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We study the self-avoiding walks (SAW) on a square lattice whose various degrees of random- 

ness encompasses many different random networks, including the incipient clusters of the directed, 

mixed and isotropic bond percolation. We apply the position-space renormalization group (PSRG) 

method and demonstrate that within the framework of this method one is bound to find that the 

critical exponent v of the mean end-to-end distance of SAW on various two-dimensional random 

networks should be equal to the critical exponent of SAW on the ordinary square lattice. A 

detailed analysis of this finding, and similar findings of other authors. lead us to conclude that a 

debatable opposite finding, which has been predicted on the basis of different approaches, could be 

attained after a substantial refinement of the method applied. 

1. Introduction 

The self-avoiding walk (SAW) is a random walk that must not contain 

self-intersections. Statistical properties of the walk on a lattice are expected to 

expose criticality when the number of steps N approaches infinity. There has 

appeared an intriguing question that concerns the criticality of SAW when the 

translational symmetry of the underlying lattice is randomly perturbed, for 

instance by a quenched dilution of bonds. The most frequently studied quantity 

is the mean squared end-to-end distance critical exponent v. In the last decade, 

almost twenty papers have been published I-“) offering different and, in some 

cases, conflicting answers. Roughly speaking there are two sides. On one side 

there are authors who claim that the critical exponent v of SAW should be 

changed when a translationally invariant lattice is perturbed. On the other side 

there are those who claim that I, should not be changed. Various theoretical 

methods have been applied in these studies. In particular, the renormalization 
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Fig. 1. The composition tetrahedron and the phase diagram of the four component random 

resistor-diode networks. For each point within the tetrahedron (1.1) is satisfied, that is to say the 

perpendicular distance to any face is equal to the probability of having the type of bond labelled at 

the opposite vertex. The points on the shaded surfaces correspond to the second-order percolation 

phase transition, and thus the line where they meet, i.e. the line that connects the point I and RM, 
is a multicritical line”). Fixed points of the RG transformations”) for the four probability 

parameters are depicted by the heavy dots. except for the mixed percolation point M which is 
indicated by the open circle. The point 11 = 1 corresponds to the ordinary square lattice, and, in the 

text, it will be designated as <XL. 
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group method has been used 011 both sides. This fact motivates our study of the 

problem. 

We study the SAW problem on a square lattice whose randomness encom- 

passes many different random networks. Namely, we assume that a bond of the 

square lattice can be present or removed with the probabilities p and q 
respectively. Furthermore, we assume that a bond can be eastward or north- 

ward oriented with the probability p+, whereas it can be southward or 

westward oriented with probability pm. The four probabilities satisfy the 

following relation: 

p+p++p-+q=1. (1.1) 

The self-avoiding walker can pass along a non-oriented bond in any direction 

(of course, only for one time), while the oriented bonds can be passed only in 

the prescribed directions. From the physical point of view, the non-oriented 

bonds can be conceived as resistors, the oriented bonds can be conceived as 

diodes, and consequently the removed bonds should be viewed as vacancies. 

The corresponding network of bonds we shall call the random resistor-diode 

(RRD) network. The percolation problem*“) of the RRD network was studied 

by Redner”). He applied the position-space renormalization group (PSRG) 

method and found that, depending on the set of values (p, p+, p_, q), there 

are various percolation thresholds (cf. fig. 1). Thus the point I = ( $, 0, 0, 4) 

corresponds to the standard (isotropic) bond percolation threshold*“) and 

appears to be a fixed point*‘), whereas the so-called random Manhattan point 

RM = (0, 4, $, 0) corresponds to a multiple percolation threshold17.“) whose 

critical properties are governed by the mixed percolation fixed point M z 
(0.2563, 0.2437, 0.2437, 0.2563). In fact, every point on the line defined by 

p=q#$andp+ = p_ # 0 corresponds to a specific percolation threshold with 

the critical properties determined by the fixed point M ‘I). 

In this paper we demonstrate that the critical exponent v of SAW on all 
RRD networks that are represented by points on the multicritical line (the line 

between RM and I) and on the line between I and the p = 1 point should be 

same, which means that v of the translationally invariant lattice (the p = 1 case) 

should remain unaltered. This is proved within the framewori. .>f the PSRG 

method2*) with an arbitrary resealing factor. The details of our argument are 

presented in the next section, and later, in section 3, we present an overall 

discussion of our finding and findings of other authors. 

2. Renormalization-group analysis 

The relevant criticality of SAW is assumed*“) to be captured by the two 
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power laws: 

C, - /NY ’ (2.1) 

and 

(R;,) - N"' , (2.2) 

where C,\, is total number of distinct N-step walks, (Ri,) is the mean squared 

end-to-end distance, p is the connectivity constant (the ratio C,V+,/C, ap- 

proaches p when N--t x), and y and LJ are the critical exponents. Further, it is 

customary to introduce the weight factor K (fugacity) for each step of the walk 

and to define two generating functions: 

* 

Z(K) = c C,,K" (2.3) 
,!Vm,, 

and 

5’(K) = i K"CJ R;) /Z(K) , 
A’ 0 

(2.4) 

so that their leading singular terms are of the form 

Z(K)-(I - KF)-~, (2.5) 

c’(K) - (1 - Kp) “’ , F-9 

when K approaches 1 lp from below. 

To study the criticality of SAW on a randomly perturbed lattice we look for 

an appropriate generalization of the generating functions (2.3) and (2.4). To 

this end let us rewrite (2.3) so that each individual walk is represented by a 

separate term in the sum 

Z(K) = 2 K"\ , (2.7) 

where S enumerates all possible walks. Now, when the lattice is randomly 

perturbed, each conceivable walk should be weighted by the probability that 

the underlying combination of bonds is properly preserved. For instance, if the 

square lattice is transformed into an RRD network, the four-step walk from 

point A to point H (cf. fig. 2) should be weighted by the probability 



SELF-AVOIDING WALKS ON RANDOM NETWORKS 

Fig. 2. The probability Ps of the feasibility of the four-step walk (SAW) from the point A to B, on 

a RRD network, is equal to ( p + p+)‘( p + p_) since the first, second and fourth step are feasible 

only if the underlying bond is either a resistor or a diode that is positively oriented, whereas the 

third step is feasible only if the corresponding bond is either a resistor or a negatively oriented 

diode. 

(p + p+)‘( p + p_). Thus the generating function for SAW on an RRD net- 

work should be of the form 

z(K, P, P+ 3 P- 9 4) = c WNS 7 

s 
(2.8) 

where P, is the probability that the combination of bonds which corresponds to 

the Sth walk is preserved within the RRD network. It should be noticed that 

every P,y can be written as the product 

Ps=fi P,> 
i=l 

(2.9) 

where pi is equal to either p + p+ or p + p_. Hence the generating function 

(2.X) is, in fact, a function of the products K( p + p,) and K( p + p_). Similar 

arguments are applicable to the generating function (2.4). 

If we apply the PSRG method**) to study the SAW problem on an RRD 

network, our first step should consist in resealing the RRD network under 

study into a new coarse-grained RRD network. For this purpose we shall use 

the cell-to-bond mapping with the scale factor b and the percolation rule*l) 

illustrated in fig. 3. According to this mapping, a b x b cell of the underlying 

square lattice maps into the 1 X 1 cell, so that the vertical (horizontal) bond of 

the new cell becomes a positively oriented diode if the original cell carries such 
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Fig. 3. Resealing of a 3 x 3 cell of the square lattice into the I x 1 cell of a new coarse-yraincd 

lattice, and mapping of a part of the RRD network (heavy lines) into a part of the new 

coarse-gained RRD network. The vertical bond of the new cell is mapped into the northward 

oriented bond because the original configuration of bonds can be traversed vertically only in the 

northward direction. whereas the horizontal bond of the new cell is mapped into a nonoriented 

bond since the original configuration of bonds can he traversed in both horizontal directions. 

a configuration of diodes and resistors which sustains only the northward 

(eastward) directed percolation. Similarly, if the original cell carries such a part 

of the RRD network which can be traversed in both vertical (horizontal) 

directions then the vertical (horizontal) bond of the new coarse-grained cell 

maps to a resistor. Finally. a nonpercolating configuration of bonds on the 

original cell maps to a vacancy in the new cell. Thus a regular array of new 

cells brings on a new RRD network. The renormalized probabilities p’, pi. pl 

and q’ that a bond of the coarse-grained RRD network is respectively a 

resistor, one of the two kinds of diodes, or a vacancy, are definite functions of 

the original probabilities 

(2.10) 

These functions appear to be sums of probabilities of having appropriate 

configurations of bonds on the original b x b cell (Redner*‘) displayed their 

explicit form in the case b = 2). They are in fact the RG transformations, with 

certain well established*‘) symmetry properties, which elicited the phase 

diagram shown in fig. 1. One of the important features of the phase diagram is 

that the line which connects points RM and I remains invariant under the 

transformations (2.10). 

The second step in applying the PSRG method to the SAW problem should 
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consist in establishing an RG transformation for the fugacity parameter K. If 

we want to study critical properties of the mean squared end-to-end distance 

only, it is sufficient to renormalize all the walks in one particular direction22). 

Therefore we consider only the walks from the south to the north, and, in 

accordance with the accepted form of the generating function (2.8), we require 

that the weight K’ of one step on a bond of the coarse-grained RRD network, 

multiplied by the probability p’ + p:, should be equal to the sum of weights of 

all northward oriented walks on all suitable configurations of bonds on a cell of 

the original lattice. To clarify this statement, we depict, as an example, all 

walks on a 2 x 2 cell (cf. fig. 4) whose respective weights are displayed on the 

right-hand side of the equation 

K’(p’+p;)=$[(p+p+)2K2+(p+p+)3K3+(p+p+)3K3 

+ (P + P+)“(P + P-)K4 + (P + P+)*K’ 

+(P+P+)~(P+P-)K~+(P+P+)‘(P+P~)K~ 

+ (P + P+)“(P + pm)K41 > (2.11) 

where the prefactor i means that the two possible entries on the bottom of the 

2 X 2 cell are equally weighted, which means that the latter equation is formed 

according to the so-called “equal-averaging”24) rule of the PSRG treatment of 

the SAW problem. However, it should be noticed that with any other possible 

rule one would similarly find the following RG transformation: 

K’(P’ + P:) = F,[(P + p+)K, (P +p_)K] , (2.12) 

where the function Fb turns out to be a polynomial with positive coefficients. 

Eqs. (2.10) and (2.12) comprise the complete set of the PSRG transforma- 

tions prepared for an analysis of the SAW problem on any RRD network, 

including, among other possible cases, the isotropic percolation network of 

bonds (p + q = 1, p Z 4, p+ = p_ = 0). Let us start with an arbitrary RRD 

network represented by a point on the line that connects points RM and I (cf. 

Fig. 4. Eight different northward oriented self-avoiding walks on a 2 x 2 cell. The respective 

weights of these walks are given on the right-hand side of eq. (2.11). 
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fig. 1). In such a case the following equalities are compatible”) with eqs. 

(2.10): 

P+P+=L p+p_ =;, 

p’+pi =;, p”P:_=;. 

and, on this ground, eq. (2.12) reduces to 

K’=2F,,($K, iK), (2.14) 

(2.13) 

or 

K’=2g,($K), (2.15) 

where we have emphasized that K’ appears to be a one-variable function. 

Therefore, the corresponding value of the critical exponent v is independent of 

the values of p, p + , p_ and q, that is to say it is the same for all RRD networks 

represented by the line between RM and I. Indeed, the critical exponent v is 

determined by the formula2’) 

Y = In b/In A, (2.16) 

where A is the eigenvalue h = (dK’/dK),,,, of the RG transformation (2.12), 

evaluated at the fixed point value K*. In the case we are analysing the latter is 

given by 

KT=2g,(;K:), (2.17) 

where the subindex 1 has been introduced in order to distinguish it from the 

next case. One can see that KY does not depend on the bond probabilities, 

and, thereby, the corresponding A, given by 

A, = (dK’IdK),_,; = g;( ;KT) (2.18) 

and the concomitant v,, evaluated according to (2.16), are independent of 

these probabilities. 

The next case we are going to analyze is the ordinary square lattice (OSL) 

with no perturbations at all. Then p = 1 and p+ = p_ = q = 0, so that the RG 

transformation (2.12) reduces to 
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K’ = g,(K) , 

and the fixed point fugacity turns out to be given by 

K; = a,(G) , 

whereas the corresponding eigenvalue appears to be 

4 = g;(G) 

(2.19) 

(2.20) 

(2.21) 

Comparing eq. (2.20) with (2.17), and (2.21) with (2.18), one can see that the 

equalities 2Kz = K, and A, = AZ hold, and consequently one finds that the 

critical exponent equality v1 = V, holds as well. This result implies that SAW on 

any RRD network, represented by a point on the line between RM and I, has 

the same critical exponent v it has on the ordinary square lattice. 

The next question to be answered concerns the bond percolation networks 

that are represented on the phase diagram (cf. fig. 1) by points that lie on the 

tetrahedron’s edge between p = i and p = 1. The SAW critical exponent v on 

these networks can be deduced by studying simultaneously the first equation of 

eq. (2.10) and eq. (2.12) written for p+ =p_ =0 and 4 = 1 -p. Thus, in the 

case b = 2, for instance, eq. (2.10) gains the form21.‘*) 

p’ = ps + 5p4q + 8p3q2 + 2p*q” , 

whereas eq. (2.12) has the explicit form (2.11) which reduces to 

K’p’ = p2K2 + 2p”K’ + p4K4 . 

(2.22) 

(2.23) 

The flow diagram that stems from these two equations (cf. fig. 5) indicates that 

in the (p, K) plane there are two fixed points, one at p = i and the other at 

p = 1. The fixed points are connected by a critical line, and the RG flow on the 

line is from the p = $ point to the p = 1 point. Hence one may conclude that 

the SAW critical exponent v on all percolation networks with 4 < p < 1 is equal 

to the SAW critical exponent v pertinent to the OSL (p = 1). In the particular 

case b = 2 one finds, from (2.16) and (2.23), Y = 0.7153 for p = 1. However, 

for larger b, values for v (at the p = 1 point) monotonically increase*‘) and it 

can be expected2*) that in the infinite cell-size limit the PSRG method would 

attain the presumably exact value2”) I, = f . Similarly, it can be expected22) that 

for larger b the pattern of the flow diagram could not change, and, accordingly, 

the conclusion that the SAW critical exponent Y is same for all networks 

defined by i <p < 1 (and p+ = 0 and p_ = 0) should stay valid for any b. 
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Fig. 5. Flow diagram generated by the RG transformations (2.22) and (2.23). The nontrivial fixed 

points I = (0.5, 0.9311) and OSL = (1, 0.4656) correspond, respectively, to SAW at the percolation 

threshold ( p, = 0.5) and to SAW on the ordinary square lattice (p = 1). 

3. Discussion 

In the preceding section we have demonstrated that within the framework of 

the PSRG method one should find that the critical exponent v of the mean 

squared end-to-end distance of SAW on various two-dimensional random 
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networks should be equal to the critical exponent of SAW on the ordinary 

square lattice (OSL). These networks include percolating clusters, and, for this 

reason, they can be termed fractal networks’X). As was mentioned in the 

introduction, the question whether the critical exponent v of SAW on OSL, for 

instance, should change when the translational invariance of the underlying 

lattice is perturbed has been given different answers. The kind of answer that 

we have obtained in the preceding section was suggested previously’). The 

suggestion was corroborated by the field theoretical RG calculationsx) and 

later it was disputed’0,‘2) by using different qualitative and quantitative 

reasons. As the disputing question has not yet been irrevocably answered, our 

finding should be, before drawing any other conclusion, contrasted with those 

adverse findings which were obtained by the same method, that is to say by the 

PSRG method. 

In fact, within the framework of the PSRG method there is no great diversity 

of results. The case of a random network of diodes (with no resistors and 

vacancies), or the so-called random Manhattan lattice (RM), was studied by 

the PSRG method”). The majority rule mapping, instead of the percolation 

rule mapping, was applied”) and by constructing a convenient flow diagram it 

was concluded that the critical exponent v of SAW on RM (cf. fig. 1) should be 

equal to the critical exponent on OSL. This result appears to be a particular 

case of the results obtained in the preceding section, and the latter should be 

regarded as a vindication of the former, for the percolating rule engenders a 

more exact mapping than the majority rule. On the other hand, several 

papers 5.‘3,‘4) have been published in which the SAW problem on the random 

networks that are represented by points on the line between I and OSL (cf. fig. 

1) has been studied by means of the PSRG method. Their findings are in 

agreement with ours, except for the claim that the critical exponent u for SAW 

at the percolation threshold (at the point Z) should be found different from v 

that is pertinent to OSL. However, we are going to argue that within the 

framework of the PSRG method this claim springs from artifacts. 

The three papers5.“%14) are very similar, and we are going to analyze the 

paper by Sahimi14) which is the most elaborate. Sahimi studied’“) the SAW 

problem on the site percolation clusters”‘) and, before applying the PSRG 

method, made a plausible suggestion that there should exist three different 

critical exponents V, V’ and V, that, respectively, describe SAW on an unper- 

turbed lattice, SAW on the largest percolation cluster and SAW on all clusters. 

When applied the PSRG method, Sahimi claimed that he calculated V, and 

found that it should be equal to v for all p, < p < 1 except for p = p,, when the 

inequality V’ > v should hold. Yet, we shall demonstrate that the application of 

the PSRG method presupposes an evaluation of v2 rather than V, (the first 

counter-fact), and the inequality V’ > I, (or v2 > v) at p = p, stems from an 

improper use of the method (the second counter-fact). 
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To demonstrate the first counter-fact we should recall that the first step in 

applying the PSRG consists in resealing (coarse-graining) of the underlying 

lattice. Thus, in the case of the site-percolation problem, a 2 x 2 cell is resealed 

into a site of the new lattice, and the latter is considered to be occupied, or 

vacant, depending on whether the occupation of the original cell is such that it 

can be, or it cannot be, traversed in both (vertical and horizontal) directions 

(cf. fig. 6). This resealing procedure, when applied to the whole lattice, does 

not conserve the largest percolation cluster. On the contrary, after one 

resealing step the largest percolation cluster can be torn and new smaller 

clusters can be attached to it (cf. fig. 7). Therefore, the PSRG method, in the 

way it is generally applied, implies dealing with all clusters rather than with the 

largest percolation cluster alone. 

The second counter-fact concerns the way Sahimi”) constructed the RG 

transformation for the fugacity parameter K. In our notation, Sahimi’s RG 

transformation, for a b x b cell, has the form 

(3.1) 

where the first sum runs over all possible configurations which span the cell, P,, 
is the probability of having such a configuration, and the second sum runs over 

all possible SAW that traverse the given configuration (in the vertical direction, 

for instance) and end on the lower layer of sites of the next upper cell. The 

disputing point is in that on the right-hand side of eq. (3.1) it was taken14) for 

certain (with probability p = 1) that the lower sites of the upper cell were 

occupied, whereas, at the same time, on the left-hand side of (3.1) the 

occupation of the upper cell was weighted with the probability p’ (cf. fig. 8). 

With such an inconsistency, one can find”) that, in the case b = 2, v = 0.7153 

for p, < p S 1, and v = 0.7531 for p = p,, and thereby one may claim that v is 

larger at the percolation threshold than ZJ pertinent to OSL (p = 1). However, 

j--p+ “-+ 
a b 

Fig. 6. A 2 x 2 cell, in the case of the site percolation, is mapped into an occupied site (a) when 

the original configuration of occupied sites spans the cell in both (vertical and horizontal) 
directions, whereas it is mapped into a vacancy (b) when the original configuration does not span 

the cell. 
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Fig. 7. Resealing of a part of OSL, together with a part of the largest site percolation cluster 

(deprcted on the left side of the original lattice) and a part of a smaller cluster (displayed on the 

right side of the original lattice). It should be noticed that, after the resealing, the lower part of the 

largest cluster becomes separated, whereas the smaller cluster becomes attached to the largest one. 

if the inconsistency is eliminated one retrieves the fact that v is same for all 

p, Sip 5 1. Indeed, there are two ways to treat eq. (3.1) consistently. First, one 

can take for sure that the upper cell is occupied and put on the left-hand side of 

(3.1) p’K’ instead of p”K’. Hence one obtains 

p’K’ = ; c (Z’,, c’ K"r) , 
n s 

2 

D 

: 

C 

1 

(b) 

A 

2 

D 

: 

C 

1 

- 
B 

i 

2 

1 

id) 

(3.2) 

Fig. 8. Taking for granted that the lower edge of the cell 2 is occupied, the SAW from A to D was 

weighted14) with the simple term p3(1 - p)K’. The fourth situation (d) shows that such an 
approach is not tenable. 
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which can be written in the form 

(3.3) 

where the first sum now runs over all SAW on a b x b cell, while the second 

sum runs over all possible occupations of the cell that make the given SAW 

feasible, and, for this reason, one can write the following equality: 

From (3.3) and (3.4) one finds 

(3.4) 

(3.5) 

or 

P’K’ = g,,( PK) 1 (3.6) 

where gb(pK) is a polynomial, in pK, with positive coefficients. The last 

equation, written for p = p, and p = 1, is completely analogous to eqs. (2.15) 

and (2.19). respectively, and on this ground one can easily draw the previous 

conclusion that v is same for p = p, and p = 1 (one should observe that the 

conclusion is not endangered by the fact that p, is not equal to i in the case of 

the site percolation). 

Finally. we should comment on the second way to treat eq. (3.1) consistent- 

ly. Now, one can keep the left-hand side of (3.1) unaltered, which is quite 

plausible, and weight each SAW, on the right-hand side of (3.1), with the 

probability p of having the last site of the walk occupied. Consequently, after 

the same rearrangements of (3.1) we have done in the preceding paragraph, 

one would obtain the new RG equation 

$‘K’ = ; c (PK)~,‘~ . 
.5 

(3.7) 

However, since both values p = p, and p = 1 correspond to the fixed points of 

the RG equation for p, one can put p’ = p in (3.7), and by this means one will 

retrieve the same conclusion that was obtained from eq. (3.6). This completes 

our analysis of the work of Sahimi”). Before proceeding further, we have to 

mention that, in forming the RG equation for K, Roy and Chakrabarti5) made 

a calculational error, whereas Lam and Zhang”) overweighted those configu- 
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rations which have more exits than entrances (for the incoming self-avoiding 

walker), and thereby both worksjzL3 ) provided the inconsistent conclusion that 

vis larger atp=p, than atp=l. 

In summary, we may repeat that we have demonstrated that within the 

framework of the PSRG method one is bound to find that the critical exponent 

v of the mean squared end-to-end distance of SAW on various two-dimensional 

random networks, including the percolation clusters, should be equal to the 

critical exponent of SAW on OSL. It is important to emphasize that we do not 

claim that our finding completely unravels the confusion about the right values 

of v (see the introduction). We merely assert that a proper application of the 

PSRG method to the SAW problem cannot lead to conflicting answers, as it 

seemed to be the case before this paper. The answer we have worked out may 

be a consequence of the approximate nature of the method applied, and may 

be eventually disproved. However, we claim that it is the single answer one can 

obtain, and to disprove it one would need a more sophisticated version of the 

PSRG method. In particular, although we are inclined to expect, on the basis 

of various qualitative arguments’2’14 ), that v of SAW on the largest percolation 

cluster can be larger than v of SAW on OSL, we maintain that to vindicate this 

expectation one will have to invent a new version of the PSRG method which 

will conserve exactly the self-similar structure of the largest cluster. 
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