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COMMENT 

Asymptotic form of the spectral dimension at the fractal to 
lattice crossover 
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t Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
PO Box 550, 11001 Belgrade, Yugoslavia 
$ Center for Polymer Studies and Department of Physics, Boston University, Boston, 
MA02215, USA 

Received 7 December 1987 

Abstract. We study the spectral dimension of the Sierpinski gasket family of fractals. Each 
member of the family is labelled by an integer b ( 2 s  b < E), so that when b + x both the 
fractal and spectral dimension approach the Euclidean value 2. The asymptotic law for 
the spectral dimension was recently suggested to be d, = 2 - B/(ln b)P, with B and p being 
some constants. Here we demonstrate that this form should be replaced by the asymptotic 
law d,= 2-ln(ln b)+constant/ln b. Our analysis is based on the exact calculation of the 
electric resistances R ,  for all members of the family up to b = 650. 

What governs the dynamical properties of a fractal lattice when it is almost Euclidean? 
This interesting problem has been attacked by Borjan et a1 (1987), who studied the 
spectral dimension d,  of a family of the Sierpinski type of fractals (Hilfer and Blumen 
1984). The members of the family are labelled and characterised by an integer b, 
2 s b <CO, so that b = 2 corresponds to the Sierpinski gasket and b = m to a wedge of 
the ordinary triangular lattice. When b + CO, the fractal dimension of the family 
approaches the Euclidean dimension d = 2 via the asymptotic law 

(1) 
By studying electrical resistances of the fractals, Borjan er a1 (1987) calculated exact 
values of d ,  for 2 S b S 200. They proposed the asymptotic law 

d f =  2 -In 2/ln b. 

B 
(In b)O 

d , ~ 2 - -  

where B is a constant. Here we argue that this is not the correct form but must be 
replaced by 

In(1n b )  constant 
d,  5 2 - -+- 

In b In b ' 
( 2 6 )  

We obtain ( 2 6 )  by calculating the electrical resistances of a much longer sequence 
( 2  s b s 650) for the members of the fractal family. 

In order to determine exact values of the spectral dimension d , ,  for various 6, we 
use the general relation 
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where p i s  the scaling exponent of the DC resistance, which is in the case under study 
determined by (Borjan et a1 1987) 
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with Rb being the DC resistance of the fractal generator. The latter is an  equilateral 
triangle that contains b2 identical smaller triangles whose sides are unit resistors (see 
figure l (a ) ) .  Hence, the overall behaviour of d , ,  including the large b limit, is 
determined by Rb. We have calculated particular values of Rb by applying the A-Y 
and Y-A transformations (Lobb and  Frank 1984, Borjan et a1 1987), by which each 
fractal generator can be, in principle, reduced to a single resistor. In practice, by 
writing a convenient computer algorithm for the fractal generator reduction, we have 
been able to calculate, on the IBM 3090 mainframe at Boston University, Rh for all b 
up  to b=650. A subsequence of the obtained data is listed in table 1. The main 
limitation for getting bigger values for b is imposed by the limited available space of 
the computer. In fact, in order to expand our range of values up  to 650 we had to 
rewrite the program paying attention to the memory efficiency. The new algorithm 
was almost twice as efficient. 

Since it is clear that the large b limit of Rb determines the asymptotic behaviour 
of the exponent E and consequently of the spectral dimension d , ,  we shall first discuss 

10) lbl  

Figure 1. ( a )  The b = 3 fractal generator. An electric DC current is sent into vertex P and 
taken out of the vertex Q. I t  is assumed that each bond (18 altogether) of each unit triangle 
is a resistor of a unit resistance. The equivalent resistance of the entire network can be 
calculated by the A- Y and Y - A  transformations (see, for instance, Borjan e! a/  1987) and 
is equal to 8 (in arbitrary units). However, when the zero resistance bonds are substituted 
for all unit resistance bonds that are leaned to the left (heavy lines), the ( a )  network simply 
reduces to the ( b )  network whose total resistance between P and Q is equal to $+;+;=S. 

Table 1. A subsequence of the calculated sequence ( 2 s  b s 6 5 0 )  of the fractal generator 
electric resistance Rh.  

b R ,  b R h  

50 4.235 7 7  400 6.509 60 
150 5.432 65 450 6.639 17 
200 5.748 04 500 6.755 10 
250 5.992 99 550 6.859 99 
300 6.193 30 600 6.955 77 
350 6.362 7 5  650 7.043 89 
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the limiting behaviour of Rb.  It has been argued that resistance of a large part, of 
linear size b, of a triangular resistor network should be proportional to In b (Kantor 
er al 1987). For the triangular resistor network of the fractal generator of size b a 
weaker statement can be straightforwardly vindicated, namely one can easily prove 
that Rb cannot diverge in a slower way than the function In b. To see this it is sufficient 
to substitute zero resistance bonds for all unit resistor bonds of the fractal generator 
that are leaned, for instance, to the left (see figure 1). The resulting network has 
resistance of the form 

where the superscript 1 indicates that (5) cannot be larger than the true Rb.  However, 
when we plot the true R b ,  calculated for 2 S b s 650, against In b we can see that it 
does also diverge logarithmically (see figure 2). 

Figure 2. The exact values of Rh ( fu l l  curve) plotted against In b. The slope of the dotted 
straight line is equal to 1.082 74, which is indeed the minimum of the ratio R,/ln b. The 
fact that the dotted line first lies below and then virtually coalesces with the full curve 
depicts that R(hli, given by ( 5 ) ,  is a lower bound of R,. 

In fact, from the actual table of data one can see that, for b > 5 5 ,  Rb slightly deviates 
from the simple logarithmic behaviour, more specifically Rb increases marginally faster 
than a logarithmic function. This deviation, which we call p ( b )  5 Rb - G In b (with b 
being a constant), can be hardly noticed from the plot of data given in figure 2. If 
one ignores p (  b )  and accepts the proposition R,, = G In b to be true for very large b, 
then ( 2 b )  follows straightforwardly from (3) and (4). 

Suppose, on the other hand, we allow for the possibility that p ( b )  may significantly 
change the form of the asymptotic law ( 2 b )  (although p ( b )  for b <650 is two orders 
of magnitude smaller than G In b ) .  If  we insist on the proposition R,, = G In h + p (  b ) ,  
then in ( 2 b )  a leading term could appear which might be different from both 
In(ln b) / ln  b and constant/ln b. The form of this possibly competing term should be 
- [ M I  + p ( b ) / G  In b ) ] / l n  b. If the absolute value of this term becomes larger than 
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0.2 

l / ln b then the plot of the function y = (2-dS-In(ln b)/ln b )  In b against x = l / ln b 
would increase with decreasing x. In fact, from figure 3 we can see that, according to 
our data, the function y most likely tends to some constant value when x + 0, i.e. when 
b+m. This means that the term -[ln(l + p ( b ) / G  In b)]/ln b cannot predominate the 
terms already present in (26). Therefore, if we do not want to consider an asymptotic 
region of b larger than one in which (2b) is correct, we can neglect the deviation p ( b ) .  

To confirm (2b), we consider the set of the exact data for Rb that we have calculated 
(2 d b d 650). To this end we take on the procedure applied previously by Borjan er 
a1 (1987), i.e. we group our data for larger b into successive intervals of 51 and perform 
independent least-square fittings, for each interval, to the formulae ( 2 a )  and (2b). 
However, in order to have the same number of fitting constants in both cases (in (2a)  
these are B and p ) ,  we write (26) in the form 

- - 

- - 

1 1 1 I 1 I I 1 1 

y In( C’ In b )  
In b 

d,=2-  

where y and C’ are now the fitting constants. The latter form is equivalent to assuming 
that Rb = C(1n b ) Y  (for large b ) ,  with C’ being equal to C*”. Our analysis reveals 
that y tends to one and formula (6) gives persistently better fittings, to the exact data 
for Rb, than formula (2a)  (see figure 4). However, we may conclude that (6), and 
thereby (2b), should be regarded as a two-parameter approximation for the spectral 
dimension of the fractals with large b. 

Comparing the asymptotic law (2b) with the asymptotic law for the fractal 
dimension, d f=  2 -In 2/ln b, one can speculate that the dynamical properties of the 
fractals under study approach their Euclidean counterpart in a slower way than the 
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Figure 4. Plot of the mean square deivations D of the spectral dimension d, evaluated 
according to equations ( 2 0 )  and (6) ,  with the fitting constants determined from exact values 
of d , .  Intervals of 51 values each have been used. The upper bounds of intervals are 
designated as b,. Curve 1 corresponds to the asymptotic formula described by equation 
( 2 0  1, whereas curve 2 corresponds to the asymptotic formula described by equation (6) .  
As b,  increases, D decreases drastically. To allow a better observation of this decrease 
the data have been plotted in two separate graphs. 

way in which geometry of the fractals approach the Euclidean geometry. Indeed, the 
same asymptotic law ( 2 b )  has been suggested by Dhar (1987) who studied the self- 
avoiding walks (SAW) on the Sierpinski type of fractals. By using the finite-size scaling 
theory, Dhar (1987) extended the exact analysis performed for 2 s b s 8 (ElezoviC et 
a1 1987) to very large b and found that critical exponents of SAW on the fractals, 
compared with those on regular two-dimensional lattices, have the first-order correc- 
tions proportional to ln(ln b )  and the second-order corrections proportional to l / l n  b. 
In other words, the first-order corrections are proportional to the first-order deviations 
of the spectral dimension d ,  from its Euclidean value. At present, there is no theory, 
or hypothesis, which claims that this type of behaviour at the fractal-lattice crossover 
should be universal for all critical phenomena. For this reason, it is challenging to 
find an example of criticality whose properties at the fractal-lattice crossover have the 
first-order corrections proportional to l / l n  b. 
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