(2)=0.1,Q(3)=0
Q(0)+Q(1)=0.9,Q(2)=0.05,Q(3)=0.05
Q(0)+Q(1)=0.9,Q(2)=0,Q(3)=0.1

Boundary of first and
second order phase
transitons

P
∞

(p
c)

FIG. 4. Comparison between simulation (symbols) and theory
(lines) for P∞(pc) as a function of Q(1) for different D(z) (D(z) =
Q(0) + Q(1)z + Q(2)z2 + Q(3)z3) while keeping Q(0) + Q(1) =
0.9 and 〈k〉 = 10. At the first-order phase transition point pI

c ,P∞(pc)
is nonzero; whereas at the second-order phase transition point pII

c

and P∞(pc) is zero. From Eq. (19) the boundary between first-order
phase transition and second-order phase transition is only dependent
on Q(0) + Q(1), thus at Q(1)c = 0.75 for this case.
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0.8

< k >

Q
(1

)

Q(0)+Q(1)=0.9;Q(2)=0.05;Q(3)=0.05
Q(0)+Q(1)=0.9;Q(2)=0;Q(3)=0.1

First Order
Unstable

Second Order

Triple Point

FIG. 5. The fraction of nodes that have one dependent node Q(1)
as a function of the average degree 〈k〉 with Q(0) + Q(1) = 9

10 . The
dashed lines are theoretical results obtained from Eqs. (20) (green)
and (21) (red) with intersection points at ( 2

2M−1 , 1
2 ). The dashed blue

line is the boundary between first-order phase transition and unstable
system, obtained numerically. Here the dashed red and green lines
only depend on m0, whereas the blue lines (both solid and dashed)
depend on the specific details of Q(ko) other than M .

the boundary between the first-order phase transition and the
second-order phase transition,

Q(1) = M〈k〉
〈k〉 + 2

. (20)

In addition, in terms of M , Eq. (18) delivers the boundary
between the second-order phase transition and unstable state,

Q(1) = M〈k〉 − 1

〈k〉 . (21)

Thus, in the coordinate system of 〈k〉-Q(1), using Eqs. (20)
and (21) we can plot the phase diagram of network A under
random failures, with these two boundaries converging at the
triple point ( 2

2M−1 , 1
2 ) (the solid red dot in Fig. 5). Because

〈k〉 > 0 always holds, when M � 1
2 this intersection point is

nonphysical, indicating that the network will not be subject
to first-order phase transitions under attack regardless of the
form of P (k), but if M > 1

2 , the network will be subject to
first-order phase transitions.

Figure 5 shows the boundaries in the phase diagram with
M = 9

10 > 1
2 , where the boundaries between first-order phase

transitions and the unstable state are determined numerically.
Note that, when M is fixed, the boundary between the second-
order phase transition and the unstable state (dashed red line) as
well as the boundary between the first-order and second-order
phase transitions (dashed green line) are also fixed because
they depend only on M , but the boundary between the first-
order phase transition and the unstable state (dashed blue line)
is subject to the details of Q(ko). For example, when Q(0) +
Q(1) = 9

10 , a shuffle of the remaining terms in Q(ko) causes
a shift in the boundary line, shown as the displacement of the
solid blue line to the dashed blue line in Fig. 5.

IV. CONCLUSIONS

In summary, we present an analytical formalism for
studying random networks with both connectivity links and
directed dependency links under random node failures. Using
a probabilistic approach, we find that the directed dependency
links greatly reduce the robustness of a network. We show
that the system disintegrates in a form of second-order phase
transition at a critical threshold and the boundary between
second-order phase transition and unstable regimes solely
determined by the proportion of nodes that do not depend
on other nodes. Our framework also provides the solution for
the boundary between the first-order and second-order phase
transitions, which is characterized by the proportion of nodes
that depend on no more than one node.
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APPENDIX A

If p → pII
c , x → 0. From Eq. (9) we have

1 − G1(1 − x) = G
′
1(1)x − G

′′
1(1)

2
x2 + O(x3), (A1)

1 − G0(1 − x) = G
′
0(1)x − G0

′′(1)

2
x2 + O(x3), (A2)

and

D(H {p[1 − G0(1 − x)]})
= Q(0) + pQ(1)h(1)G

′
0(1)x + O(x2). (A3)

Using Eqs. (A1), (A2), and (A3), we can write Eq. (9) as

x = pQ(0)G
′
1(1)x + p[pQ(1)h(1)G

′
0(1)G

′
1(1)

−Q(0)G
′′
1(1)

2
]x2 + O(x3). (A4)

Since x ∈ (0,1), we can divide both sides of Eq. (A4) by x and
obtain

1 = pQ(0)G
′
1(1) + p[pQ(1)h(1)G

′
0(1)G

′
1(1)

−Q(0)G
′′
1(1)

2
]x + O(x2). (A5)

As x → 0, taking the limits of both sides of Eq. (A5) we get

pII
c = 1

Q(0)G
′
1(1)

. (A6)

APPENDIX B

Putting Eq. (A6) back into Eq. (A5), we get

Q(1)h(1)G
′
0(1)

Q(0)
x = Q(0)G

′′
1(1)

2
x + O(x2). (B1)
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To simplify Eq. (B1), we first take the derivatives of both sides
of Eq. (5) with respect to x and obtain

H
′
(z) = D[H (z)] − z

∂{D[H (z)]}
∂[H (z)]

H
′
(z). (B2)

Plugging z = 0 into Eq. (B2), we get H
′
(0) = D[H (0)] =

D(0) = Q(0). Using Eq. (4), we easily obtain H
′
(0) = h(1),

and thus h(1) = Q(0), which would reduce Eq. (B1) as

Q(1)x = Q(0)G
′′
1(1)

2G
′
0(1)

x + O(x2). (B3)

Up to this point, if x → xt = 0, network A undergoes a
second-order phase transition and thus Eq. (B3) clearly holds,
but if x → xt �= 0, network A undergoes a first-order phase
transition. On the boundary between the first-order and the
second-order phase transitions, we get a nonzero xt , but it is
negligibly small. Here, we can treat O(xt ) ≈ 0 and obtain the
condition characterizing this boundary as

Q(1) = Q(0)G
′′
1(1)

2G
′
0(1)

. (B4)
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