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Liguid—Liquid Phase Transition in Confined Water: A Monte Carlo Study?#
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We report simulations of water confined between two parallel flat (hydrophobic) walls separated by 10.95 A.
Our results are consistent with the possibility of a liquid—liquid phase transition separating two phases of
different densities. The low-density liquid phase displays tetrahedral “ice-like” local ordering, while the high-
density liquid phase shows indications of a hexagonal layer structure similar to the quasi-2D ice forms recently

found in simulations using the TIP4P potential.

Amorphous solid water displays two distinct phases, low
density amorphous ice (LDA) and high density amorphous ice
(HDA) that transform into each other via a first order phase
transition.? Recently, it has been proposed that the transition
line between these known phases can be extrapolated to higher
temperatures into the metastable liquid region of the phase
diagram, raising the intriguing possibility of the coexistence of
two liquid phases and of the existence of a second critical point
in the metastable liquid.2 This “liquid—liquid phase transition”
scenario has been supported by computer simulations with
various effective interaction potentials, specifically with the
ST2,23 TIP4P,2* and the SPC/E® potentials. Also, it has been
shown that simple lattice models of water® as well as simplified
spherically symmetric soft core potentials’ and mean field
approaches® can display a liquid—liquid-phase transition. Ex-
perimental evidence for the existence of the second critical point
is difficult to obtain, since the strong nucleation tendency in
the region of the phase diagram, where the second critical point
might be found, makes it impossible to keep water in the liquid
state.®

It is not clear whether the liquid—liquid phase transition
occurs also for strongly confined water. Water in confined
systems plays an important role in many biological and
geological systems,%11 and methods have been developed to
experimentally test the behavior of molecularly thin water films
confined between hydrophilict?13 as well as hydrophobic!4 and
metal®® surfaces. In some of these systems the freezing of water
seems inhibited,*16 thus allowing one to study the phase
diagram of water in regions not accessible for bulk water.

Apart from a few recent studies,'”18 computer simulations
of confined water have mostly been done at ambient tempera-
tures.1922 Here we use the Monte Carlo method to study
strongly confined supercooled ST2 water. Our results are
consistent with the possibility that a liquid—liquid phase
transition occurs for similar temperatures and pressures as for
the bulk. Further, we find that the anisotropy of the confined
system plays a key role in determining the phase behavior. In
constant density simulations, phase transition behavior can be
found only for the lateral pressure Py, (parallel to the walls),
not for the transverse pressure P, (perpendicular to the walls).
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Figure 1. (a) The lateral (parallel) pressure Py and (b) the transverse
(perpendicular) pressure P, as functions of temperature for isochores
with densities p = 0.73 g/cm® (O), 0.79 g/cm® (a), 0.82 g/cm® (O),
and 0.86 g/cm? (). The densities have been calculated by using the
accessible volume V'=L,L(L, — 2% + ro), where 7 is the Lennard—
Jones radius of the wall—molecule interaction and ro is the Lennard—
Jones radius of the ST2 potential. The error bars have been estimated
by calculating the fluctuations for eight independent configurations.

Our system consists of N = 216 water molecules interacting
with each other via the ST2 potential,2® and interacting with
the walls via the 9—3-Lennard—Jones potential ¢(2) = r{(z/
2)° — (20/2)%}. Here z measures the distance between the center
of the oxygen atom and the wall, and ¢ = 52 meV and z =
2.47 A, parameter values typically used to mimic the interaction
between water and carbon.?! The distance between the walls is
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Figure 2. The neutron weighted correlation function h(r) for the
confined system at T = 220 K (full lines) in comparison to the bulk at
T = 235 K (dashed lines) (a) in a low-density configuration and (b) in
a high-density configuration. The bulk data are redrawn from ref 2
(constant volume MD simulations at 235 K, the pressures in the low-
and high-density phases are 209 MPa and 218 MPa).

L, = 10.95 A, and periodic boundary conditions are applied in
the xy directions. We use a cutoff at r = 8 A for the long-range
Coulomb interactions and perform constant density simulations
for several values of the density p.

Because of the strong system anisotropy, Py, = P, where
Pw=L;Y(0F/dA)NTL, and P=A"1(dF/dL)nta, F is the Helmholtz
free energy, and A=L,Ly is the area of the walls. Because of
the periodic boundary conditions, finite size effects are strongly
suppressed and the system can be regarded as macroscopic in
the xy direction. In the z direction on the other hand, finite size
effects are expected to be very strong. Hence the free energy is
extensive with regard to A,

FIN,A L, T)=Af(N/A L, T) 1)

and not with regard to L,—i.e., it is not the case that F(N, A, L,
T) = L, f(N/L A, T). Equation 1 shows that Py, and A are the
quantities analogous to the bulk pressure and the bulk volume.
Especially, one expects the signatures of phase coexistence to
be found in Py and A rather than in P, and L, since phase
separation can occur much more easily in the xy direction than
in the z direction (a smaller interface is required). For a constant
volume simulation, phase coexistence will result in density-
independent Pyy.

Figure 1 shows (a) Pxy and (b) P, as functions of temperature
for different (constant) densities. We have calculated Py, from
the xy virial, and P, from the force on the walls. For low
densities, the curves display minima, indicating the existence
of a temperature of maximum density (TMD) line (where the
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Figure 3. The z dependent density p(2) as a function of z for (a) p =
0.73 g/lcm?, (b) p = 0.79 g/cm?, and (c) p = 0.86 glcm®. The
temperatures are T = 210 K (—), 240 K (-+*), 270 K (---), and 300 K
(=)

density is a maximum as a function of temperature for constant
pressure, as can be seen from the relation (aP/dT)y — (0P/3V)+-
(0VIaT)p?10. The Py curves for different densities become closer
at lower temperatures and seem to collapse below T = 230 K,
indicating a density-independent pressure (within the error bars
of the simulation), typical for the coexistence of two phases
with different densities.2 Analogous behavior is not found for
P2 which remains density-dependent down to the lowest
simulation temperatures. The fact that the curves do not collapse
for P, is consistent with the results of constant P, simulations
reported in ref 18.

In order to compare our results with the behavior of bulk
water, we calculate the neutron weighted pair correlation
function, which is a weighted superposition of the O—0-, O—H-,
and H—H-pair correlation functions

h(r) =
47pr[0.092 goo(r) +0.422 gy (r) +0.486 gy(N] (2)

(for the coefficients in (2) we use the values for D,O to be
consistent with ref 2). Here the pair correlation functions are
calculated the same way as for a bulk system (i.e., by ignoring
the anisotropy of the system).

It is known for bulk water that the function h(r) shows
differences for ST2 as compared to real water, although it
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Figure 4. The lateral pair distribution function gy(r), for T= 210 K
and p = 0.73 g/cm? (=), 0.79 g/cm? (--+), and (c) 0.86 g/cm? (---),

where r = vV X2+

behaves similar in general (see, e.g., ref 2). Since our intention
here is to study possible analogies between the confined and
the bulk system of ST2, we compare our results with bulk ST2
water.

In Figure 2, we compare the neutron weighted pair correlation
functions of two densities on the high- and low-density sides
of the coexistence regime with the corresponding quantities in
the bulk (taken from ref 2). Within the range 2 A <r < 5 A,
the curves for the confined system are similar to the bulk,
indicating that the local structures of the low- and high-density
phases in the confined system are similar to their bulk analogues.

Note that the similarity between the h(r) in the confined
system and in the bulk makes it seem extremely unlikely that
the phase transition behavior found here depends on the specific
choice of the distance between the walls.

To study the differences between the high and low-density
phases in more detail, we show in Figure 3 the z dependent
density p(2) as a function of z, for different average densities p.
At low densities (Figure 3a), the fluid tends to form two layers
that each split into two sublayers. At high densities (Figure 3c),
the fluid tends to form three flat (i.e., unsplit) layers, thereby
fitting more molecules to the available volume. The occurrence
of flat (as opposed to split) layers makes the high-density fluid
similar to the (flat) 2D high-pressure ice phase found in
simulations of confined TIP4P water by Koga et al.’

The latter finding is confirmed by the lateral O—O pair
distribution function gy/(r) (Figure 4), where gy/(r) is the number
of molecules in a volume element at the same z coordinate and

lateral distance r = +/x*=y? from a randomly chosen molecule,
normalized by the number density of molecules. For all densities,
Ox(r) decays very fast to a constant, thereby confirming that
the system does not show crystallization. The location of the
first maximum at about 2.8 A does not change much when
increasing the density. In contrast, we find that the second
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maximum is shifted from about 4.5 A to approximately 4.9 A.
We interpret that shift as a change of the bond angle inside the
layers from approximately 110° to 120°. This finding is
consistent with a change from a tetrahedral local structure at
low densities to layers with approximately honeycomb structure
similar to the crystal structures found in ref 17.

Our results suggest that the liquid—Iliquid pase transition
occurs in strongly confined water modeled by the ST2 potential.
The neutron weighted radial distribution functions of the two
liquids in the confined system resemble their analogues in the
bulk. The more detailed analysis in Figures 3 and 4, which takes
into account the system anisotropy, reveals similarities between
the high-pressure liquid and the flat ice phases!” found recently
in confined systems.
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