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Abstract. Corrections to scaling for percolation cluster numbers in two dimensions are 
studied by Monte Carlo simulations of very large systems (up to 17 X lo9 lattice sites) and 
by series analysis. Both series and Monte Carlo work suggests that the value of the 
correction-to-scaling exponent is slightly lower at the percolation threshold than away 
from it. Moreover, the corrections to scaling observed at pc (a ~ 0 . 6 4 )  might be due to 
the mixing of scaling fields rather than to the irrelevant scaling fields. The Monte Carlo 
results are compatible with finite-size scaling, and finite-size scaling corrections are esti- 
mated. Technical problems associated with Monte Carlo simulation of very large systems 
are discussed in an appendix. 

1. Introduction 

The leading critical behaviour of two-dimensional percolation clusters is reasonably 
well understood (Stauffer 1979, Essam 1980). What are the corrections to those 
leading terms if one is close but not too close to the critical point? For percolation, 
there is no clear answer to this question (see, e.g., the recent review, Adler et al 1983). 

The corrections to scaling for percolation cluster numbers in two dimensions have 
previously been studied using the Monte Carlo method by Hoshen et a1 (1979) and 
Nakanishi and Stanley (1980,1981) for relatively small systems: triangular site percola- 
tion on (4000 x 4000) lattices and square bond percolation with (2000 x 2000) sites 
respectively. Hoshen et a1 (1979) studied the corrections to scaling only at the 
percolation threshold pc and gave the value of the correction-to-scaling exponent 
s1= 0.6710.1. Nakanshi and Stanley (1980, 1981) estimated the correction-to-scaling 
exponent as s1 = 0.6-1 .O. 

In this paper we use very large systems (up to 17 X lo9 sites), hoping that this 
approach will reduce the finite-size effects and therefore give more accurate estimates 
for s1 and a more complete picture of the scaling functions. For smaller lattices, Hoshen 
et a1 (1979) combined series and Monte Carlo data to estimate s1. Here we want to 
rely only on Monte Carlo data for cluster sizes beyond those investigated by series. 

5 Permanent address: Institut fur Theoretische Physik, Universitat, D-5000 Koln 41, West Germany. 
11 Supported in part by grants from NSF, ONR and ARO. 
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The previous works concentrated on testing the two-exponent scaling hypothesis 
of Stauffer (1975) 

n A p )  = s -T fo ( z ) ,  z = ( p c - p ) s " ,  (1) 

where T = 2 +  1/6, U = l / p S  and n , ( p )  is the average number of clusters per site of 
size s; we use standard notation for p,  6, and v (Stauffer 1979). The corrections to 
scaling for percolation cluster numbers were introduced by Hoshen e? al (1979) in the 
form 

(2) 

with the correction-to-scaling function f l  ( z )  and the leading correction-to-scaling 
exponent R. 

The purpose of this paper is to make a much more accurate estimate of the leading 
correction terms. We find that our data cannot distinguish between correction terms 
with slightly different R. Therefore, we estimate an effective correction-to-scaling 
exponent, and also an effective correction-to-scaling function f i(  z ) .  As a by-product, 
we obtain a more accurate estimate of the leading scaling function fo(z). We also find 
that there are indications from the series analysis of the corrections to scaling (Margolina 
et a1 1982) that the value of R is not the same at the percolation threshold pc as 
slightly below it. Therefore, we estimate R from Monte Carlo simulations not only 
at pc but also away from it. 

Our Monte Carlo data are compatible with finite-size scaling and we estimate the 
finite-size corrections along with the corrections to scaling. We make an attempt to 
reconcile our series and Monte Carlo data and explain why the Monte Carlo estimate 
of R is presumably closer to the 'true' value of R which might be due to the nonlinear 
scaling fields (Aharony and Fisher 1983). 

The paper is organised as follows. In § 2 we present our Monte Carlo analysis at 
pc and discuss the advantages of analysing extremely large systems for studying the 
corrections to scaling. In § 3 we present results for concentration p slightly below and 
above pc.  In § 4 we present calculations of the scaling functions fo(z), f l (z )  defined 
in (2). In § 5 we compare series and Monte Carlo results and try to reconcile them. 
In § 6 we give our finite-size scaling analysis and discuss our choice of boundary 
conditions. In appendix 1 we give the details of our Monte Carlo simulations of large 
systems and various forms of random number generators used, while appendix 2 
discusses subtleties of the Aharony-Fisher argument when applied to percolation. 

n , ( p )  = s-'(f0(z) + s-nfl(z)), 

2. Calculations at pc 

2.1. The advantages of large systems 

Our results at pc are based on the Monte Carlo study of the triangular lattices of sizes 
L X L with L = 7000, 10 000, 12 000, 17 000, 35 000, 50 000, 70 000, 95 000 and 
130 000. The Monte Carlo algorithm was originally proposed by Hoshen and Kopel- 
man ( 1976); additional technical problems arising from the analysis of very large 
systems are described in appendix 1. 

We combine our cluster numbers ns in bins in order to simplify the analysis and 
to reduce statistical fluctuations. We choose bins of exponentially increasing size, 
2' s s < 2'+l, i = 0, 1 , 2 , .  . . . The choice of bins with a width half as large, led to 
oscillations in our data. We use free boundary conditions, and take the conjectured 
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6 '  I 

'exact' values of the leading exponents (T = 36/91; T = 187/91 (den Nijs 1979, Nienhuis 
et a1 1980, Pearson 1980 and Nienhuis 1982). 

The Monte Carlo data obtained for the number of isolated sites from our very 
large systems at pc shows agreement to within 0.01% of the exact results comparing 
to 0.3% of Hoshen et a1 (1979) as shown in table 1. Our result G =  
0.017 630 * 0.000 02 for the total number of clusters (normalised per site) disagrees 
significantly with the series estimate G = 0.0168*0.0002 (Domb and Pearce 1976). 

The advantages of the very large systems for analysis of corrections to scaling are 
clear from figure 1, which shows the partial sums 

Table 1, The total number of clusters, Is. ns,, and the number of isolated sites, n, ,  for 
various system sizes L X L at p = pc = 1 for the triangular lattice. The data for L = 4000 
are taken from Hoshen er a1 (1979) and are based on 19 realisations. Data for L = 12 000, 
50 000, 70 000 are based on two realisations, while the remaining data are based on one 
realisation only. Here E = (nl - 1/128)/n, is the relative deviation from the exact result: 
n,  =pc(l-p,)6=1/128. 

L L'n, E 1, ns 

4000 
7000 

12 000 
17 000 
35 000 
50 000 
70 000 
95 000 

130 000 

125 376 
383 609 

1125 104 
2 260 752 
9 573 663 

19 532 417 
38 284 057 
70 509 448 

132035 615 

0.3% 
0.2% 
0.09% 
0.13% 
0.035% 
0.006% 
0.00 7 O h  

0.002% 
0.00 3 '1'0 

- 
0.017 701 
0.017 656 
0.017 657 
0.017 632 
0.017 631 
0.017 629 
0.017 630 
0.017 632 

0.0201 1 1  1 1 1  I I I ~ 

2 6 10 14 18 22 
l o w  

Figure 1. Dependence on log, s of partial sums 
si-' Z,,,, n,(p,),  obtained by Monte Carlo simula- 
tions for a L x L triangular lattice, for a sequence of 
increasing values of L: 1000 (+); 4000 (O), 
70000 (0) and 130 000 (x) .  The points for L =  
4000 are from Hoshen et nl (1979). 

O'* 1 n 

0 0.04 0.08 012 
11s 

Figure 2. The correction-to-scaling exponents n 
calculated from three consecutive points via equation 
(5) are plotted against reciprocal central size l / s  at 
pc  (lower curve) and at pmax (upper curve) for 
triangular site percolation. The intercepts at ys = 0 
give our estimates, n( z = 0) = 0.8 10.1 and 
n(z,,,) =0.98*0.1. 
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The sum in (3) includes all clusters larger than s = 2’ ( i  = 0,1,2,  . . .) in order to reduce 
the statistical error and avoid the problems inherent in the binning procedure. As 
described in Hoshen et a1 (1979) in the region of large s and at p = pc where the 
simple power law (1) is valid, we should observe a plateau for N,: all partial sums 
would equal the same constant f O ( O ) / ( 7 -  1) if the sums were replaced by integrals. 
In figure 1 we compare the results for relatively small systems with our results for 
very large systems. It is seen very clearly that there is almost no plateau for smaller 
systems while for very large systems we definitely observe a plateau, within the statistical 
error, for cluster sizes from about s = 2’ to 212. The plateau flattens for larger systems, 
and the starting point of the ‘overcounting’ of smaller clusters on the right-hand side 
due to our free boundary conditions, moves to larger s for larger systems. The 
deviations for large s from the plateau value are thus due to the finite-size effects, 
confirming a speculation of Hoshen et a1 (1979). Unfortunately, for smaller systems 
the finite-size effects enter already for small cluster sizes of about s = 2’-2’. Therefore, 
an analysis providing more accurate information about the behaviour of scaling func- 
tions for larger cluster sizes needs larger system sizes than those used earlier. The 
somewhat erratic behaviour at large s prevents a detailed finite-size scaling description 
of the increase beyond the plateau. 

The deviations from the ‘plateau value’ on the left side of figure 1 are due to the 
corrections to scaling, as noted by Hoshen et a1 (1979). For small s one observes 
drastic deviations of the results for the smaller systems from each other, while our 
results for L = 35 000, 50 000, 70 000, 95 000 and 130 000 practically overlap for 
cluster sizes ~ = 2 ~ - 2 ~ .  Thus, this is the range of cluster sizes where the leading 
correction to scaling function f i (z )  can be accurately measured. This is seen more 
clearly if the deviations of the partial sums from the averaged plateau value are plotted 
versus s-O for the correction-to-scaling exponent R of about 0.6-0.7. In the range of 
cluster sizes s = 24-28 we observe approximately linear behaviour of these deviations. 
Therefore, from now on we concentrate on this range of cluster sizes for the analysis 
of the corrections to scaling. For larger systems, however, e.g., L = 95 000 and 130 000, 
we could reach for larger s = 2’-212 when analysing the corrections to scaling. 

2.2. Monte Carlo analysis 

The value of R is estimated by linearly fitting the partial sums N, of (3) to s-O for 
various ranges of s, e.g. s = z4-2’. This estimated values of R seem to depend on the 
chosen range of s as shown in table 2. We have also used several other methods to 
estimate R: e.g., linear fits to the log-log plot of the ( s T - l  E,,, n,,- qo/(  7 -  1)) against 
s with qo being varied to achieve the best linearity. However, all methods gave results 
similar to those of table 2 in magnitudes and in scatter. 

For larger systems, where we are able to analyse larger clusters, R tends to decrease. 
However our run for L = 130 000 gives an unexpectedly higher value of R. Our 
estimate is R = 0.64* 0.08. However, the statistical error for a particular fit (table 2) 
is usually much smaller (about 0.02-0.03). Our finite-size scaling analysis gives an 
estimate of R somewhat higher (about 0.66). The finite-size scaling analysis and the 
discussion of free boundary conditions are presented in B 5 .  For a reader who wants 
to make his own analysis, table 3 gives our raw &a for L = 95 000. The relative 
statistical error for cluster numbers N, is about l/JN, according to the rigorous results 
of Coniglio et a1 (1979). 
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Table 2. The values of fl estimated by linear fitting of the partial sums s'-l P,,,, n,, to  
s-" for various lattice sizes L and ranges of s (the error bars shown are purely statistical). 
The values in square brackets are due to particularly bad fits, and the hyphens stand for 
unrealistic fits. 

S L = 35 000 

16-512 
8-5 12 

16-1024 

16-2048 
8-2048 

16-4096 
8-4096 

8-1024 

16-8192 
8-8 192 

0.6010.1 

0.59 * 0.07 
- 

- 

L = 50 000 

0 .66 i  0.03 
0.65 i 0.05 
0.70i0.05 
0.67*0.02 

[0.57 i 0.101 
[OS6 f 0.101 

L = 70 000 L = 95 000 L=130000 

0.64 f 0.03 
0.66i0.02 
0.58 f 0.07 
0.62 10.04 

[0.61*0.10] 
[0.50iO.10] 

0.6410.01 
0.65 * 0.02 
0.64*0.02 
0.64 f 0.02 
0.63 *0.02 
0.64 f 0.03 
0.60i0.02 
0.62 i 0 . 0 3  
0.58 * 0.03 
0.61 i0 .03  

0.67 i 0.02 
0.66 f 0.03 
0.68 i0 .03  
0.66f0.03 
0.68 * 0.02 
0.67 f 0.03 
0.67 f 0.03 
0.66 f 0.04 
0.65 It 0.04 
0.65 10.04 

~~ ~ _ _ _ ~ ~  

average 0.60 iO.10 0.67 * 0.05 0.63 * 0.07 0.64 f 0.03 0.67 * 0.04 

Table 3. Cluster numbers N, = L2 x n, and partial sums s r - l  2,. n,. for triangular lattice 
of size L = 95 OOO at  p = pc = 5. 

1 70 509 448 0.017 630 
2-4 40 775 040 0.020 397 
4-8 22 993 658 0.022 876 
8-16 12 296 831 0.024 678 

16-32 6322 749 0.025 884 
32-64 3168 306 0.026 657 
64-128 1563 389 0.027 148 

128-256 763 790 0.027 456 
256-512 371 268 0.027 661 
51 2-1024 179 822 0.027 798 

1024-2048 86 785 0.027 893 
2048-4096 42 036 0.028 010 
4096-8192 20 224 0.028 064 
8192-16384 9752 0.028 188 

16384-32768 4731 0.028 391 
32768-65536 2267 0.028 574 

The 'plateau value' we get from our results is about fo(0) = 0.0295 and is in good 
agreement with the plateau value given by Hoshen et a1 (1979): fo(0) =0.03. The 
ratio of lf,(0)l/[fo(O)] is less than unity, which is lower than the estimate of Hoshen 
et a1 (1979) Ifl(0)l/[fo(O)] = 1.19 but it is dependent on the estimate of fl chosen. 

3. Results for p # pE 

We have also made Monte Carlo simulations for concentration p slightly above and 
below pc within the scaling region 
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to estimate the corrections to scaling away from pc. Our main interest here is the 
value p=pmax(s) where n , ( p )  has a maximum as a function of p at fixed s. The 
corresponding value of the scaling variable zmaX --. ( pc - pmax)sU was found by Hoshen 
et a1 (1979) to be z,,, = 0.44. We want to test more carefully the previous result of 
series analysis (Margolina er al 1983) which seemed to indicate that R(z,,,) > R(0). 

3.1. Series analysis 

We use the following ratio-like method in our series analysis. Within the scaling region 
(4), the scaling assumption (2) implies 

Here we denote the effective dependence of R on z as R(z).  Actually, the impression 
that R varies continuously with z is likely to be an artifact of a numerical method. 
We expect one value of R at p = p c  and another at fixed p < p c ,  corresponding to  the 
crossover between percolation and lattice animals (see, e.g., Family and Coniglio 1980). 
However, the essence of the assumed two-exponent scaling hypothesis (2) is that for 
all data within the scaling region (4) ( z  = const), we automatically preserve the same 
(percolation) type of critical behaviour. Therefore, throughout our analysis we keep 
the same values of the critical exponents U and T. We take again T = 187/91 and try 
to estimate R(z)  for z = 0 and z = z,,, from the series expansions of n,( p )  (Sykes er 
a1 1976, Margolina et a1 1983). 

If we treat n,( p )  calculated from the series expansions as 'experimental' points 
and then make three-point fits with equation (9,  we can calculate the value of R,  for 
each set of the three consecutive values of s. Then we plot these three-point exponents 
versus the reciprocal central size s and get the estimate of the asymptotic exponent 
R as an intercept for l / s  + 0. We carry out this analysis for p = pc and p = pmax. We 
note that the advantage of this method is that the values of n , ( p c )  are exact for the 
lattice where pc is known exactly and the values of pmax for each fixed s can be calculated 
very accurately from the series expansion polynomials. 

The results of applying this method to triangular and square-site problems are 
shown in figure 2. The values obtained are: for triangular lattice R(0) =0.8*0.1; 
R(z,,,) =0.98*O.l; for square lattice R(O)=0.75*O.l; R(z,,,)= 1.0*0.1. The 
maximum error bar of this method is about 15% and is of the same order as the 
difference between the two values of R. 

Our results for the triangular lattice do not change much when we apply our method 
to analyse the additional fifteenth term in the series expansion (Margolina et a1 1983); 
on the other hand, the same fifteenth term as analysed by Adler (private communica- 
tion) lowers the previous estimate of Adler et a1 (1983) of R = 0.66 to R = 0.64. For 
further analysis one can take intermediate values of p so that p c - p  = a ( p c - p m a x )  with 
O <  a < 1. The values of p chosen this way ensure that p is within the scaling region 
(4). As a result we conclude that the effective R(z)  is a smooth increasing function 
of z, i.e., the effective R gets larger when p moves away from pc. The range of R is 
0.7-1 .O. Other two-dimensional lattices show indications of a similar behaviour of 
Wz) though less sharply. We tried to carry out the same analysis for three-dimensional 
problems using the value of T = 2.21, U = 0.46 and pc = 0.31 17 from Gaunt and Sykes 
(1983). Only the FCC lattice shows the same effect for R(z),  namely R varies in the 
range of 0.8-1.1 for different p within the scaling region. Other series expansion 
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polynomials in higher dimensions are not long enough to show clear asymptotic 
behaviour. 

3.2. Monte Carlo analysis at p # pc 

Thus, our preliminary series analysis indicates some difference between the estimated 
values of n(0) and n(z,,,). This calls for more accurate numerical work that can 
treat cluster sizes far beyond those available to series expansions. Since the value of 
pmax is actually a function of cluster size s, several runs for different fixed concentrations 
p are necessary to obtain the scaling picture away from pc ( 2  Z 0) by Monte Carlo 
simulations. Therefore, with the same amount of computer time we do not get the 
same accuracy as at pc. If we choose one of the bins within the chosen range of cluster 
sizes 24 G s < 28 as a starting point, then we obtain the starting concentration value ps 
from 

( ~ c - P s ) ~ : v e r a g e  = zmax. ( 6 a )  
For example, if i = 5 ( Z 5  s s < 2 6 ) ,  then saverage = (32 X 64)"* = 45. Taking z,,, = 0.44 
from Hoshen et a1 (1979) we therefore obtain the starting concentration value ps = 0.4. 
In order to preserve the value of z,,, throughout the analysis we then shift to the 
neighbouring bins s* changing the concentration values ps  to p :  according to 

( ~ c - ~ s ) s a D v e r a g e  = (pc-pf)s ,*v",rage.  (6b) 
We performed two realisations at p < p c  for each of the five concentrations ps  

obtained this way and one run at p > pc ( z  < 0) for each of the six concentrations p 
symmetrical to those of p < pc)  for the triangular lattice with L = 35 000 and five runs 
for five concentrations p <pc for the triangular lattice L = 70 000. The partial sums 
are no longer useful at z Z 0, since one needs many realisations for each fixed z to 
get cluster numbers n s ( z ) ,  tabulated by (s*,  p f ) ,  as shown in table 4. 

It seems reasonable, therefore, to take the sums 
2,+1-,  

Q ( i )  =s,T;ejage = 2' nsf (7) 

(where s,,, , ,~~ = 2i+"2) over each bin i instead of partial sums, and fit these sums to 
s-'(') for each z according to the scaling assumption (5). As a by-product of this 

Table 4. Table of cluster numbers N,(p)  = L2 x n , ( p )  for lattice size L = 70 000 at five 
concentrations p < pc: p4 = 0.36 845, ps = 0.40 000. ph  = 0.42 398, p, = 0.44 214, px = 
0.45 607 and corresponding bins s = 2'-  2'+' with i = 3, 4, 5, 6, 7, 8, 9 (the value of z,,, 
corresponds, e.g., to concentration p4 and bin i = 4). We read off the numbers n,( p )  for 
fixed p and different s from a line, while the values of n , ( z )  for fixed z and different s we 
read off from a diagonal. 

i = 3  4 5 6 7 8 9 

p4 34299278 18476117 7287614 1534112 - - - 
p s  27672296 16869613 8980802 3532314 750446 - - 
P6 - 13 716 188 8228 306 4343 508 1707 118 363 161 - 
Pl - - 6721 532 3990 190 2097 008 823 325 174 069 
Ps - - - 3268279 1929824 1012262 395004 
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linear fitting one finds, from a slope and an intercept, the scaling functions f i (z )  and 
fo( z) for each trial value of R( z). Our best estimates of the R( zma,) are given in table 
5 for different ranges of s. Note that the maximum range of s available at z = z,,, is 
from 24-28 corresponding to our choice of five fixed concentrations p.  Each run for 
L = 7 0 0 0 0  takes about five hours on an IBM 370/168, so one chooses the well 
established range of s = 24-28 rather than making additional test runs. 

Table 5. The values of R estimated by linearly fitting of the sums ~l ;~t ,~~ Zbln n , ( z )  to 
s - ~ ' ' )  for lattice sizes L = 35 000, 70 000 and various ranges of s within the chosen range 
s = Z4-2' at z = zmax compared to the values of Cl at p , ( z  = 0) estimated by the same 
method. The values in brackets are due to particularly bad fits and the dashes stand for 
unrealistic fits. 

z = %3x z = o  
S L = 35 000 L = 70 000 L=35000  L = 70 000 

16-512 0.78 * 0.03 0.73i0.03 0.65 i 0.03 0.72 i 0.03 
32-512 0.74k0.02 (0.50* 0.10) - 0.72 0.04 
16-256 0.79f0.03 (0.89i0.10) 0.61 * 0.07 0.72i0.04 
32-256 0.74 * 0.04 (0.65*0.10) - 0.69 * 0.05 
16-128 (0.81 *0.10) - - 0.72 f 0.03 

average 0.77 0.69 0.63 0.71 

3.3. Results 

The overall average estimate of R at z,,, is R,,,=0.7.5 which is, indeed, slightly 
higher than at the percolation threshold. But there are several uncertainties here. 
First, for the larger lattice L = 70 000 we get the average value of R smaller than for 
the one with L = 3.5 000, and we hope that the results for larger lattices are more 
reliable. Second, we compare in table 5 our results of fitting of the sums (7) at z,,, 
and of fitting of the same sums (7) at z = 0 (as opposed to the fitting of partial sums). 
The fitting of sums (7) seems to give on the average the value of R slightly higher, 
even at pc. The reasons for that might be inherent in the binning procedure, but then 
it seems more consistent not to compare our results at z,,, to those at z = 0 obtained 
by fitting the partial sums (3) but rather to those at z = 0 obtained by fitting the sums 
(7). Comparisons such as that in table 5 lead to consider the two estimates of fl to 
be too close to be distinguished within the accuracy of our method. 

Another question here is how to estimate the error bar: is it larger or smaller than 
at pc? Our fitting procedure seems not to be as reliable as the fitting of partial sums. 
On the other hand, the fluctuations of cluster numbers n,( p )  at z,,, might be smaller 
than the critical fluctuations at pc (Jan and Stauffer 1982). Therefore it is not clear 
what the confidence limits are of the estimated value of R(zmax), and, therefore, the 
question about the existence of the dependence of R(z) is still open. Our best fit for 
z < O ( p > p , )  wasnotfor z =-zmaxbutforz  = - ~ ~ ~ , 2 - ~ :  R=0.76(basedononerunfor 
L = 35 000). Other fits were not as good but the average value of R is about 0.7 for the 
chosen range of cluster sizes and the values of fo(z),  f , (z )  obtained for each atria, are 
consistent with each other. 

The conclusion of this analysis is that there are two possibilities. 
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(i) One possibility is to accept the apparent difference between R(zmax) and R(0) 
and to search for a reason for it. A tentative explanation is presented in 0 5 .  We will 
also compare our series estimates with our Monte Carlo estimates of R, which tend 
to be lower, and discuss what might be the reasons for this discrepancy. 

(ii) A second possibility is to keep the standard form of the correction term (2) 
and try to fit the data into the unified picture with the average R of about 0.7. We 
attempt to do so in 0 4. 

4. The scaling functions fo(z), fi(z) 

Let us assume now that R has the same value at all z of about 0.7 (the average over 
all our estimates) or about 0.6 (see 0 5 for a possible justification of the value of 
R 0.6) and try to fit all our data at, above and below p ,  on the scaling assumption 
( 5 ) .  Thus, we determined f o ( z )  and f l ( z )  for different z as the intercept and slope, 
respectively, of a linear fit of sT-' Zbin n , ( p )  to s-O. Note that most of the values of 
f o ( z ) ,  f l ( z )  shown below are obtained from fits far from the best since it is hard to fit 
all our data with one R value as explained in 9 3. This circumstance should not affect 
much the form of the leading scaling function fo( z )  which is not sensitive to the choice 
of R and which appears to be very similar to the one found by Hoshen e? a1 (1979). 
Unfortunately, the value of R chosen affects the form of the correction-to-scaling 
function f l (z)  (sometimes beyond the shown statistical error bars). The result of our 
attempt to fit all our data with only one R value is shown in figure 3. From this picture 
one may see that while In fo( 2) is a smooth parabola-like function which has a maximum 
at z = z,,,, the function In f l (z )  oscillates for z < 0 ( p  < p , ) .  But within the error bars 
it might also be presented as a smooth parabola-like curve with the maximum at z 
slightly below zmax. While at p ,  the functions fo(z) and f l (z )  are not much different, 
at z = zmax,f,( z )  is about five times smaller than f o ( z ) .  Above p ,  the correction function 
f l (z )  seems to decay slower than the leading function f o ( z ) .  If this trend continues 
for larger /zI the contribution from the correction term would be, for very large and 
rare clusters, larger than that from the leading term. The ratio fo(zm,,)/fo(0) obtained 
is about 4.9 which is in good agreement with Hoshen e? a1 (1979) fo(zmax)/fo(0)= 
4.9*0.1, and Djordjevic et a1 (1982) fo(z,,,)/fo(0) =4.8-5.1. 

5. Discussion 

5.1. Three discrepancies 

In this section we will make an attempt to reconcile all the numerous series and Monte 
Carlo results for the correction-to-scaling exponent s2 in two dimensions (for the 
detailed review of estimated and conjectured values of R see Adler et a1 1983). Our 
Monte Carlo result at the percolation threshold p ,  (see 9 2) s2=0.64*0.08 is the 
lowest of all the existing numerical estimates of s2. Our result is in good agreement 
with the estimate of Hoshen et a1 (1979), R=0.67*O.l.  However, we never found 
R to be as high as the central value from previous series analysis s2 = 0.75 f 0.05 (Gaunt 
and Sykes 1976) or from our own series analysis R =0.8*0.1 (see 0 3). On the other 
hand, a recent result of a different type of series analysis (Adler et a1 1983) gives a 
direct estimate of R = 0.66* 0.07 (which is in very good agreement with our Monte 
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Figure 3. Scaling function fo(z)  (top curve) and 
‘correction-to-scaling function’ -f, ( 2 )  (lower two 
curves) obtained by Monte Carlo simulations on 
triangular lattices with 2.5 x lo9 sites and 5 X lo9 
sites. Two trial values of R are used in calculating 
these functions, R = 0.6 (U and +, corresponding to 
the two runs for a lattice with 2.5 x lo9, sites and 
one run for a lattice with 5 X lo9 sites, respectively) 
and R = 0.7 ( X  and A ,  similarly). The function fo(z)  
was not visibly different for the two cases, so only 
one full curve is shown. 

Figure 4. The same data as figure 2 ,  at p = p c ,  con- 
tinued to smaller values of l / s  by treating Monte 
Carlo data ‘as if’ these data were obtained from 
series. The symbols A ,  0, X correspond to the values 
of fi obtained from three consecutive points for 
L = 50 000, 70 000 and 95 000 respectively. The 
larger and smaller error bars are obtained from 
fitting over the extended ranges of s for L = 95 000 
and 130 000 respectively. The x-axis is ( s , , , , , ~ ~ ) - ~  
for this case, where saverage is the geometric mean of 
the lowest and highest bins used (e.g., saverage = 2’ 
for the data in the range Z4-2’”). 

Carlo analysis) and an indirect one (from an estimate of A I )  of R=0.48. There are 
thus three types of discrepancy: our Monte Carlo results differ from our series results 
(series results are higher), our series results differ from the Adler et a1 (1983) series 
results, and the Adler et a1 (1983) direct estimate differs from their own indirect estimate 
using A ,  (the exponent for p - p c  in the leading correction factor). 

5.2. The ‘true’ fl 

One wonders if the true value of s1 is somewhere in between the lowest and highest 
estimates (approximately 0.7) or if the very slight trend towards lower R shown by 
including clusters of much larger sizes leads to approximately 0.6. Still another possibil- 
ity, as suggested by our estimates of R at p # pc and by Adler et a1 (1983), is that two 
or more exponents (e.g. R -- 0.6 and R = 0.7) might compete at pc and at p # pc.  The 
value f l z 0 . 6  might be justified by applying the Aharony-Fisher concept of the 
corrections to scaling due to the nonlinear scaling fields to percolation. This application 
would imply already, in linear order, a mixing of temperature-like and field-like scaling 
variables ( p , - p )  and h (or l /s ,  since it is known (Stanley and Coniglio 1983) that 
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the scaling power yh = -ys). This linear mixing, however, would not be allowed if the 
symmetry of the q-state Potts model were to be respected (see appendix 2). If q = 1 
Potts model (percolation) would prove to be an exception, one would replace E = p c - p  
by the scaling field g P = [ E + E 2 + 1 / s + .  . .] and l / s  by the scaling field g,= 
[ l / s + l / s * + ~ / s + .  . .I. A s p = p , ( ~ = O ) ,  wefindonexpanding theleadingtermof (2) 

ns(Pc) = g:f"(g,/g:) = s--7f0(s--(1-u)) + . . .  
= ~ - ' ( f ~ ( o )  + ~ - ( ~ - ~ ) f b ( o )  +. . J. (8) 

Hence the leading correction-to-scaling exponent R = 1 - U = 1 - l/pS - 0.6. One 
would then also find many other correction terms at p # pc (for fixed z = ( pc- p)s"  # 0) 
with various values of R close to each other. These values arise from the various terms 
in g, and g, since within the scaling region (4) E - s-", e.g., at z = z,,, expanding 
fO(z) around its maximum value one finds after some algebra that there are three 
values of R < 1. Le., in addition to the analytic l / s  correction, there are three possible 
non-analytic corrections with R = U, 1 -U and 2u. The competition between those 
terms with amplitudes depending on the scaled variable z = ( pc - p )  s" might account 
for the different effective values of the correction-to-scaling exponent R away from 
the percolation threshold pc. But even apart from this tentative interpretation, the 
numerical data by themselves are not inconsistent with the existence of the correction 
term with Q = 0.6. 

5.3. The 'effective' R 

There is a discrepancy between the results of the ratio-like type of series analysis used 
by Gaunt and Sykes (1976) and by us (which overestimate 0) and the results of the 
method of Adler et a1 (1983) designed for studying the corrections to scaling. The 
reason for this discrepancy might be that the ratio-like methods (and also Monte Carlo 
analysis) pick up all the 'background' and therefore obtain an effective R (cf Greywall 
and Ahlers 1973). 

The degree of 'background' effect may also explain another major discrepancy, 
that between ratio-like series analysis and our own Monte Carlo results. To see this, 
note that the effective R is defined at pc as 

a,, = -logl(s'n,( P J  -fo(~))l / log s = 0 + (f2(o)/fl(0))(R2-R)J'n-n2'. (9) 

Here f2(0)  is the amplitude of the next-to-the-leading correction term with the exponent 
f12 > R;  J is the value of s suitably averaged over the region of analysis. Let us compare 
now the values of Re, one would get from series analysis (S- 10) and Monte Carlo 
analysis (S- 100 or even J =  1000 if one only takes into account larger clusters 29-211) 
if we had R = 1 - U - 0.6 and R2 = 1.0 (assuming the next correction is analytic). Then 
a,, becomes linear in J-" and one gets for series with $ = l o :  a,= 
0.6+(f2(0)/f1(0))0.16 and for Monte Carlo a,, =0.6+(f2(0)/fl(O))0.06 for S =  100 
or ~ , ~ = 0 . 6 + ( f ~ ( 0 ) / f 1 ( 0 ) ) 0 . 0 3  (for J =  1000). The correction will be positive if 
f2(0) < O  (since we know that fl(0) < O )  and if f 2 ( 0 )  is of the order of fl(0) (similarly 
to fl(0) being of the order of f(0) as seen in figure 3) this comparison might account 
for the discrepancy between our series and Monte Carlo results. This argument 
becomes weaker, though, if there exists an Q 2  in between 0.6 and 1, e.g., a2=O.8, 
but it still shows some difference between the effective s2 obtained by different methods. 
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On the other hand, Adler et a1 (1983) claim true exponents instead of effective ones, 
and try to distinguish between the two close values of 0. 

.5.4. Attempt to reconcile series and Monte Carlo results 

There is another way to understand the difference between our series and Monte Carlo 
data in one picture (see figure 4). The Monte Carlo data obtained for our largest 
systems with over 2 X lo9 sites are gcod enough to be analysed as if they were series 
data (see the method in 0 2), namely from three consecutive points (like s = 32, 64, 
128) we calculate the s-dependent R, using ( 5 )  and then plot it against the reciprocal 
central value of s (e.g. 1/64 in the above example) together with the series results. 
Only for scentTal=16 (meaning the fit for s = 8 ,  16, 32) the Monte Carlo result is 
compatible with series results. But for s >  16 the curve seems to show a maximum 
and then decreases to R - 0.6, or it flattens (as it is the case for our largest system of 
17 X lo9 sites) giving R - 0.7. One might also plot on the same picture the values of 
R fitted over different extended ranges of s (like s = 24-2n or s = Z5-2l1) against the 
reciprocal average s of this range (s = 26 or s = 28 in the above example). There is, 
however, an ambiguity here since the average s is the same for ranges s = 24-28 and 
s = z3-Z9 but R usually are not. We show these fitted R only for the two largest lattices 
on figure 4 and, interestingly, the lattice with 9X lo9 shows a maximum while the 
lattice with 17 X lo9 sites shows a flattening, if not monotonic, behaviour. Hence, the 
only conclusion we can draw from figure 4 is that the ratio-like series methods, which 
use only rather small s, overestimate R. 

5.5. The two values of R 

The last major discrepancy arises in the work of Adler et a1 (1983) where the estimates 
of R and A I  were made independently and failed to reconcile via the relation (Nakanishi 
and Stanley 1980) 

fl = A l / p S  (10) 
( A l  was found to be around 1.25, which gives R ~ 0 . 4 8  as compared to the value of 
R found by the same authors: R --. 0.59-0.73). If one takes this discrepancy seriously? 
one might conclude that the reason why this lower exponent R = 0.48 does not show 
in our analysis is that the amplitude of the corresponding correction term is very small. 
We could also speculate as follows. The estimate of AI was made from the analysis 
of the series expansions of susceptibility where the ‘ghost-field’ was set to zero ( h  = 0). 
Therefore no Aharony-Fisher (1983) type correction was present, apart from a trivial 
analytic correction with A I  = 1. Hence one finds here the correction-to-scaling term 
due to the irrelevant field$. But analysing the Monte Carlo and series data for 
percolation cluster numbers for p = pc and h # 0 one should have observed both 
exponents: R = 0.6 and R = 0.5. Therefore, this gives one more reason to believe in 
lower values of the effective exponents as opposed to the higher ones. 

+ The quoted value of A is in agreement with that of Stauffer (1981) and was recently confirmed by Privman 
and Fisher ( 1983) by the study of the convergence properties of the phenomenological renormalisation 
data. However, Herrmann and Stauffer (1983) have arguments that in the type of data analysed by Stauffer 
(1981) the correction term is L-”” = L-O ’’ which agrees well with the data and has nothing to d o  with 
the A ,  discussed. 

The value of A ,  - 1.25, notably, is close to the value of A ,  for n-vector model in two dimensions (Le Guillou 
and Zinn-Justin 1980) and the corresponding value of R is relatively close to the value of ~ 2 0 . 4 .  
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6. Finite-size scaling analysis 

For our systems of finite (though very large) linear size Lone  might postulate, following 
Margolina et a1 (1982), a finite-size scaling hypothesis for large s, large L and p close 
to P c  

n,( p )  = s - ~ ~ ( z ,  s ” ~ L - ’ )  + s- ‘-yl ( z ,  s ” D L -  I ) ,  (11) 

where D is the fractal dimension (Stanley 1977, Stanley and Coniglio 1983), 1 / D  = 
uv = 48/91 is the mean cluster radius exponent, and z = ( pc-p)s“. For s << L but still 
large (this is no problem for our very large systems) one can expand n,( p )  in s ” ~ L - ’  
and leaving only the linear term one gets at pc 

n,(pc) = s - 7 ( q , + q , s - n + q , s ” D ~ - ’ ) ,  (12) 

where qo, q l ,  qL are constants independent of s and L and the last term is the leading 
finite-size correction. This linear form of correction is suggested, in our case, by the 
choice of free boundary conditions. Thus, a fraction of large clusters is split into 
smaller clusters due to finite L. This leads to an overcounting of smaller clusters by 
an amount proportional to s “ ~ L - ’  as discussed in § 2 .  Therefore, it seems plausible 
to consider the finite-size corrections linear in slIDL-’ along with the corrections to 
scaling. Note that it is not clear whether the choice of the periodic boundary conditions 
would make things better but it would certainly cost more memory space (see Heermann 
and Stauffer 1980, Jan and Steinitz 1983). Periodic boundary conditions instead of 
free boundaries ihould reduce the finite-size effect for small clusters. But it is not clear 
whether they would have been useful for the ‘plateau’ cluster sizes we are interested 
in. Our data for the largest lattices (sizes larger than 2.5 x lo9 sites) turn out to be 
compatible with finite-size scaling hypothesis (12) (see figure 5). We therefore make 
an attempt to fit our data including the finite-size corrections. Thus, for a given & a 
linear least-squares fit was made of the function ( N ,  -JLssl”’L-’) against sfR. 

lag, lsl131070/LlC1 log, [s11310701L~01 

Figure 5. ( a )  Finite-size scaling plot showing the values of partial sums SI-’ I,.,, n,. of 
equation (3) for various lattice sizes, L = 50 000 (O), 70 000 (+), 95 000 ( x )  and 
130000 (0). The error bar shown is representative. For part ( b ) ,  the y-axis is 
s‘-’ I,,,, n,,-ils-” where $, =0.013 and R =0.66 is estimated by a joint fit of the four 
largest lattices sizes. 
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The partial sums (3) for different s in the same computer run (same L )  are not 
statistically independent, whereas those in different runs are. Hence we fit the data 
separately for each L as a function of parameter qL and then select the value of fl for 
which the total error becomes minimum. The total error is taken to be the mean 
square deviation for L = 130 000 plus half of the mean-square deviation for L = 95 000 
plus quarter of the mean-square deviation for L = 70 000. This minimum value is 
plotted in figure 6 against the chosen finite-size parameter qL. It shows a minimum 
at about qL = 0.092 * 0.08. The value of R obtained by this joint fit for s = 23-29 of 
our four largest lattice sizes increases our effective R to 

R = 0.66 * 0.03 (13) 

(the error bar is purely statistical). However, a larger error bar due to the unknown 
systematic errors would still not exclude the value of f l z 0 . 6 t .  The value obtained 
for 90 = 0.0294 agrees with the plateau value for partial sums obtained in § 2 after the 
subtraction of the finite-size effect. For the partial sums one gets, finally, the scaling 

0 66 

R 
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t- 
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X 
X 
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Figure 6. Variation of the effective correction exponent R (crosses, left scale) and of the 
mean square deviation (full circles, right scale) for fits with (a) two largest lattices 
L = 95 000, 130 000 and ( b )  four largest lattices L = 50 000,95 000,70 000, 130 000. The 
x-axis IS in the parameter i1 of equation (12)  (il = q l / ( ~ - l - l / D ) j .  

t The plausibility arguments of Nienhuis (1982) for yz = UYR = 2 would mean R = 96/91 for the corrections 
due to the irrelevant operator. This exponent is larger than all our estimates, suggesting that we see more 
important corrections, perhaps of the Aharony-Fisher type. 
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behaviour of 

sr-’ n,. =0.0279-0.013 ~ - “ . ~ ~ + 0 . 1 7 5  s ” ~ L - ’ ,  (14) 
S ’ 3 S  

in good agreement with the results of our previous fits of the partial sums. 

7. Summary 

In summary, we studied the corrections to  scaling for percolation cluster numbers in 
two dimensions. We found at the percolation threshold the correction-to-scaling 
exponent R=0.64*0.08. Away from pc ,  at p=pmax ,  the average effective R z 0 . 7 5  
is found to be slightly higher. We found that the ratio-like methods may overestimate 
the effective correction-to-scaling exponent R. The finite-size scaling analysis was made 
for our largest lattices. It seems likely that the leading corrections to scaling are not 
due to irrelevant scaling fields. It is possible that instead they arise from mixed terms 
in the scaling fields as postulated by Aharony and Fisher (1983). 
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Appendix 1. The Hoshen algorithm for large systems 

A l .  1. Random number generators 

The Monte Carlo evaluation of the cluster numbers was done by the algorithm of 
Hoshen and Kopelman (1976), using a FORTRAN program on an IBM 3081 and 
370/ 168 computers at Boston University and CDC Cyber 76 at Cologne University. 
To analyse one million sites on any of these computers required about 10 seconds; 
the single run for 70 000 X 70 000 thus took about 12 hours of time on the IBM 3081. 
A FORTRAN program has been published (Stauffer et a1 1982) and therefore is not 
reproduced here. 

For the very large lattices employed here special precautions are necessary. For 
50 000 X 50 000 we used first the usual ‘randu’ random number generator (multiplica- 
tion by 65 539 modulo 231). We then found reasonable results except that the 
correction-to-scaling exponent R appeared to be appreciably higher than for the 
35 000 X 35 000 lattice and close to unity. Since this random number generator pro- 
duces at most Z 3 O  different random integers, and since the 50 000 X 50 000 lattice 
contains about twice as many sites, we then chose another method where one random 
number generator picks a random integer from a table produced by another random 
number generator (Ambegaokar eta1 1973). The results were roughly the same except 
that the computer time was increased by about 50°/o.  Finally we used the new random 
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number generator of Kirkpatrick and Stoll(l981) in a form which produces normalised 
real random numbers, supplied to us by C Mitescu (Pomona College). With this 
random number generator we could nearly reach the old computation speed again; 
and the resulting (near 0.6) was compatible with what we found from the smaller 
lattice. We find this last generator the most trustworthy one and use only this result 
in our analysis of 50 000 X 50 000 lattice. The same random number generator was 
then used for 70 000 X 70 000. The 95 000 X 95 000 and 130 000 X 130 000 lattices 
were run on a CDC Cyber 76 computer, the latter simulation consuming 26 hourst. 
This is not only our largest system size but to our knowledge far exceeds the size of 
any other system simulated on computers (with the exception of a three million X three 
million lattice simulated by Dhar (1982) for directed percolation; that simulation may 
also be regarded as a curved one-dimensional walk of length three million). Our 
simulation thus may be the first large-scale test of the Kirkpatrick-Stoll random number 
generator. (Using Ising models and a different generator, Hoogland et a1 (1983) used 
ten times more random numbers and found subtle deviations from exact results.) 

A1.2. Memory space and recycling 

Another problem is memory space. The Hoshen algorithm in the form published by 
Stauffer et a1 (1982) requires for two dimensions that only one line of the lattice, and 
not the whole lattice, is stored at one time. The computer analyses the lattice as a 
typewriter writes on a page. But beside that array, called LEVEL by Stauffer et a1 
(1982), one needs another array, called N there, which gives the label tree indicating 
which different labels belong to the same cluster. An integer, called INDEX, is increased 
by unity whenever a new cluster seems to start; then N(INDEX) is put equal to unity, 
and later may be changed into a different value. Thus the size of the array N needs 
to be at least as large as the total number of events where a new cluster seems to start. 

How often is this the case? A new cluster seems to start whenever all previously 
analysed neighbours of a new site are empty, whereas the new site is occupied. For 
the triangular lattice, this happens with probability p (  1 - - P ) ~  since three of the six 
neighbours of the new site were analysed earlier. At p = pc = $, this probability is &; 
thus more than six percent of the lattice sites seem to start a new cluster. It is of little 
help that most of these seemingly new clusters later turn out to be connected to an 
old cluster: the index has already increased by unity and requires therefore an additional 
memory space in the array N. Therefore, to use systems with more than one million 
sites, a ‘recycling’ of labels no longer used is necessary, as we will now describe in 
detail. Different forms of recycling have also been used in previous simulations of 
large lattices (Hoshen and Kopelman 1976, Eschbach e ta l l981)  but were not described 
there. 

If we reached the end of, say, line 1000 in a 10 000 X 10 000 lattice we may separate 
all occupied sites into three classes: those which belong to clusters extending from the 
first or a later line to line 999 at most, which we call the finished clusters; those sites 
which belong to clusters having at least one site on line 1000, which we call the current 
clusters; and finally the future clusters, which start in line 1001 at the earliest and 
about which we know nothing yet. If we are interested in cluster numbers only, and 

t Due to a programming error, the computer stopped working after 131 068 of the required 131 070 lines, 
and our analysis had to rely on the last intermediate output after 129 498 lines. Therefore, we denote this 
lattice as one of size L = 130 000. 
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not in clusterxluster correlation, we no longer need the labels N(INDEX) corresponding 
to the finished clusters; we only need to store the number and the size of the finished 
clusters. Thus we analyse once again line 1000 (i.e., we apply the subroutine or function 
‘class’ to sites i = 1,2 ,3 , .  . . of line 1000) in order to know precisely what clusters we 
have up to now (Hoshen and Kopelman 1976; Stauffer et a1 1982). By this process 
we check how the occupied sites are connected so far, and we treat each start of a 
new cluster on that line as the addition of another cluster, thus increasing further the 
index J, counting seemingly new clusters. If the classification subroutine results in a 
LABEL larger than the value of INDEX before recycling, then we know that this site is 
connected to a current cluster which had touched the line 1000 before; so we merely 
give this site a new label  LEVEL(^) equal to the value LABEL-INDEX (where INDEX 
stays as its value before recycling). If the occupied site i is a neighbour to another 
occupied site i - 1 to the left, then it gets the same label:  LEVEL(^) = LEVEL(i- 1). 
Finally, if the occupied site i has an empty left neighbour and the label resulting from 
the reclassification is not larger than the value of INDEX before the start of recycling, 
then a new current cluster seems to start here, and thus the current index J is increased 
by unity, the label tree N is adjusted accordingly, and LEVEL( i )  gets the value J-INDEX. 

Having thus redefined the array LEVEL for this line, with proper labels starting 
from 1, we go through the labels of the finished clusters (between label= 1 and 
label = INDEX) and analyse the size distribution of the finished clusters. Finally, all 
elements N ( m )  with labels m between 1 and INDEX can be forgotten since they belong 
to finished clusters; only labels between  INDEX+^ and the last value of J are 
important since they correspond to current clusters. Thus we shift the information 
contained in N(INDEX+ l), N ( I N D E x + ~ ) ,  . . . , N ( J )  to  the memory locations 
N( l ) ,  N ( 2 ) ,  . . . , N(J-INDEx). In this way, most of the array N becomes available 
for the future clusters. 

For the 70 000 X 70 000 lattice, we used an array N of size 180 000 and started 
the recycling whenever the index came close to this maximum value, i.e., whenever it 
was larger than about 157 000. In total, we need a memory of about one megabyte. 
Recycling occurred about every 30 lines; after a recycling the value of INDEX had 
shrunk to about 10 000. Thus for the long runs (50 000 X 50 000, 70 000 X 70 000, 
95 000 X 95 000, and 130 000 X 130 000) we also stored intermediate results on the 
disc to allow the whole job-to run in several installments. The end of recycling is an 
appropriate time to put the status of the lattice on a disc without wasting too much 
memory space. Basically our method, due to one of us (HN), has the advantage over 
that of Hoshen and Kopelman (1976 and Hoshen, private communication) that it 
stores only one line, whereas Hoshen and Kopelman (1976) always store two lines. 
Thus it frees the amount of memory used for storing the extra line and makes it 
available for increasing the size of the array N ;  this in turn reduces the number of 
recycling and consequently execution time. The advantage is greater when recycling 
is frequent. 

While the simulation of even larger lattices would not be impossible in terms of 
computer time and memory, another problem would appear for lattices of size greater 
than 100 000 X 100 000. The size of the largest cluster at the critical point would be 
larger than (z3l - l),  making that size negative on IBM computers. Negative sizes, on 
the other hand, are used to connect different labels, and could lead to catastrophic 
results; far above pc it would occur already for 50 000 X 50 000 and 70 000 x 70 000 
lattices. We avoided this problem simply by using a CDC computer for larger size 
lattices since CDC machines have 60 bit words, much larger than IBM. 
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Appendix 2. Potts model argument 

In this appendix, we argue that the underlying symmetry of the q-state Potts model 
suggests the absence of linear mixing in the temperature-like scaling field g, as well 
as in the field-like scaling field gh. Since percolation is considered to be a q + 1 limit 
of the q-state Potts model, this argument appears to favour the absence of such mixing 
for percolation also. In what follows, we shall adopt the q-state Potts model language 
for general integral q. Thus, we consider the Hamiltonian 

(A2.1) 

where the variables si at each lattice site i assume the vector values eo for some a 
(= 1 , 2 , .  . . , q )  each of which is pointing toward one of the vertices of a ( q  - 
1)-dimensional multihedron, and H is an external field favouring one of these vectors. 

Let us assume an exact, asymptotic scaling form for the singular part G, of the 
free energy: 

G, -- Ig,12-"y(ghllgrlA)5 A =  P S  = l/a, (A2.2) 

where gr and g, are in general nonlinear scaling fields (coefficients omitted), 

g, = t (  1 + t + h + . . *) + h + . . * , 
g, = h ( l + t + h + .  . . )+ t+ .  . . , 

(A2.3) 

(A2.4) 

with t = ( T  - Tc)/  T, and h = ( H /  kBT)e'  = h * e'. We argue that g, cannot have a linear 
term in h and that gh cannot have a linear term in t. (In fact, the latter claim can 
almost be shown based on a different argument; see below.) 

The scaling field g, is an analytic function of t and h, and so is g,. Now, g, must 
be invariant under a symmetry operation on the system because it couples to IsI2 at 
criticality, and gh should transform like a projection of s under the same operation. 
In our case, the permutation group of the q possible states (or directions of order) is 
the symmetry operation in the absence of h ;  however, in the presence of h, this field 
must also be rotated to leave the Hamiltonian invariant. For example, for q = 3, when 
the order s is rotated from e' to e2,  one must also change h = hoe' to hoe2. Thus, the 
only allowed occurrence of h in gr should be invariant combinations under these 
transformations. Similarly, since h itself transforms like s, g, must be a linear term 
in h multiplied by terms invariant under the transformation. The allowed combinations 
of h in g, and in gh/ h are thus, e.g., 

h ' h = h;, or C e;ezezh,h,h,,  
U 

1,m.n 

(A2.5) 

or higher orders. Incidentally, the latter vanishes for q = 2 (Ising), leaving even fewer 
invariants than for q # 2. Thus, it is possible to have fewer invariants for special values 
of q, but not more. A linear term such as h - n̂  (where n̂  is a fixed vector) is clearly not 
permissible for any q. 

If we further assume that nothing strange happens as q + 1, then no linear mixing 
is allowed for percolation, either. Actually, the argument is much more general: if 
any symmetry operation (locally about the critical point) transforms h at all, then no 
linear term in h can be present in g,, for any Potts model. 
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Moreover, the claim that gh has no linear term in t can be placed on even more 
secure footing. This observation follows quite simply by considering the scaling law 
(A2.2) (which we assume) and the additional assumption that all singularities expressed 
in (A2.2) occur at h = 0 with some actually occurring at t < 0. (We consider the g, < 0 
branch of Y ( x ) . )  The singularities at h = 0, t < 0 must be those of Y ( x )  since the 
prefactor Igr/2-a is not singular there. If Y ( x )  is singular at, say x = xo,  then all points 
( t ,  h )  satisfying gh/lgrlA=xo are also singular. We would then in general have an 
equation mixing t and h for a trajectory of singularities. The only sensible way to 
avoid singularities for h # 0 is by identifying xo = 0 (and gh = 0 if h = 0). 
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