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Abstract

An analysis of diffusion in a supercooled liquid based solely in the density of diffusive

directions and the value of energy barriers shows how the potential energy landscape (PEL)

approach is capable of explaining the a and b relaxations and the fragility of a glassy system.

We find that the b relaxation is directly related to the search for diffusive directions. Our

analysis shows how in strong liquids diffusion is mainly energy activated, and how in fragile

liquids the diffusion is governed by the density of diffusive directions. We describe the fragile-

to-strong crossover as a change in the topography of the PEL sampled by the system at a

certain crossover temperature T�:
r 2004 Elsevier B.V. All rights reserved.

PACS: 61.20.Gy; 64.70.Pf

Keywords: Supercooled liquids; Fragility; Glasses; Energy lansdcape

1. Introduction

The study of slow dynamics in disorder systems and, in particular, the study of the

glass transition in supercooled liquids is a topic of considerable interest in condensed
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matter physics. In general, liquids are divided in two different classes depending on

the properties of their glass transitions, strong and fragile [1]. Strong liquids

experience a gentle increase in the relaxation upon cooling, often according to the

Arrhenius law, close to the glass transition temperature Tg: On the other hand,

fragile liquids, experiment a sharp rise of the viscosity, increasing by several orders of

magnitude in a very narrow interval of temperature close to Tg: The glass transition
temperature is not related to any dynamical transition and is experimentally defined

as the one where the value of the viscosity is 1013 P: For strong liquids, nothing

special happens close to Tg and the glass transition shows a conventional behavior

where no transition may be defined. However, fragile systems seem to present a

divergence behavior close to Tg indicating that some kind of new dynamical

mechanism may be responsible for the onset of the glassy phase. Theoretical

attempts conducted to study this possible new transition have been mainly focused in

two different approaches: the mode coupling theory (MCT) [2], and the potential

energy landscape (PEL) [3].

MCT studies structural arrest in supercooled liquids as a purely dynamic

singularity happening as a result of a feedback between shear-stress, diffusion and

viscosity. The idealized MCT predicts structural arrest to take place at a temperature

TMC4Tg [4,5]. To restore ergodicity below TMC additional hopping or activated

mechanism have been introduced into the theory [6], avoiding the kinetic singularity.

MCT accurately describes important aspects of relaxation dynamics in liquids above

their melting temperatures, in particular, the behavior of the intermediate scattering

function and the a and b relaxations. The b relaxation plateau is related to the time

expended by the particle to break the cage formed by neighboring particles. The

accuracy of the MCT predictions above Tg has been verified experimentally and

using computer simulations [7–9].

The PEL approach has been studied using the concept of an inherent structure (IS)

[10] (i.e., the configurations at the local minimum of the system’s potential energy).

Several numerical and theoretical studies have provided evidence of a relation

between the dynamics of the supercooled liquid and the PEL. It was found that

correlation functions display stretching in time in the same temperature range in

which the systems explore local minima of the PEL with deeper and deeper energy

[11,12], a thermodynamic description of the supercooled liquid was performed in

terms of the IS configurational entropy [13], fragility was related to properties of the

PEL [14] and the diffusion process was analyzed in terms of the visited inherent

structures [15].

There was no connection between both theories (MCT and PEL). Basically there

has not been a clear definition of TMC from the potential energy landscape point of

view and a precise landscape-based definition of hopping and activated dynamics has

been lacking [16]. This situation has recently changed due to the instantaneous

normal mode approach to the PEL [17]. This approach relates the diffusive processes

to the number of accessible paths in the multidimensional energy landscape [18–20].

In particular, a key point is the temperature dependence of the fraction of negative

eigenvalues of the Hessian calculated at the saddle points of the PEL [21,22]. It was

found that this fraction approaches zero at TMC; but is appreciable at larger
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temperatures. Since the negative eigenvalues correspond to diffusive directions on

the PEL, the following scenario was proposed for the dynamics of supercooled

liquids close to the glass transition: For T4TMC the system lies close to saddles

in the configuration space and the relevant dynamic process is a diffusion among

the saddle points along paths at almost constant potential energy, where there is no

need to overcome any energetic barrier (‘‘border dynamics’’). That implies that

the factors impeding free diffusion of the particles are related to finding these

paths (entropic factors), rather than due to energetic factors. However, below TMC;
there are few paths available and diffusion is dominated by hopping processes

allowing the system to evolve from minimum to minimum (minimum-to-minimum

dynamics). This implies that a sharp slowing down on the dynamics should take

place close to TMC if the energetic barriers to be crossed by the system are high

enough [23].

2. Analytic approach to the PEL

To check if this proposed mechanism is correct we are going to study the problem

analytically, relating the properties of the PEL—the density of diffusive directions

and value of the energy barriers—directly to the fragile and strong characteristics of

supercooled liquids, and to the a and b relaxations predicted by MCT.

We consider particles following a Brownian motion in three-dimensional space.

In the absence of any other kind of interaction the mean square displacement is

given by

hr2ðtÞi ¼ 6T ½t� ð1� e�tÞ	 : ð1Þ

Here we set the Boltzmann constant k ¼ 1; and take the particle masses m ¼ 1: For
very short times (t 
 1), the particles behave as free particles hr2ðtÞi ¼ 3Tt2; and for

longer periods of time (t � 1) the particles behave as diffusive particles in a random

walk hr2ðtÞi ¼ 6Tt:
For particles in supercooled liquids such as Lennard–Jones systems, silica or

water, the evolution is much more complicated due to non-trivial interactions among

particles. These non-trivial interactions produce a very complicated energy

landscape, making analytical results very difficult to obtain. However, a lot of

information about these energy landscapes has been obtained using powerful

numerical techniques such as Molecular Dynamics or Monte Carlo simulations. In

particular, it has been proposed that the density of diffusive directions with

temperature, kðTÞ; follows a power law [21]

kðTÞ ¼ AðT � TMCÞ
g : ð2Þ

The typical value DE of the energy barriers in hopping processes close to the mode

coupling critical temperature, has been determined for different models [23,24]. In all

cases it has been found that a good approximation is given by

DE � 10TMC : ð3Þ
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For long enough time (we consider a time t to be long enough if t41), the diffusion

of a particle is no longer free, making the total system to evolve over the

multidimensional PEL. From a thermodynamic point of view the diffusion of the

particle takes place if the direction chosen on the PEL turns to be a diffusive one, or

if the barrier is low enough to be overcome by means of an activated process.

Considering Eqs. (2) and (3), the probability of diffusion of the particle at a

temperature T from a time t41 to a time tþ 1 is given by

Pdiff ¼ AðT � TMCÞ
g þ ½1� AðT � TMCÞ

g	e�DE=T : ð4Þ

Considering Pdiff ; it is possible to relate the total value of the mean square

displacement hR2ðtÞi (at time t41) with the value of the random walk diffusion

hr2ðtÞi by

hR2ðtÞi ¼
X

t

i¼1

t� 1

i � 1

� �

hr2ðiÞiPi�1

diff
ð1� Pdiff Þ

t�i: ð5Þ

If to1 the diffusion is the one given by a random walk, hR2ðtÞi ¼ hr2ðtÞi:

3. Results for hR2ðtÞi

Next, we study hR2ðtÞi from Eq. (5) for four different cases. Our standard case is

going to be a binary mixture Lennard–Jones (BMLJ) system with density r ¼ 1:2; as
the one studied in Ref. [21] for which TMC ¼ 0:435; g ¼ 0:94 and A � 0:05: We will

study four cases.

� Case (a): We consider the simplest system where only Brownian motion is present

and there is no effect of the PEL. We take kðTÞ ¼ 1; implying that any direction

chosen by the system is going to be a diffusive one.

� Case (b): The second system considered has a larger density of diffusive directions

that the one studied in Ref. [21]. To do so we take A � 0:5: In this particular case

kðTÞ ¼ 1 for T42:5:
� Case (c): We consider the standard case from Ref. [21] where kðTÞa1 for every T

in this study.

� Case (d): We consider a case where there are no diffusive directions A ¼ 0 )

kðTÞ ¼ 0:

Results are presented in Fig. 1. For temperatures ranging from T ¼ 5 to T ¼

0:4386: A clear relation between the b relaxation time and the density of diffusive

directions in the system, kðTÞ; is found in Fig. 1. In Case (a) all directions are

diffusive and particles do not expend any b relaxation time searching for a diffusive

direction to escape, that is the reason why there is no plateau in Fig. 1(a). On the

contrary, in Case (d), there are no diffusive directions and the particle expends a long

time in the b relaxation plateau. The only possible diffusion mechanism to escape

from this plateau is by an activated process to overcome the DE barrier. So the b

relaxation time may be interpreted in terms of the PEL as a ‘‘search’’ for diffusive
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directions. This mechanism should be equivalent to the one described in the MCT

where the particles ‘‘search’’ for directions to escape from the cage formed by

surrounding particles.

4. Results for DðTÞ

Once hR2ðtÞi is known it is possible to determine the diffusion coefficient DðTÞ as a

function of temperature, considering that a straight line, with unit slope, fitted to the

long time behavior of data in Fig. 1, intersects a vertical line at lnðtÞ ¼ 0 at a height

lnð6DÞ: To study what is the mechanism in the PEL leading to the behavior of a

supercooled liquid as strong or fragile, we study three different cases.

� Case (a): We study a system with no diffusive directions, where the only possibility

for the system to diffuse is an activated process to overcome the energetic barrier

DE ’ 10TMC: We consider again a value A ¼ 0 ) k ¼ 0:
� Case (b): We consider the opposite case, where no activation process is available

(since the energy barriers are extremely high) and the only diffusion mechanism is

the search for diffusive directions. In order to study a system like that we take

DE ’ 105TMC and A � 0:05:
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Fig. 1. lnhR2ðtÞi vs. lnðtÞ obtained from Eq. (5) for temperatures (from top to bottom) T ¼ 5; 4, 3, 2, 1, 0.8,

0.6, 0.55, 0.5, 0.475, 0.466, 0.454, 0.444, and 0.439. The values of the parameters are g ¼ 0:94; TMC ¼

0:435; DE ¼ 10TMC and (a) kðTÞ ¼ 1; (b) A � 0:5; (c) A � 0:05 and (d) A ¼ 0:
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� Case (c): Finally, we consider the binary Lennard–Jones system considered in Ref.

[21] where both diffusive mechanisms are available.

Results are presented in Fig. 2. We plot lnð6DÞ vs. 1=T in Fig. 2(a) and lnð6DÞ vs.

lnðT � TMCÞ in Fig. 2(b). Note how Case (a) clearly shows a linear (Arrhenius

behavior), typical of a strong liquid. Nothing special happens when T ¼ TMC; since
the mechanisms of diffusion are always the same (activated processes). On the

contrary, Case (b) presents the typical behavior of a fragile liquid predicted by MCT.

In this case, the transition to a glassy state at T ¼ TMC; is a singular one. Since the
only mechanism of diffusion are the diffusive directions and those are equal to zero

at T ¼ TMC the system gets trapped in a glass state by dynamical arrest. Note

how the barrier must be very high to get a really slowing down in the dynamics,

making any kind of hopping impossible. This result agrees with predictions made in

Ref. [23]. If the energy barriers are not high enough we are in Case (c) and we have

a transition from strong to fragile behavior at T ¼ TMC as the one predicted by

Ref. [25] and observed numerically in Ref. [26]. Note how Case (c) is almost identical

to Case (b) when the temperatures are far from TMC clearly indicating that the

mechanisms of diffusion are governed mostly by ‘‘border dynamics,’’ that is, by

evolution of the system through the diffusive direction of the PEL. However for

ToTMC; Case (c) behaves like Case (a), which means that the mechanisms of
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diffusion are now governed by activated processes to overcome the DE energy

barriers. Case (c) is a clear example of crossover from ‘‘border dynamics’’ to

‘‘minimum-to-minimum dynamics.’’

Results in Fig. 2 are easy to understand considering that, since Pdiff is the

probability for a particle to diffuse, a Pdiffa0 turns t into a lower value, Pdiff t:

That means that instead of hR2ðtÞi ¼ 6Tt for tb1; we have hR2ðtÞi ¼ 6TPdiff t: For

the Case (a) (strong glass), since A ¼ 0; we have Pdiff ¼ e�DE=T ; making hR2ðtÞi ¼

6Te�DE=T t; and getting a value of the diffusion coefficient lnðDÞ ¼ lnðTÞ � DE=T :
For the Case (b) (fragile glass) it is possible to consider in good approximation that

Pdiff ¼ AðT � TMCÞ
g; obtaining lnðDÞ ¼ lnðTÞ þ lnðAÞ þ g lnðT � TMCÞ; which is

the behavior expected by MCT. The constant value for DE given in Eq. (3) is valid

only near TMC: If we want to obtain results from our model in a larger range of

temperatures, a non-constant value of DE; as the one reported in Ref. [23], should be
taken into account.

5. Crossover from fragile to strong

Numerical simulations and theoretical calculations have recently shown that the

density of diffusive directions is not exactly zero at TMC [27,28]. It has been argued

that this density behaves as an Arrhenius exponential decay which is only zero at

T ¼ 0 [29]. Actually, a close inspection of the data reported in Ref. [26] shows clearly

that kðTÞ is almost null at TMC; but not exactly zero.

If we change the power-law behavior in Eq. (2) by an exponential decay given by

kðTÞ ¼ A�e�DE�=T ; ð6Þ

with A� constant and DE� an energy scale, we obtain

Pdiff ¼ A�e�DE�=T þ e�DE=T � A�e�ðDE�þDEÞ=T : ð7Þ

Eq. (7) implies an Arrhenius behavior for DðTÞ; making it impossible to find a

crossover from fragile to strong. It means that there must be some crossover

temperature T� where kðTÞ changes from a power-law to an Arrhenius-law,

marking a change in the PEL topography and the beginning of a crossover from

fragile to strong. Experimental results [30] have shown that T� normally has a value

very close to TMC:
To study the effect of this possible change on topography we are going to modify

the density of diffusive directions of Case (C), considering a new Case (D) with

kðTÞ ¼ f 0e
DE½ð1=TMCÞ�ð1=TÞ	; ToT� ;

kðTÞ ¼ AðT � TMCÞ
g; T4T� ; ð8Þ

where f 0 is the density of diffusive directions at TMC; which is now set to a value

different from zero (f 0 ¼ 0:001). The crossover temperature, T�; is given by the
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lower root of the equation

f 0e
DE½ð1=TMCÞ�ð1=T�Þ	 ¼ AðT� � TMCÞ

g : ð9Þ

A plot of kðTÞ vs. T is shown in Fig. 3(a) compared with the one corresponding to

Case (C), where kðTMCÞ is strictly equal to zero.

Results for lnð6DÞ vs. 1=T are given in Fig. 3(b) and compared to the behavior of

the pure fragile system. Now the crossover from fragile to strong takes place at

T ¼ T� (close to TMC) and it is not so abrupt as the one in Fig. 2(a). The qualitative

behavior shown in Fig. 3(b) coincides with the result found for Silica by means of

Molecular Dynamics Simulations [26]. However, the behavior reported in Fig. 2(a) is

more similar to the one found for BMLJ [24], possibly indicating that for BMLJ

f 0 � 0 and TMC � T�:

6. Conclusions

To conclude, we have analyzed the diffusion in a supercooled liquid based solely

on the density of diffusive directions and activated processes and have shown how

the PEL provides an explanation for the b and a relaxations and the fragility

characteristics of a glassy system. The b relaxation is directly related to the attempts

of the system to move through the diffusive directions. The PEL shows that a

‘‘strong’’ liquid is one in which the main mechanisms of diffusion are ‘‘activated
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dynamics’’ and that a ‘‘fragile’’ liquid exhibits dynamics typical of supercooled

liquids with diffusive directions but very high barriers where hopping is almost

impossible. In this case PEL supports the same dynamical arrest behavior predicted

by MCT. The crossover from fragile to strong is found to be related to a change on

the topography of the PEL at a certain crossover temperature T�; where the density
of diffusive directions changes from power-law to Arrhenius.
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