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We investigate how the phase diagram of a repulsive soft-core attractive potential, with a liquid-liquid phase
transition in addition to the standard gas-liquid phase transition, changes by varying the parameters of the
potential. We extend our previous work on short soft-core ranges to the case of large soft-core ranges, by using
an integral equation approach in the hypernetted-chain approximation. We show, using a modified van der
Waals equation we recently introduced, that if there is a balance between the attractive and repulsive part of the
potential this potential has two fluid-fluid critical points well separated in temperature and in density. This
implies that for the repulsivesattractived energyURsUAd and the repulsivesattractived rangewRswAd the relation
UR/UA~wR/wA holds for short soft-core ranges, whileUR/UA~3wR/wA holds for large soft-core ranges.
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I. INTRODUCTION

The phase diagram of a typical monatomic substance is
comprised of solid and fluid phases, with the fluid phase
separating below the critical point into gas and liquid phases.
The prototype of such substances are simplesi.e., argonliked
fluids. Interparticle interactions in these systems can be ap-
propriately described by the well-known Lennard-Jones po-
tential. Other simple models—such as those described by the
hard-sphere square-well potential or by the hard-sphere-
Yukawa potential—exhibit similar phase diagramsf1g. All
these potentials consist of a short-range harshly repulsive
core plus a longer-ranged attraction. New insights into the
relationship between phase diagrams and interparticle inter-
action emerged recently from the finding that when the range
of the attractive component is sufficiently small, the liquid
phase and the gas-liquid critical point become metastable
with respect to crystallizationf2–9g. Shouldered potentials—
potentials with a hard core and a finite repulsive shoulder—
exhibit more exotic phase diagramsf10g. Simulations and
theories showed that such potentials may give rise to non-
trivial phase behaviors, such as isostructural solid-solid tran-
sitions and liquid-liquid transitionsf10–22g. The key to this
complex phase behavior resides in the peculiar penetrability
of the repulsive core, a feature that gives rise to adensity-
dependenteffective interaction.

The possible existence of a liquid-liquid phase transition
for single-component systems with a standard gas-liquid
critical point has received considerable attention in recent
years. Direct evidence of this phenomenon has been ob-
served experimentally in liquid phosphorusf23,24g and
triphenyl phosphitef25g. Experimental data consistent with a
liquid-liquid phase transition have also been presented for
other single-component systems such as waterf26–28g, silica
f29,30g, carbonf31g, aluminate liquidsf32g, seleniumf33g,
and cobaltf34g, among othersf35g. A liquid-liquid critical
point has also been predicted by simulations for specific
models of supercooled waterf36–38g, carbon f39g, phos-
phorus f40g, supercooled silicaf29,41,42g, and hydrogen
f43g.

We have recently shown through molecular dynamics
sMDd simulationsf15,19g that a system of particles interact-
ing through an isotropic potential with an attractive well and
a repulsive component consisting of a hard core plus a finite
shoulder may possess a high-density liquid phase and a low-
density liquid phase. Potentials with such characteristics
were used to model interactions in a variety of systems in-
cluding liquid metals, metallic mixtures, electrolytes and col-
loids, as well as anomalous liquids, like water and silica
f44–53g.

In spite of the simplicity of the model, the physical
mechanism that causes the liquid-liquid transition for a po-
tential with a hard core plus a repulsive shoulder and an
attractive well is not easy to assess since it arises from an
interplay of the different components of the pair interaction.
To disentangle the role of each component it is necessary to
investigate the dependence of the phase diagram on the po-
tential parameters. This task was undertaken in Ref.f20g,
where the results of MD calculations performed for several
sets of parameters were presented. The resulting behavior of
the critical points was interpreted through a modified van der
Waals equationsMVDWEd f20g, a mean field approach as-
suming that the effect of the repulsive shoulder at different
densitiesr and temperaturesT can be taken into account by
an effective excluded volume depending on bothr and T.
However, the analysis was limited to cases where both the
soft-core range and the attractive range are smaller than the
hard-core rangea and the total interaction range does not
exceed 2.6a. Nevertheless, there are cases such as biological
solutions and colloids where the soft-core range could be as
large as the hard-core or even largerf55g. For this reason,
and to gain a better understanding of the role played by each
component of a soft-core attractive potentials, we here ex-
plore how the phase diagram changes when the soft-core
range exceeds the hard-core diameter.

We use an approach based on integral equations, which
can be considered in many respects as an intermediate one
between simulations and MVDWE. In fact, solving an inte-
gral equation is far less time consuming than a simulation,
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but is by no means as accurate. On the other hand, a micro-
scopic theory is not based on the assumption typical of mean
field approaches, such as the MVDWE, that particles expe-
rience a uniform attractive potential. Hence it is intrinsically
more accurate.

In particular, we use the hypernetted-chainsHNCd integral
equation for the radial distribution functionf54g to estimate
the position of the critical points. We perform an extensive
investigation in the space of the potential parameters, con-
sidering an extremely ample number of combinations. This
makes it possible to frame previous results into a wider per-
spective and allows a better understanding of the physical
mechanism leading to a liquid-liquid transition in one-
component fluids.

Our results show that the high-density critical point can
be found only when there is a balance between the attractive
part and the repulsive part of the potential. In Ref.f20g this
balance was expressed through the mean fieldstrength of
attraction, a parameter related to the second virial coeffi-
cient, proportional to the attractive rangewA/a and inversely
proportional to the repulsive energyUR, for fixed attractive
energyUA. Here we find an approximate relation between
UR/UA and wA/wR swhere wR is the repulsive ranged that
quantifies the ideal balance between the repulsive and the
attractive components of the potential more effectively. Our
results show that the liquid-liquid phase transition can be
found in systems with small repulsion if the attraction is
small as well, withUR/UA~wA/wR, and in systems with
wide repulsion, withUR/UA~3wA/wR. Typical systems with
these characteristics are colloids, where the effective repul-
sion and attraction can be regulatedf57g.

II. THE ATTRACTIVE SOFT-CORE POTENTIAL

A soft-core potential with an attractive interaction at large
distances was first proposed, and studied through an exact
analysis in 1D, by Hemmer and Stellf44g to understand the
possibility of the solid-solid critical point in materials such
as Ce and Cs. Other soft-core potentials with an attractive
well were proposed and studied with approximate methods
or with numerical simulations to rationalize the properties of
liquid metals, alloys, electrolytes, colloids, and water anoma-
lies f15–22,45–53g.

The peculiarity of such potentials is the presence of two
repulsive length scales. This feature is typical of systems
with core-corona architecture such as, e.g., star polymers.
However, isotropic soft-core potentials have also been pro-
posed as effective potentials resulting from an average over
the angular degrees of freedom for systems where the dis-
tance of the minimum approach between particles depends
on their relative orientation. Thus, in some respect, they have
been consideredf50,52,53g as simplified models of complex
anisotropic interactions, such as those resulting from the hy-
drogen bonding between water molecules.

The model potential considered in this paper is similar to
that investigated in Refs.f15,16,19–21g. It is an isotropic
pair potential with two characteristic short-range repulsive
distances: one associated with the hard-core exclusion be-
tween two particles and the second with a weak repulsion

s“soft core”d, which can be overcome at large pressure. More
precisely, our pair potentialUsrd fFig. 1sad, insetg consists of
a hard core of radiusa, a repulsive square shoulder of height
UR extending fromr =a to r =b, and an attractive component
having the form of a square well of energy −UA,0 extend-
ing from r =b to r =c shere r is the interparticle distanced.
Choosinga andUA as length and energy units, respectively,
this potential depends on three free parameters: the width of
the soft corewR/a;sb−ad /a, the width of the attractive well
wA/a;sc−bd /a, and the soft-core energyUR/UA.

Our aim is to understand how the position of the critical
points in the thermodynamic plane changes upon varying
parameter values. In Ref.f20g we investigated, using MD
simulations, a number of cases withwR,a andwA,a, and
presented a mean field approach with an MVDWE to inter-
pret the results. However, simulationssboth MD or Monte
Carlod of potentials withwRùa require very large computa-
tion times, so we study this case with integral equationssin
the HNC approximationd which represents a compromise be-
tween accuracy and economy.

III. THE HYPERNETTED CHAIN INTEGRAL EQUATION
APPROACH

The spatial distribution of a system of particles may be
conveniently described by the radial distribution function
gsrd f56g, a quantity directly measurable by scattering experi-
ments and related to the thermodynamic properties of the
fluid. One of the theoretical approaches most used to calcu-
late this function is represented by integral equations. These
are based on the Ornstein-ZernikesOZd relation between the
total pair correlation functionhsrd;gsrd−1 and the direct
correlation functioncsrd, which describes the contribution
coming from the direct interaction between two particles

FIG. 1. Inset: General shape of the attractive soft-core potential
used in this work, with hard-core distancea, soft-core distanceb,
interaction rangec, attractive energyUA, and repulsive energyUR.
Panels: Instability line of the HNC equation for the potential in the
inset with wA/a=0.2: sad wR/a=1 and sfrom top to bottomd
UR/UA=−1 spotentialAd, −0.5, 0, 0.2, 0.4, 0.6, 0.8, 1,̀ spotential
Bd; sbd wR/a=0.8, andUR/UA=0.2, 0.3, 0.4, 0.5.
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separated by distancer. Both hsrd and csrd are unknown
functions, so to solve the OZ relation one needs another re-
lation between these two functionssclosured, which is nec-
essarily approximate. Depending on theclosure, one gets
different equations. Examples include the Percus-Yevick, the
HNC equations, the mean spherical approximationsMSAd,
etc. f56g. Their specific performance depends on the kind of
intermolecular interaction as well as on the thermodynamic
conditions, with no clear overall superiority of one theory.
Moreover, all theories are affected by a thermodynamical
inconsistency that can be partially removed through suitable
modifications of the equationsswhich, however, makes their
solution considerably less rapidd.

For each integral theory there is a region in ther-T plane
where no solution can be found, i.e., for anyr, there is aT
below which it is not possible to solve the equation. This
defines an instability linesIL d in the r-T plane. Usually, the
IL cannot be identified with the spinodal line of the fluid
since, except for the MSA, it is not characterized by a truly
diverging compressibilityf58g. In any case, due to the ther-
modynamical inconsistency of the theory, the maximum of
the spinodal line does not coincide with the maximum of the
binodal line, so is not possible to obtain an unequivocal es-
timate of the critical point.

In spite of the above limitations, knowledge of the IL may
allow us to estimate the topology of the region of spinodal
decomposition of the fluid. In particular, it was found that the
IL of the HNC equation for the potential defined in Sec. II,
with parameterswR/a=1, wA/a=0.2, andUR/UA=0.5, is
qualitatively similar to the spinodal line calculated through
MD calculationsf19g. More precisely, the density and tem-
perature of the low-density critical point estimated through
the HNC equation are in satisfactory agreement with simu-
lation results, while the density of the second-critical point is
overestimated by the theoryf19g. This is not surprising since
the theory is an approximate one and becomes progressively
less accurate as the density increases. However, the ability of
the HNC equation to give account of the presence of two
critical points is, within the well-known limitations of the
theory, quite remarkable since the potential considered gives
origin to a phase diagram that is definitely unusual for simple
fluids. Thus, studying the modifications of the IL as the po-
tential parameters are varied can yield approximate, yet use-
ful, information on the phase behavior of the fluid. In our
calculations, we obtain the solution of the system formed by
the OZ relation plus the HNC closure through a numerical
iterative procedure using a grid withM =2048 discrete
points,rm=mdr, with m=1,… ,M, anddr /a=0.01.

IV. INSTABILITY LINES FOR LARGE REPULSIVE RANGE

To disentangle the role of each component of the interpar-
ticle interaction, we vary the parameters of the potential one
at a time. First we keep the widthwR of the repulsive shoul-
der and the widthwA of the attractive well fixed, and study
the behavior of the instability of the IL by letting the height
UR of the repulsive shoulder vary. The considered values of
UR range from −UA to `. When UR/UA=−1, the potential
consists of a hard core of radiusa and a square well of width

c−a shenceforth calledpotential Ad whereas, whenUR→`,
the potential has a hard core of radiusb and a square well of
width c−b spotential Bd. When the shoulder height increases,
starting from UR/UA=−1, the potential gradually changes
from potential A to potential B. In any intermediate configu-
ration, the potential has a penetrable finite repulsive shoul-
der.

The IL is shown in Fig. 1sad at fixed shoulder and well
widths swR/a=1, wA/a=0.2d for several values of the shoul-
der heightUR. In the two limiting cases corresponding to
potentials A and B, the IL exhibits a single maximum corre-
sponding to a phase diagram with a single liquid-gas critical
point, a well-known behavior for a fluid of hard spheres with
an attractive well. The position of the critical points in the
r ,T plane is considerably different in the two cases. The
critical point corresponding to potential B is at a lower tem-
perature than that corresponding to potential A, due to the
weaker attraction, i.e., shorter attractive rangec−b of poten-
tial B with respect to the largest attractive rangec−a of
potential A. Furthermore, the critical density for potential B
is smaller than that for potential A and rescales as the hard-
core volumesa/bd3 of the two potentials. We observe that,
unlessb/a.1, this rescaling overshadows the shift of the
critical point toward higher densities due to the decrease of
the attraction rangese.g., see Appendix A in Ref.f20gd.

As UR increases, starting fromUR/UA=−1 spotential Ad,
the IL moves toward lower temperatures as a consequence of
the overall reduction of the interparticle potential’s attractive
component. At the same time, the IL undergoes a change
which eventually yields a line with two maximafsee the
enlarged view in Fig. 2sbdg. This peculiar topology of the IL
becomes most evident for intermediate values ofURs0.4
øUR/UAø0.6d. As UR increases further, the second maxi-
mum disappears and again the shape of the IL becomes more
and more similar to the shape typical of the hard-core square-
well potential. Thus, whenwR andwA are fixed, two maxima
are observed in the IL only for a finite rangeUR

maxøUR
øUR

min.
In this range of values, asUR increases, the densityr1 of

the low-density maximum becomes smaller, while that of the
other maximumr2 slightly increases. The critical tempera-
tures T1 and T2, respectively, corresponding to these two
maxima, decrease—this behavior being more evident for the
second maximum. These results agree with the behavior
found with MD simulations for the two critical pointssre-
ported in Fig. 9g, 9h of Ref.f20gd. Thus for increasingUR,
the two maxima move away from each other both in density
and temperature.

In Fig. 1sbd we show the behavior of the IL forwR/a
=0.8 and wA/a=0.2. Comparing these results with those
shown in Figs. 1sad and 2sbd, we observe that for fixedwA
andUR, aswR increases,r1 andT1 are almost constant and at
variance with MD results, butr2 decreases andT2 increases
in agreement with the MD simulationsssee Figs. 9d, 9e of
Ref. f20gd.

We now consider a fixed shoulder widthswR/a=1d and
several values of the well widthswA/a=0.1, 0.2, 0.3, 0.4,
0.5, 0.6d. We calculate the IL for each of them, letting the
heightUR of the shoulder varyfFigs. 2sad–2sfdg. The values
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of the shoulder heightUR for which two maxima are ob-
served increase withwA. By increasingwA, the second maxi-
mum is less and less evident and for large values ofwA/a
fFigs. 2sed and 2sfdg the second maximum is not observed for
anyUR. For small values ofwA, the decrease of the attraction
flattens the curve and the second maximum becomes difficult
to observefFig. 2sadg.

For IL’s with two maxima and the samewR/a=1 andUR
but differentwA, both maxima move toward higher tempera-
tures for increasingwA, due to the increased attraction. More-
over, by increasingwA,r2 becomes smaller whiler1 does not
vary significantly. This behavior agrees with that predicted
by MD simulations for the two critical pointssshown in Figs.
9a, 9b of Ref.f20gd.

We next consider a potential with a wider repulsive shoul-
der swR/a=1.5d and several values of the well widthswA/a
=0.5, 1.0, 1.5, 2.5d. The behavior of the ILsFig. 3d for vary-
ing UR is quite similar to that observed in the previous cases.
For fixed wR and wA, the IL shows only two maxima in a
finite range of values ofUR; these values increase withwA
and, for large values ofwA, the two-maxima topology is not
observed regardless of the value ofUR fFig. 3sddg. The range
of values ofwA in which we observe two maxima is larger
with respect to the casewR/a=1.

For one particular set of parametersswR/a=1.5, wA/a
=0.5 andUR/UA=0.8d, it is possible to compare the results
obtained using the HNC equation with the phase diagram
calculated through a theoretical approach based on a thermo-

dynamically consistent integral equationf16g. Once again it
appears evident that the main flaw of the HNC equation is to
overestimate the critical density of the second critical point.

However, a direct comparison of HNC results with those
obtained through MD simulations can be disappointing. For
some of the parameter sets investigated in Fig. 9 of Ref.f20g
the IL shows only one maximum, while for others the two-
maxima topology is barely observable. As an example, we
show the IL corresponding to the parameterswR/a=0.5,
wA/a=0.5 with 1.0øUR/UAø1.7 sFig. 4d. It was not pos-
sible to directly analyze the valueUR/UA=2 sconsidered in
Ref. f20gd since, in this case, the HNC cannot be solved at
high densities before any considerable increase of the com-
pressibility can be observedsin general, this occurs when the
finite repulsion is considerably stronger than the attractiond.
The results obtained at slightly smaller values ofUR show,
however, a non-monotonic behavior of the IL, consistent
with the presence of a liquid-liquid critical point.

V. DISCUSSION

The overall behavior of the IL’s is synthesized in Fig. 5sad
which shows, for different values of the shoulder width
swR/a=0.6, 0.8, 1.0, 1.5d, the points in theswA,URd plane
where two maxima are found by using the HNC approxima-
tion. We observe that both ranges ofwA andUR where two
maxima are observed increase withwR.

FIG. 2. Instability line of the
HNC equation forwR/a=1 and
six values of the parameterwA/a:
sad wA/a=0.1, and UR/UA=0.2,
0.3, 0.4, 0.5;sbd wA/a=0.2, and
UR/UA=0.3, 0.4, 0.5, 0.6, 0.7,̀
spotential Bd; scd wA/a=0.3, and
UR/UA=0.4, 0.5, 0.6, 0.7; sdd
wA/a=0.4, andUR/UA=0.6, 0.7,
0.8, 0.9, 1; sed wA/a=0.5, and
UR/UA=0.7, 0.8, 0.85, 0.9, 1;sfd
wA/a=0.6, andUR/UA=0.6, 0.8,
0.9, 1, 1.1,̀ spotential Bd.

MALESCIO et al. PHYSICAL REVIEW E 71, 061504s2005d

061504-4



The general behavior ofUR as a function ofwA at constant
wR can be rationalized by using the modified van der Waals
approachsMVDWEd presented in Ref.f20g. First we ap-

proximate the interval of values ofUR
minøURøUR

max for each
wR and wA in Fig. 5sad with its middle point UR

* =sUR
max

+UR
mind /2 fFig. 5sbdg. Next, we recall from Ref.f20g the

relation between the potential’s parameters and thestrength
of attraction A, a parameter related to the second virial co-
efficient v2 and increasing withwA/a and decreasing with
UR/UA. In particular, asT→` it is

v2 =
2p

3
a3 −

A

kBT
+ OsT−2d, s1d

with

A = UAvA − URvR, s2d

vA =
2p

3
fsa + wR + wAd3 − sa + wRd3g, s3d

and

vR =
2p

3
fsa + wRd3 − a3g. s4d

The relationUR/UA=vA/vR−A/ sUAvRd can be rewritten as

UR

UA
=

VSC

VSC− VHC
F−

A

UAVSC
+ 3

RHC

RSC

wA

a
+ 3

SHC

SSC
SwA

a
D2

+
VHC

VSC
SwA

a
D3G , s5d

where

VHC =
2p

3
a3,VSC=

2p

3
sa + wRd3,

SHC

SSC
=

a2

sa + wRd2,
RHC

RSC

=
a

a + wR
s6d

are the volumes, and the ratios of the surfaces and radii of
the hard coresHCd and the soft coresSCd, respectively, and
all depend only on the parameterwR/a. Hence, at a fixed
value ofwR, the functionURswAd in Eq. s5d only hasA as an
unknown parameter.

This MVDWE prediction can be verified by using the
HNC results. In Fig. 5sbd, Eq. s5d is used to fit the values of
UR

* swAd resulting from HNC calculations for different values
of wR, with A as the only fitting parameter. As expected from
Eq. s5d, whenwA/a,1, the leading order inUR

* swAd is linear,
while whenwA/a.1 scorresponding to largerwRd, the non-
linear behavior is evident. Figure 5sbd also shows that, by
increasingwR, the coefficients of the third-degree polynomial
in wA decrease as predicted by Eqs.s5d and s6d.

Moreover, the fitting parameterA in Fig. 5sbd shows a
nonmonotonic behavior withwR. This is consistent with the
MVDWE prediction in Ref.f20g that ]A/]wR may have dif-
ferent signs, depending on the other parameters. Therefore,
Eqs. s5d and s6d give us a fair description of how the three
parametersUR, wR, andwA are related to each other when the
phase diagram has two critical points at positive pressure and
finite temperature. However, Eqs.s5d ands6d do not help us
understand why the phase diagram has an accessible liquid-

FIG. 3. Instability line of the HNC equation forwR/a=1.5 and
four values of the parameterwA/a: sad wA/a=0.5, andsfrom top to
bottomd UR/UA=0.5, 0.7, 0.8, 0.9;sbd wA/a=1, andUR/UA=1.5,
1.6, 1.7, 1.8, 2;scd wA/a=1.5, andUR/UA=2, 2.5, 2.75, 3;sdd
wA/a=2.5, andUR/UA=4, 5, 6, 7.

FIG. 4. Instability line of the HNC equation forsad wR/a=0.5,
wA/a=0.5, andsfrom top to bottomd UR/UA=1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7;sbd an enlarged view at lowT.
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liquid critical point only for limited ranges ofwA and UR,
given a value ofwR.

To gain some insight into this point, we observe that if we
plot Eq.s5d with A=0 and no fitting parametersfFig. 5scdg,
we get a rough approximation of the calculatedU* that be-
comes fair for the largestwR. This suggests that as a first
approximation we can assume thatA=0 at least forwR/a
.1, which is consistent with the conclusion of Ref.f20g that,
in order to have two accessible critical points in the fluid
phase, the attractive and repulsive part of the potential must
compensate, i.e.,UAvA.URvR or A.0.

Hence, from Eqs.s3d and s4d we get the approximation

UR

UA
=

sa + wR + wAd3 − sa + wRd3

sa + wRd3 − a3 . s7d

First we observe that to get an accessible liquid-liquid criti-
cal point,UR/UA,Os1d is the relevant case. Indeed, the case
with UR/UA@1 at high-enoughT and small-enoughP cor-
responds to an effective attractive potential with no repulsive
shoulder and a hard core at a distance ofa+wR with no
liquid-liquid phase transition, or with a liquid-liquid phase
transition at vanishingT and very highP ssee MD results in
Figs. 9h, 9i in Ref.f20gd. On the other hand, forUR/UA
.0, Eq. s7d giveswA.0, leading to a simple hard-core po-
tential with no attractive well. Hence we consider the case
with UR/UA,Os1d.

Next, we observe that for increasingwRswR→`d, Eq. s7d
becomes

UR

UA
= S1 +

wA

a + wR
D3

− 1, s8d

from which the conditionUR/UA.3wA/wR follows for large
wR/wA. This relation is reasonably satisfied by HNC data for
wR/a=1 swA/a.0.4 for UR/UA.0.9d and is better approxi-
mated forwR/a=1.5 swA/a.0.5 for UR/UA.0.9d. We can
deduce from these considerations that to get a phase diagram
with two accessible critical points in the fluid region, the
three parameters of the potential should be related by the
approximate relation Eq.s8d for wR/a@1, which reduces to
wA.wR/3 for UR/UA.1.

VI. CONCLUSIONS

The purpose of the present investigation has been to un-
derstand the role that the different components of the inter-
particle interaction play in the physical mechanism underly-
ing the liquid-liquid phase transition in one-component
systems. Thus we have investigated the phase diagram asso-
ciated with an isotropic pair potential with an attractive well
and a repulsive shoulder, by analyzing for which combina-
tions of the potential parameters the phase diagram shows
two critical points in the fluid phase. In a first paperf20g we
used MD simulations and found limited ranges of the param-
eters so that the liquid-liquid phase transition was accessible.
We also presented a general description based on the
MVDWE approach, which rationalized our MD results.

We complete this analysis here by adopting a different
approach with well-known limitations, but extremely fast in

terms of computational time, consisting of integral equations
in the HNC approximation. It is important to stress that the
drawbacks of the HNC equation are not critical for our pur-
poses. Indeed, we find that the theory, though at best only in
qualitative agreement with MD simulations, correctly repro-
duces the trend according to which the simulated critical
points move in ther ,T plane as the potential parameters are
changedf20g. On this basis, we use the theoretical results to
estimate the phase behavior of our system over a portion of
the parameter space much wider than that explored by nu-
merical simulations.

FIG. 5. sad Symbols mark the combinations of the potential’s
parameters where the instability line, calculated by the HNC ap-
proach, shows two maxima, suggesting the presence of two fluid-
fluid critical points. Sets withwR/a=0.6 scirclesd were investigated
for 0øUR/UAø2 and 0øwA/aø1; sets withwR/a=0.8 ssquaresd
and with wR/a=1.0 sdiamondsd for 0øUR/UAø1.2 and 0
øwA/aø0.6; sets withwR/a=1.5 strianglesd for 0øUR/UAø6
and 0øwA/aø3. Parameters outside these regions have not been
investigated.sbd Middle pointsUR

* of intervals ofUR in panelsad.
Symbols are as in panelsad. Error bars represent the intervals in
panel sad. Lines are one-parameter fits with Eq.s5d: for set 2
ssquaresd the fitting parameter isA/ sUAVSCd=0.31 sdashed lined;
for set 3 sdiamondsd the fitting parameter isA/ sUAVSCd=−0.84
sdot-dashed lined; for set 4 strianglesd the fitting parameter is
A/ sUAVSCd=2.23sdotted lined. Since we only have three points for
set 1, to avoid a fit with a large indeterminacy on the parameters we
arbitrarily choseA/ sUAVSCd=1 ssolid lined to show that the data are
consistent with Eq.s5d. scd Lines are Eq.s5d evaluated withA=0 for
each set. Symbols and lines are as in panelsbd.
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Our findings, both with the MD and HNC approaches,
show that only a limited number of combinations of potential
parameters can be associated with a phase diagram with two
accessible critical points in the fluid phase. A general conclu-
sion is that the repulsive component of the potential must
equilibrate the attractive component, i.e., that the strength of
attraction, related to the second virial coefficient, isA.0,
leading to Eq.s7d. This equation gives us the intuitive under-
standing that the repulsive and attractive components of the
interaction potential compensate when the attractive volume,
weighted by the attractive energy, is equal to the repulsive
volume, weighted by the repulsive energy.

For wR@a the MVDWE predictions forA=0 compare
well with the HNC resultsfFig. 5scdg, and for largewR/wA
Eq. s7d reduces to the simple Eq.s8d, whose leading order is
3wA/wR. For wR!a it is difficult to extract a clear relation
among the potential’s parameters. However, we note that Eq.
s5d shows a leading linear relation betweenUR/UA and
wA/wR for wR!a and wA!a, suggesting that the liquid-
liquid phase transition could also be found in systems with
short repulsive range, if the attractive range is short as well.

Finally, for small attractive rangewA/a the two fluid-fluid
phase transitions generated by this potential are metastable
with respect to the crystalf15,19g, consistent with what is
expected on the basis of results for other short-range attrac-
tive potentialsssee, e.g., Ref.f1gd. Since for all these short-
range attractive potentialsf59g, including the presentf60g,

the second virial coefficient is slightly negativef61g around
the fluid-fluid critical point, from Eq.s1d this would imply
A.0. We therefore expect that in general, for both large and
short repulsive sand attractived ranges, the condition
A/ sUAVSCd*0 would be verified for potentials with a phase
diagram with two critical points. This condition could be
generalized to

1 * 1/sUAVSCdE
0

`

UsrddrW * – 2, s9d

for a continuous isotropic attractive potentialUsrd with a
soft-core repulsion, wherea is an seffectived hard-core dis-
tance andVSC is the soft-core volume defined ins6d, both
possiblyT dependentf62g.
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