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ONSET OF HELICAL ORDER 
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Renormalization group methods are used to describe systems which model critical phenomena at the onset of helical 
order. This onset is marked by a change in the "bare propagator" used in perturbation theory from a k2-dependence to a 
more general form. We consider systems which in the non-helical region exhibit ~ simultaneously critical phases. Results 
are given to first order in an e-expansion. For the isotropic case of k 2L dependence and ~7 = 2, we give "0 to first order in 
l/n for d_ ~< d <~ d+ where d~ are upper and lower borderline dimensions. 

In 1959 Yoshimori [1], Villain [2], and Kaplan 
[3] independently proposed that for materials 
with certain forms of competing exchange in- 
teractions there could exist a ground state spin 
configuration in which the mean value of the 
order parameter varied periodically in space 
with a characteristic wavelength that depended 
on the exchange interactions and in general was 
not commensurate  with the lattice constants of 
the material. Since their work, many materials 
have been found to display such helicoidal or- 
dering [4]. 

The original theoretical work was concerned 
with ground state spin configurations, and was 
carried out in the molecular field approximation. 
Very recently Hornreich et al. [5] have used 
renormalization group methods to study 
phenomena associated with the onset of heli- 
coidal ordering. This occurs at a specific point-  
termed a Lifshitz point [6]-in a phase diagram 
[fig. 1] in which temperature is plotted against 
some parameter p which may be conveniently 
thought of as a ratio of competing exchange 
interactions. 

The onset of helical order can be incorporated 
into a Landau--Ginsberg model by including 
higher order derivatives of the magnetization. In 
particular, when the thermodynamic potential is 
written in terms of the Fourier transform of the 
magnetization, powers of the wave-vector k 
other than k 2 will occur. The usual uniform 
k = 0 phase will be thermodynamically favored 
as long as the kE-term dominates for k ~ 0. If the 
coefficient of the k2-term can be made to vanish, 
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Fig. !. Schematic phase diagram, indicating the occurrence of 
a Lifshitz point (TL, p,_). 

then the phases are still uniform but will have 
drastically altered correlation functions. If the 
coefficient of k 2 can be made negative, the free 
energy minimum will be achieved by a phase 
with non-zero k -a  helical phase. Thus, even 
within the uniform phase region, the onset of 
helical order can be identified with the change in 
character of the derivatives in the ther- 
modynamic potential, or equivalently, the bare 
propagator. 

The simplest case is the "isotropic Lifshitz 
point" for which the bare propagator is given by 

G t = (k2)L. (1) 

A more general situation is the anisotropic 
Lifshitz point with 

G ' =  ~]  k 2L', (2) 
i 

with each ki a di-dimensional vector; the pro- 
pagator exponents L~ need not be integers. 

We consider systems which in the uniform 
region encompass ~ simultaneously critical 
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phases  of the sort described in [7]. The case 
6 = 2, Li = {1,2} was considered in ref. 5. We 
use renormalizat ion group methods [8] to extend 
this to arbitrary 6 and {L:}. The upper  border-  
line dimension d+ (above which mean-field ex- 
ponents  are correct)  and the lower borderline 
dimension d (at which infrared divergences 
commence)  depend on ~ and {di, Li}. Thus the 
universality class is now presumably determined 
by 6, {d~,Lz} and n, where n is the spin 
symmet ry ;  e.g. y = 7(di, n, (7, Li). 

In what follows we shall summarize  our 
results, treating first the isotropic Lifshitz point 
and then the anisotropic Lifshitz point [8]. 

C a s e  I. I s o t r o p i c  L i f sh i t z  po int  

A. (~ = 2) critical points 
1. Upper and lower borderline dimensionalities 
d_~(L) (fig. 2) 

d+(L) = 4L, d_(L) = 2L. (3a,b) 

Note  that for L > 1, the lower borderline di- 
mension is greater  than 3. Thus,  the isotropic 
case is principally of academic interest. 
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Fig.  2. D e p e n d e n c e  o f  u p p e r  a n d  l o w e r  c r i t i ca l  d i m e n -  

sionalities d~(L) upon Lifshitz character L for the case of 
an isotropic Lifshitz point. 

2. Exponents 

Critical exponents  were calculated to lowest  
order in 

-= d÷ - d = 4 L  - d, (4) 

and for rt to lowest  order in l/n. The result  for the 
exponent  ~q describing the decay of correlations 
at the Lifshitz point, 

n(d, n, ~7 = 2, L) 

_ ( -  I)L÷t [ ( 4 L - d ) s i n ~ r ( 4 L - d ) ]  1 

F(d - 2L)F(2L) 
× 

r(~d + L)F(½d - L) '  
(5) 

is particularly interesting since it is an oscil- 
latory function of d with L + 1 zeros (cf. fig. 3). 
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Fig.  3. D e p e n d e n c e  u p o n  l a t t i ce  d i m e n s i o n a l i t y  d o f  the  

c r i t i ca l  e x p o n e n t  71 f o r  a n  ~ = 2 c r i t i ca l  p o i n t  f o r  t he  c a s e  o f  

a n  i s o t r o p i c  L i f s h i t z  p o i n t  o f  L i f s h i t z  c h a r a c t e r  L.  

3. Scaling laws 

The various critical exponents  are predicted 
to be related to one another  by 2-exponent  and 
3-exponent  scaling laws that are formally 
analogous to the 2-exponent  and 3-exponent  
scaling laws relating the familiar L = 1 ex- 
ponents  of an ordinary critical point. Thus,  for  
example,  we find for general L that 

2 - aL = dvL, (6a) 

7 L  = (2L - rlL)VL, (6b) 

1 d 1 ) .  (6c)  

Since eq. (6) contains some unfamiliar ex- 
pressions,  it is worthwhile to note that the usual 
thermodynamic  scaling relations are maintained, 
e.g. 

~L -~ (2 - ot L -{'- 7 L ) l ( 2  - -  of L - -  "~L) • (7) 

B. Critical point of arbitrary ~7 
1. Upper and lower borderline dimensionalitie.~ 
d._(6, L) 

The generalization of eqs. (3) for  arbitrary 
is 

d+(~, L) = 2L~](~ - 1), d_(~, L) = 2L. 
(8a,bl 

Thus the lower borderline dimension d_ is 
independent  of  (7, while the upper  borderline 
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d imension  decreases  with (7 and approaches  d_ 
as (7 approaches  infinity. 

2. Exponents  

As for  the case (7 = 2, critical exponen t s  were 
calculated to lowest  order  in 

=- ((7 - l)(d+ - d) = 2L(7 - d({7 - I). (9) 

3. Scaling laws 

For  each value of  (7, there are a family of  
scaling laws relating the appropr ia te  exponents .  

C a s e  II .  U n i a x i a i  L i f s h i t z  a n i s o t r o p y  

Next  we treat the physical ly  interest ing case 
in which  one of  the c o m p o n e n t s  o f  the d-di- 
mensional  wave  vec tor  k =-(k~,k2 . . . . .  kd) is 
raised to the power  2Lt so that  eq. (1) be c om e s  

= 1 . 2 L , + k ~ + k ~ +  + k  2. G -I + " l  • • • (10) 

I. Upper and lower borderline dimensionalities 
d±(~, LO 

d÷(~, L 0  = ( 3 G -  1 ) / ( C -  1 ) -  I/L~ ( l l a )  

d_(~, LI) = 3 - l i L y  (1 lb) 

Thus ,  d < 3 ~ < d ÷  for  (7~<2L~+1.  
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Fig. 4. Dependence upon d of the susceptibility critical 
exponent y for the case of uniaxial Lifshitz anisotropy. 
Curves for anisotropy parameter L. greater than two are 
similarly shifted to the left, with the upper and lower bor- 
derline dimensionalities being given by eq. (11) with (7 = 2. 

2. Exponents  

Critical exponen t s  were  calculated to lowest  
order  in 

-= ( ~  - l ) ( d +  - d )  = ( 3 ~  - 1) - ( ~  - I ) ( d  + 1/LO. 

The results  bear  m a n y  resemblances  to the 
results for  the case of  an ord inary  critical point  
(L~ = 1). For  example,  fig. 4 shows the depen-  
dence  on d of  the critical exponen t  y(d,  n, C = 
2, L 0  for  the susceptibil i ty.  

3. Scaling laws 

The scaling laws co r respond ing  to eqs. (6) for  
an isotropic Lifshi tz  point  are 

2 -  aL = VL~ + ( d  - 1)vi, (13a) 

y = (2Ll - rh.,)VL, = ( 2 -  r/£)vi, (13b) 

( 1  , . ) / (  . , 
= - F 2Lt ~L, 2 - - 7 £ ]  6 2L1 ~IL~ ~--- 

(13C) 

where  the exponen t s  with a subscr ipt  L~ denote  
the behav ior  of  corre la t ions  be tween  spins 
joined by a vec tor  whose  c o m p o n e n t s  lie en- 
tirely along the "1"  direction,  and "_L"denotes 
direct ions perpendicular  to "1" .  

In [8], the general  anisotropic  case  is con-  
sidered and explicit  express ions  are given for  all 
the exponents .  

R e f e r e n c e s  

[ll A. Yoshimori, J. Phys. Soc. Jap. 14 (1959) 807. 
[2] J. Villain, J. Chem. Phys. Solids 11 (1959) 303. 
[3] T.A. Kaplan, Phys. Rev. 116 (1959) 888; Phys. Rev. 124 

(1961) 329. 
[4] For a recent review, see D.E. Cox, IEEE Trans. Magn. 8 

(1972) 161. 
[5] R.M. Hornreich, M. Luban and S. Shtrikman, Phys. 

Rev. Lett. 35 (1975) 1678; Phys. Lett. 55A (1975) 269; 
paper 4D7, this conference. 

[6] For a discussion of the origin of this terminology, see S. 
Goshen, D. Mukamel and S. Shtrikman, Int. J. Magn. 6 
(1974) 221. An equally appropriate name would be a 
"YVK point" after the authors of refs. 1-3. 

[7] T.S. Chang, G.F. Tuthill, and H.E. Stanley, Phys. Rev. B 
9 (1974) 4882; J.F. Nicoll, T.S. Chang, and H.E. Stanley, 
Phys. Rev. Lett 33 (1974) 540. 

[8] The detailed derivation of these results are given el- 
sewhere: J.F. Nicoll, G.F. Tuthill, T.S. Chang and H.E. 
Stanley, Phys. Lett. 58A (1976) 1. For a discussion of 
the methods employed see G.F. Tuthill, J.F. Nicoll, and 
H.E. Stanley, Phys. Rev. B I1 (1975) 4579, and J.F. 
Nicoll, T.S. Chang, and H.E. Stanley, Phys. Rev AI3 
(1976) 1251, A 14 (1976) 1921. 


