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We analyze the problem of fluid transport through a model system relevant to the inflation of a mammalian
lung, an asymmetric bifurcating structure containing random blockages that can be removed by the pressure of
the fluid itself. We obtain a comprehensive description of the fluid flow in terms of the topology of the structure
and the mechanisms which open the blockages. We show that when calculating averaged flow properties of the
fluid, the tree structure can be partitioned into a linear superposition of one-dimensional chains. In particular,
we relate the pressure-volume P-V relationship of the fluid to the distribution P(n) of the generation number
n of the tree’s terminal branches, a structural property. We invert this relation to obtain a statistical description
of the underlying branching structure of the lung, by analyzing experimental pressure-volume data from dog
lungs. The P(n) extracted from the experimental P-V data agrees well with available data on lung branching
structure. Our general results are applicable to any physical system involving transport in bifurcating structures
with removable closures.
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I. INTRODUCTION

The complex structure of biological systems @1–6# and
transport processes that occur in them @7–13# are topics of
much current interest, attracting researchers from engineer-
ing @14–16#, physics @17–20#, and physiology @21–23#. In
this paper, we address the problem of forcing fluid through
an asymmetrically branched structure with random closures
that can be removed by the pressure of the fluid. Such prob-
lems are often encountered during fluid flow in organ sys-
tems where the pathways can be blocked, e.g., circulation of
blood @21# and flow of air in the lung @24,25#. Unrestricted
flow in these pathways is essential for proper physiological
function, and blockages lead to potentially lethal situations.
In spite of its critical application, the problem of fluid flow
through collapsible bifurcating structures has only been mar-
ginally studied @26–29#. Recently, we introduced a simple
tree model to characterize the asymmetry of the lung airway
tree using pressure-volume curves during inflation @30#. Here
we propose a general method to obtain analytical results for
tree structures and apply it to the process of lung inflation.

The primary function of the respiratory systems is to de-
liver air to the air sacs, called alveoli, for gas exchange.
Morphological data show that the mammalian lung consists
of airways arranged hierarchically in an asymmetric binary
tree, the airway tree, with air sacs connected to the terminals
@31,32#. Many peripheral airways of a diseased lung collapse
during expiration as the internal air pressure and the tension
of the elastic walls are insufficient to counter the surface
tension of the liquid lining @33–35#. The liquid forms a
bridge or closure ~Fig. 1! which completely blocks the flow
of air, excluding a large number of alveoli from gas ex-
change @25#. During inspiration, the difference between the
atmospheric pressure and the pressure surrounding the lung,

the transpulmonary pressure P is slowly increased. As a re-
sult, a pressure difference builds across the closures which
are exposed to the atmospheric pressure through the root of
the tree. Each closure reopens when the pressure difference
across it reaches its critical opening threshold @36,37#. Since
the airways are arranged in a tree structure, opening one
branch is not possible until all branches connecting it to the
root of the tree are open. If the threshold pressure of a daugh-
ter branch is smaller than that of its parent, the daughter
opens simultaneously with the parent. This mechanism also
applies to subsequent generations, leading to avalanches of
airway openings @38#.

The process of airway opening via avalanches has been
studied for symmetric binary tree models. The volume of
inhaled air V during inspiration, for a fully collapsed lung,
was found to follow a simple power law in P,

V~P !}PN, ~1!

where N is the generation number of the terminal branches
@26–28#. Such pressure-volume (P-V) relations are used to
measure lung function in clinical environments. However,
the real lung is asymmetric, with many branches missing,
which significantly distorts the P-V curve from the ideal
power-law behavior @30–32#. It is thus important to deter-
mine how the properties of the system depend on the asym-

FIG. 1. Section of an airway showing ~a! the film of liquid when
the airway is open, and ~b! the liquid bridge blocking the flow of air
when the airway is closed.
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metry of its underlying tree structure. Avalanches are further
complicated since the opening of an airway is accompanied
by an audible pressure wave called crackle @39–41#, which
in turn can assist the opening of airways downstream. More-
over, the air sacs are elastic and the effect of their elasticity
on the P-V curve becomes significant near the end of the
inspiratory cycle, when the majority of air sacs have been
opened @27#. Although asymmetry, crackles, and elasticity
are important contributors to the shape of the P-V curve,
their effects are isolated to different regions and thus it is
possible to extract information about them by analyzing the
same P-V curve.

We obtain experimental P-V curves of isolated dog lung
lobes ~Sec. II! and develop a model of the lung during ava-
lanchelike airway openings ~Sec. III A!. We show that when
calculating the P-V relationship, it is possible to partition the
complex bifurcating structure into a set of paths connecting
the root of the structure to the air sacs ~Sec. III B!. Conse-
quently,

V~P !5VE~P !(
n

P~n !Gn~P !, ~2!

where VE(P) is the elastic P-V relationship of the lung ~Sec.
II!, P(n) is the distribution of terminals with generation
number n, and Gn(P) is the opening probability of an airway
of generation n under the influence of avalanches and crack-
les ~Sec. IV!.

Using the analytic results of our models, we are able to fit
the experimental P-V data ~Sec. V! and obtain the distribu-
tion P(n), which is a key morphologic property of the air-
way tree. Since experiments measuring P-V curves of an
inflating lung are noninvasive, this method provides a way to
study ‘‘microscopic’’ branching structures from ‘‘macro-
scopic’’ P-V data without the use of invasive techniques
@30#. We compared these results with known morphological
data on the lung structure. The agreement of our model with
experimental data provides a better understanding of both the
general problem of fluid flow through blocked pathways and
the particular manifestation of this system in the case of the
lung.

II. EXPERIMENTAL DATA

We determine experimentally the P-V curves of two iso-
lated dog lung lobes, labeled A and B. A cannula is inserted
into the main bronchus and the lobe is degassed in a vacuum
chamber as described by Smith and Stamenović @42#, col-
lapsing almost all the airways. The degassed lobes are placed
in an airtight chamber with the cannula attached to a metal
tube that is led through the lid of the chamber, as shown in
Fig. 2. We inflate the lobes from the collapsed state to total
lobe capacity by steadily decreasing the chamber pressure Pc
using a suction pump. We measure the transpulmonary pres-
sure

P[Pa2Pc

by recording the chamber pressure Pc with respect to atmo-
spheric pressure Pa using a Valydine MP-45 transducer ~50
cm H2O). The airflow Q is measured at the main bronchus
using a screen pneumotachometer ~resistance 5 cm H2O/l/s)
attached to another Validyne MP-45 transducer ~2 cm H2O).
Pressure and airflow are both sampled at a rate of 80 Hz. The
pressure P is increased to 30 cm H2O in 120 s. At this infla-
tion rate, the time to regain equilibrium after an airway opens
is negligible compared to the total inflation time. The volume
V of inhaled air is calculated by integrating Q with respect to
time,

V~ t !5E
0

t

Q~ t8!dt8. ~3!

The measured P-V curves are shown in Fig. 3. Although
the two lobes have slightly different V at maximum P, both
curves show certain common features:

Region A (P,10 cm H2O): As P increases, V increases
only slightly. At these pressures almost all air sacs are col-
lapsed and the slight increase in V is due to the opening of a
small number of airways and their subsequent elastic expan-
sion.

Region B (10 cm H2O,P,20 cm H2O): Over this range
of P, V increases dramatically from near 0 to near saturation.
In this region, air sacs are recruited in avalanches giving rise
to the steep increase in V.

Region C (P.20 cm H2O): In this region, almost all air
sacs are open and V increases as a result of the elastic ex-
pansion of the opened air sacs. We fit this region using a
single exponential model for the P-V relation for the elastic
expansion of the air sacs @43–45#, where VE(P), the elastic
volume of the lung, is given by

VE~P !5V0~12ae2bP!, ~4!

where the parameters V0 , a, and b were determined by fit-
ting experimental data for P.20 cm H2O and are consistent
with those previously obtained @46#.

FIG. 2. Schematic diagram of the experimental setup. The lobe
is placed in a sealed chamber ~pressure Pc) with the main bronchus
open to the atmospheric pressure Pa . The air pressure in the cham-
ber is slowly decreased using a vacuum pump which creates a pres-
sure difference P5Pa2Pc .
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When all airways and air sacs in the lung are open, V
increases only due to elastic expansion and Eq. ~4! describes
the P-V curve. If only a fraction f

v
of the total volume is

open, the P-V curve can be written as

V~P !5 f
v
~P !VE~P !. ~5!

Thus, the volume fraction f
v

of the open region of the lung
can be calculated as

f
v
~P !5

V~P !

VE~P !
, ~6!

and is shown in Figs. 4~a! and 4~b! for the lobes A and B.
The total volume V is the sum of the volume contained in

the open air sacs, Va , and the volume contained in the
opened airways ~branches!, Vb ,

V5Vb1Va . ~7!

In region A, Va'0 as nearly all air sacs are closed and the
observed volume V'Vb . In the fully open lung, region C,
when all air sacs are open, Va is much greater than Vb . This

approximation is also valid for most of region B, once the
first few avalanches occur. We assume that Vb!Va and thus
V'Va over the entire range of P; the approximation is more
accurate for higher P. If all air sacs are identical and each
open air sac contributes an equal volume, the increase in f

v

is due to the increase in the fraction of open air sacs f a ,

f
v
' f a . ~8!

As P increases, more air sacs open and contribute to V.
The increase in f

v
is not continuous, but occurs in steps of

different sizes, corresponding to avalanches which recruit
varying numbers of contributing air sacs. The opening pres-
sure f of an air sac is defined as the pressure at which the air
sac reopens. The distribution c(f) of opening pressures f is
an important measure of lung condition, often used to deter-
mine the applied pressures during recruitment maneuvers
@47,48# and artificial ventilation @49,50#. When the pressure
is increased from P by an amount dP , the increase in the
fraction of open air sacs d f a is the fraction of air sacs with
opening pressures fP@P ,P1dP). Thus the distribution
c(f) can be estimated as

c~f !5
d f a

dP U
P5f

'
d f

v

dP U
P5f

, ~9!

using the approximation of Eq. ~8!. The obtained distribu-
tions are shown in Figs. 5~a! and 5~b! for lobes A and B,
respectively. Similar distributions of opening pressures have
been obtained using computed tomography @51#.

III. LUNG INFLATION MODEL

We now develop a model of the P-V curve of an asym-
metrically branched tree during inflation. A tree is a mini-
mally connected graph with one and only one path between
any two points @52,53#. The lack of redundant paths makes
tree structures vulnerable to edge disruptions, since the re-
moval of any one edge affects a large number of paths, sig-
nificantly affecting the connectivity of the structure. Al-
though this property is the primary cause of many
obstructive lung diseases, we can exploit the strong signature
of a collapsed airway on macroscopic measurables such as
the P-V curve to estimate the connectivity of the tree. Using
a simple thresholding model, we first obtain the fraction f a

FIG. 3. Experimentally determined P-V curves of two isolated
dog lung lobes A (d) and B (s), obtained during inflation from
collapsed state to total lobe capacity. The dashed lines show
asymptotic fits to VE(P) given by Eq. ~4! with V05327.3 ml, a
50.907, b50.094/cmH2O for lobe A and V05377.1 ml, a
50.908, b50.075/cmH2O for lobe B.

FIG. 4. Volume fraction f
v
(P) of the open region of lobes ~a! A

and ~b! B, as defined by Eq. ~6!.

FIG. 5. Distribution c(f) of opening pressures f of the air sacs
in lobe ~a! A and ~b! B, obtained by differentiating Figs. 4~a! and
4~b! respectively, according to Eq. ~9!.
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of air sacs open at any pressure P and subsequently an ex-
pression of the P-V curve in terms of the tree structure.

A. Binary tree model

To study the inflation through the asymmetric lung, we
construct an incomplete binary tree T, defined as a set of
branches ~airways!. Each branch in T is labeled by a pair of
indices (i , j), where the index i is the generation number of
the branch and the index j is used to distinguish between
branches of the same generation (0< j,2 i). The root of the
tree is labeled (0,0).

A branch either bifurcates into two daughters or subtends
an air sac. The daughters (i8, j8) of a bifurcating branch (i , j)
are given by

~ i8, j8![H ~ i11,2 j ! left daughter

~ i11,2 j11 ! right daughter,
~10!

as shown in Fig. 6. Branches which subtend an air sac are the
terminal branches or ‘‘leaves’’ of the airway tree ~branches
with underlined labels in Fig. 7!. The set of all leaves of T is
defined as L, where L,T.

We define a path Pi , j for a branch (i , j) as the set of
branches connecting (i , j) to the root of the tree ~double line
in Fig. 7!. We note that according to the definition in Eq.
~10!, the parent of (i , j) is given by (i21,@ j /2#), where @x#
represents integer part of x. Thus,

Pi , j[$~ i2k ,@ j /2k# !: ;k50 . . . i%.

Each branch is either open or closed. The state ~open or
closed! of a branch (i , j) is described by a Boolean variable
j i , j such that

j i , j[H 0 if ~ i , j ! is closed

1 if ~ i , j ! is open.

Every branch (i , j) is assigned a threshold pressure p i , j . The
threshold pressure determines the transition of the branch
from a closed to an open state.

1. Airway opening

At the beginning of inflation, the lung is completely de-
gassed and we assume that all airways except the root are
closed. Thus, j0,051, and j i , j50 otherwise. The pressure in
all closed branches of the tree is 0. The external pressure P
at the root of the tree is increased from 0 by infinitesimal
amounts until all branches in the tree are open. After each
increase in P, the system is allowed to reach equilibrium,
until all open branches connected to the root are at pressure
P.

All closed branches whose parent is also closed do not see
any pressure difference DP across their length. However, a
closed branch (i , j) whose parent is open experiences a pres-
sure difference DP i , j . These branches form an interface be-
tween the open and closed regions of the lung ~dashed line in
Fig. 8! called an active surface @41#. Since the equilibrium
pressure in the open branches is P and that inside closed
branches is 0, DP i , j5P . However, transients during airway

FIG. 6. Convention for labeling branches of the tree according
to Eq. ~10!.

FIG. 7. An example of an asymmetric tree T consisting of all
labeled branches. Circles represent the air sacs connected by the
terminal branches ~shown with underlined labels! belonging to L.
The double line (v) shows the path P3,5 connecting the terminal
branch (3,5) to the root.

FIG. 8. The process of airway opening in a tree. ~a!–~e! show
the states of the tree with increasing P. Branches are labeled as
shown in Fig. 7. Open branches are shown as outlines, newly
opened branches are shown in gray, and closed branches are shown
in black. The active surface is shown as a dashed line. Inflation
begins at P50 with all branches other than the root closed ~a! and
proceeds by airway openings, either individually ~b! or in an ava-
lanche ~c!, as P is increased. ~d!, ~e! show the pressure differences
DP and states j of three segments (1,1), (2,2), and (3,5), respec-
tively, belonging to the path P3,5 , shown in Fig. 7. Different behav-
ior is observed for branches on the active surface and those embed-
ded in an avalanche.
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openings could cause DP i , j.P for some branches on the
active surface.

Figure 9 illustrates the opening of an airway (i , j) under
an applied pressure difference DP i , j . For DP i , j,p i , j , the
liquid bridge in the airway has a finite thickness and the
surface tension g of the liquid is able to sustain the pressure
difference @Fig. 9~a!#. When the pressure difference DP i , j
across the branch exceeds its threshold pressure p i , j , surface
tension can no longer sustain the liquid bridge. At this point,
the airway opens and the energy stored in the liquid bridge is
released in the form of a pair of sound waves ~one traveling
upstream and the other downstream! called crackles @Fig.
9~b!#. Immediately following opening, the air pressure on
two sides of the former liquid bridge is significantly different
and the two regions are separated by a sharp pressure front.

The pressure front diffusively propagates deeper into the
tree until the two daughters of the branch (i , j) are exposed
to the external pressure P ~Fig. 9!. If the threshold pressures
of the daughters are lower than P, the daughters open simul-
taneously with the parent. The process of opening is contin-
ued until all closed branches connected to the root of the tree
have threshold pressures greater than P, and a new active
surface is formed. The simultaneous opening of a subtree
following a small increase in P is called an avalanche @38#.

2. Threshold pressures

The threshold pressure of an airway strongly depends on
local variables such as the rigidity of the airway walls, the
amount of fluid present, and its surface tension @34,35#.
Since these quantities vary from airway to airway, the thresh-
old pressures can be effectively considered to be independent
random variables distributed according to generation-
dependent distribution functions r i(p). Although we allow
r i to be generation-dependent, we assume that branches of
any given generation are statistically identical and hence
their threshold pressures are drawn from the same distribu-
tion.

A branch (i , j) is open if and only if it has an open parent
and the pressure difference DP i , j5P across it exceeds its
threshold pressure p i , j . Thus

j i , j5Q~P2p i , j! j i21,[ j /2] , ~11!

where

Q~x ![H 1 for x>0,

0 for x,0,

is the unit-step function.

3. Opening pressures

Every open branch (i , j) other than the root undergoes a
transition from being closed to being open at a pressure de-
fined as the opening pressure f i , j of the branch,

j i , j[Q~P2f i , j!. ~12!

Using this definition and Eq. ~11!, we can write Q(P
2f i , j)5Q(P2p i , j) Q(P2f i21,[ j /2]), which has a solution

f i , j5max~p i , j ,f i21,[ j /2]!. ~13!

Thus the opening pressure f i , j of a branch (i , j) is the maxi-
mum of its threshold pressure p i , j and the opening pressure
of its parent f i21,[ j /2] .

If the threshold pressure p i , j of a branch (i , j) is less than
the opening pressure of its parent f i21,[ j /2] , the opening
pressure f i , j5f i21,[ j /2] and thus the branch (i , j) and its
parent open simultaneously as part of an avalanche. For ex-
ample, the branch (2,2) opens simultaneously with its parent
(1,1) in Figs. 8~c! and 8~e!. For a branch (i , j) on the active
surface, the threshold pressure p i , j is greater than the open-
ing pressure of its parent f i21,[ j /2] , since this is precisely the
condition that stops an avalanche and produces the active
surface. Thus according to Eq. ~13!, the opening pressure
f i , j5p i , j , which is greater than the opening pressure of its
parent, f i21,[ j /2] . For example, the branch (3,5) does not
open simultaneously with its parent (2,2) but at a higher
opening pressure @Fig. 8~f!#.

4. Transients

The threshold pressures p i , j are assigned a priori and rep-
resent the quasistatic opening pressures of the airways. How-
ever, during fast dynamic openings within an avalanche, the
actual threshold pressures and the pressure difference across
the segment could be different from their static counterparts.
In particular, crackles which accompany airway openings
cause an instantaneous increase in DP . We therefore replace
the step function Q(P2p i , j) by a more general function
F i , j(P)[F(P ,p i , j ,f i21,[ j /2]), which is also a step function
whose argument depends on the opening pressure of the par-
ent (i21,@ j /2#) in addition to the pressure P and the thresh-
old pressure p i , j . Thus we rewrite Eq. ~11! as

j i , j5F i , j~P !j i21,[ j /2] . ~14!

The exact form of F i , j(P) depends on the model of airway
opening considered.

FIG. 9. Pressure along the axis of a liquid bridge in branch (i , j)
when DP i , j is just above p i , j , the liquid bridge breaks, a pair of
sound waves ~‘‘crackles’’! are generated, and the pressure front
propagates downstream.
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B. Analytical solution

Equation ~14! recursively expresses the state of airway
(i , j) in terms of the state of its parent. By iterating Eq. ~14!,
we write the nonrecursive form as

j i , j5F i , j F i21,[ j /2]•••F0,0j0,05 )
(k ,l)PPi , j

Fk ,l~P !, ~15!

since j0,051 as the root is always open. Thus a branch (i , j)
is open if and only if all branches along the path Pi , j con-
necting it to the root of the tree are open.

1. Airway tree partitioning

We can now calculate the fraction of open air sacs at a
given pressure. Since each terminal airway subtends one air
sac, the total number of air sacs in the lung is equal to nT ,
the number of terminal airways. An air sac is open if the
terminal airway connected to it is open, and the fraction of
open air sacs f a is given by

f a5
1

nT
(

(i , j)PL

j i , j , ~16!

where the sum (j i , j gives the number of open leaves of the
tree. To compare our results with experimental data, it is
necessary to average over all configurations of threshold
pressures p i , j . Using Eq. ~16!, the averaged quantity ^ f a&
can be written as

^ f a&5
1

nT
E Dpr~p !F (

(i , j)PL

j i , jG , ~17!

where

E Dp r~p ![E
2`

`

dp0,0 r0~p0,0! . . . E
2`

`

dp i , jr i~p i , j!•••

represents an integration over all possible values of the
threshold pressures of every branch in the tree. We note that
since the distributions r i(p i , j) are normalized, each of the
bare integrals *dp i , j r i(p i , j)51 and their product
*Dpr(p)51. Thus the expression in Eq. ~17! is self-
normalized. Reversing the order of the commutative opera-
tions of integration and summation, we get

^ f a&5
1

nT
(

(i , j)PL
E Dpr~p !j i , j ,5

1

nT
(

(i , j)PL

^j i , j&.

~18!

Thus, Eq. ~18! partitions the averaged fraction of open air
sacs in the tree into a normalized sum of probabilities of the
existence of open paths from the terminal branches to the
root of the tree.

2. Opening probabilities

The state variable j i , j is a product of terms that are func-
tions of the threshold pressures of all branches along the path
Pi , j and the external pressure P, as expressed by Eq. ~15!.

Since the distribution functions r only depend on the gen-
eration number, the averaged quantity ^j i , j& depends only on
the external pressure P and the generation number i. We
define G i(P)[^j i , j&, which is the opening probability of a
branch (i , j) at pressure P, so Eq. ~18! can be rewritten as

^ f a&5
1

nT
(

(i , j)PL

G i~P !.

Collecting all terminal branches of the same generation n, we
can rewrite the above sum as

^ f a&5(
n

P~n !Gn~P !, ~19!

where P(n) is the distribution of generation numbers n of
the terminal branches, i.e., the fraction of terminal branches
with generation number n.

Equation ~19! conveniently separates the effects of mor-
phological features of the tree structure in a lung, given by
the distribution of terminal depths P(n), from the dynamic
component described by the opening probability Gn(P). This
allows us to calculate P(n) from models of tree structure
and Gn(P) from models of different dynamical processes in
a much simpler geometry.

We note that for a symmetric tree, all terminal branches at
the same generation N and thus the generation distribution
PS of the terminal branches for a symmetric tree is given by

PS~n !5dn ,N .

Using Eq. ~19!, the fraction of open air sacs ^ f a
S& for a sym-

metric tree can be calculated as

^ f a
S&5GN~P !. ~20!

Thus Eq. ~19! allows us to use the results obtained for sym-
metric trees and translate them to asymmetric trees with dif-
ferent P(n).

3. The P-V curve

We can now write a comprehensive expression for the
volume V of the lung as a function of pressure P. Using the
expressions of Eqs. ~5! and ~8! and replacing f a by ^ f a&, we
get

V~P !5VE~P ! ^ f a&,

which can by expanded using the result of Eq. ~19! as

V~P !5VE~P !(
n

P~n ! Gn~P !. ~21!

Although the expression in Eq. ~21! was obtained for a
binary tree, it is equally applicable to trees of different, even
heterogeneous, branching. Thus in Sec. IV we calculate
Gn(P) for various models on linear chains of n generations
and apply those results to the asymmetric airway tree.

MAJUMDAR et al. PHYSICAL REVIEW E 67, 031912 ~2003!

031912-6



IV. MODELS OF AIRWAY OPENING

We consider a linear chain of N closed branches labeled
j51, . . . ,N . The internal pressure in the pipe is 0 while an
external pressure, P, is applied at one end ( j50). The quan-
tity of interest in this case is GN(P), which is defined as the
probability of fluid flow in a pipe with N closures at pressure
P. For end-to-end fluid flow, we need all the N closures to be
open at the given pressure P. At pressure P50, all closures
are closed and hence the probability of flow GN(0)50.

We define a probability density function c j(f) such that
c j(f) df is the probability for closure j to have an opening
pressure between f and f1df . A function G j(f8uf) can
then be defined as a conditional probability that the branch
( j11) has an opening pressure between f8 and f81df8,
given that the j th closure opens between pressures f and
f1df . This allows us to write

c j11~f8!5E
0

1

dfG j~f8uf !c j~f !. ~22!

We note that there is a one-to-one correspondence between
the conditional probabilities G(f8uf) and the opening func-
tions F i , j(P). Defining either of these two functions com-
pletely defines the dynamics of the system.

To calculate c j , we need an initial state, which can be
calculated by defining a hypothetical closure at j50 and
assuming that this closure is permanently open, that is, f0
50. Thus,

c0~f !5d~f !. ~23!

The opening probability, GN(P), can thus be written as

GN~P !5E
0

P

df cN~f !. ~24!

In the following subsections, we define three specific
models of airway openings, construct their respective condi-
tional probabilities G(f8uf), and calculate the opening
probability GN(P). The first, model A, describes the simplest
process of avalanching. Models B and C add the effect of
transients, especially crackles, to the opening process by
modifying the threshold pressures of the segments perma-
nently or temporarily. Pressures are normalized such that the
maximum threshold pressure P0 in the tree is 1. In all three
models we assume that the threshold pressure distribution
r(p) is uniform between 0 and 1. These models then allow
us to fit the experimental P-V curve using Eq. ~21!.

A. Model A: Simple avalanching

This is the simplest model of airway opening. To con-
struct G(f8uf), we look at the processes by which a branch
opens. If the opening pressure f8 of the ( j11)th branch is
less than that of the j th branch, f , the branch ( j11) will
open simultaneously with the branch j as a part of an ava-
lanche. We could thus write G for this part as fd(f82f),
where the factor f is numerically the probability that f8 is
less than f , since the distribution of threshold pressures is

uniform. The d function reflects the fact that the ( j11)th
branch opens at the same pressure as the j th one. However, if
f8 is greater than f , the ( j11)th branch will open indepen-
dently and G will contain a term Q(f82f), Q being the
unit step function, reflecting the ordering of the opening
pressures. The function G is thus given by

GA~f8uf !5fd~f82f !1Q~f82f !. ~25!

Using Eqs. ~23! and ~25! and by repeated application of
Eq. ~22!, we find

c j
A~f !5 jf j21. ~26!

Thus using Eq. ~24!, we are able to derive the opening prob-
ability as

GN
A~P !5PN. ~27!

This is identical to the expression in Eq. ~1! that can be
derived using other methods @26–28#.

B. Model B: Permanent effect of pressure wave

In this case we slightly alter the algorithm for the change
of state of a closure. In addition to opening only when the
pressure across the closure exceeds its threshold pressure, we
take into account the added effect of a pressure wave. When
closure j opens, a pressure wave is set up in the fluid which
facilitates the opening of closure ( j11). We take this into
account by changing the opening pressure of the closure ( j
11) as

f j11→af j11 , ~28!

where, a (,1) is a constant. In this model, the reduction of
the threshold pressure is permanent, i.e., once a parent opens
the threshold pressure of the child, it is maintained at the
reduced level for the duration of the experiment. Thus for all
practical purposes, the threshold pressures of all generations
greater than 1 are distributed uniformly between 0 and a
while that of the first generation is distributed between 0 and
1 ~as it cannot be opened in the wake of the pressure wave
from the parent!.

We can then modify Eq. ~25! to write the function
GB(f8uf) for model B as

GB~f8uf !5
f

a
Q~a2f !d~f82f !1

1

a
Q~a2f8!

Q~f82f !1Q~f2a !d~f82f !. ~29!

The first term again represents the avalanche part of the
closure opening, but in this case the renormalization of the
opening (f) increases the probability factor by 1/a . A step
function is also included, which distinguishes the behavior of
the closures for pressures less than a from the automatic
opening at pressures greater than a . The second term repre-
sents the independent opening of a closure and the probabil-
ity is again rescaled by a factor 1/a . The two step functions
in this term not only reinforce the distinction in the first part,
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but also restrict the possible values of f8 to less than a . The
final term is included to take into account the automatic
opening of the closures at pressures greater than a .

Using the result of Eq. ~29! in Eq. ~22! and the initial
condition from Eq. ~23!, we can derive

c j
B~f !5 j S f

a D j21

Q~a2f !1Q~f2a !. ~30!

Again the fluid flow probability can be derived using Eq.
~24! as

GN
B~P !5PS P

a D N21

Q~a2P !1PQ~P2a !. ~31!

C. Model C: Transient effect of pressure wave

The depression of the opening pressure due to the pres-
sure wave in model B @Eq. ~28!# is a permanent phenom-
enon. This means that once the threshold is lowered by the
pressure wave, it does not regain its original value. Thus all
thresholds after the first one are distributed between 0 and a
and not between 0 and 1. However, apart from this renor-
malization, there is very little that is different between mod-
els A and B. We shall now try to explore a more intricate
model in which the reduction of opening pressure is only a
temporary phenomenon and the threshold regains its original
value after a short time, unless the closure is opened in-
stantly. We shall deal only with instantaneous reduction of
the threshold, which facilitates the avalanchelike opening of
the closure but has no effect on the independent change of
state.

The conditional probability GC(f8uf) for this model is
given by

GC~f8uf !5
f

a
Q~a2f !d~f82f !1Q~a2f !QS f82

f

a D
1Q~f2a !d~f82f !. ~32!

As mentioned earlier, the process of avalanching in this
model is identical to model B and thus the first term of GC is
identical to that in Eq. ~29!. However, the second term, de-
scribing independent opening, is markedly different in this
case. Not only is there no rescaling of the opening pressures
in this event, there is also the absence of the restricting step
function on f8. Thus f8 can now take values greater than a
and give rise to delayed large avalanches. The final term is
again identical to that in Eq. ~29!. This is because at pres-
sures greater than a all closures are opened in large ava-
lanches.

Equation ~32! can now be used to solve for the probability
density function, c j

C(f), which is given by

c j
C~f !5A j~a !f j21Q~a2f !

1F11 (
k51

j21

Bk~a !fkGQ~f2a !, ~33!

where

A j~a !5)
k51

j S 1

a
1

ak

k D ,

B j~a !5A j21~a !S a j

j D ~34!

for j>1, and A0(a)5B0(a)51.
Upon integrating Eq. ~33! with respect to f , we get

GN
C~P !5AN21~a !S PN

N DQ~a2P !1GN
C.~P !Q~P2a !,

~35!

where

GN
C.~P !5BN~a !1 (

k50

N21
Bk~a !

k11
~Pk11

2ak11!. ~36!

The opening probability GN and the distribution c of
opening pressures f for the three models are compared in
Fig. 10. The distribution c for model C @Fig. 10~a!# is visu-
ally similar to the distributions obtained from experimental
data ~Fig. 5!. We note that GN is identical to the open fraction
in a symmetric tree @Eq. ~20!#. Thus for the same maximum
threshold pressure and number of generations, models B and
C recruit more air sacs than the simple avalanching model A
@Fig. 10~b!#.

We can construct more sophisticated models of airway
opening by extending these basic models. The pressure wave
could have a partly instantaneous and partly permanent effect
on f by combining models B and C. The parameter a could
be distributed instead of being a fixed number. The threshold
pressure distributions could be made nonuniform as well as

FIG. 10. ~a! The distribution c(f) of opening pressures f and
~b! the opening probability G(P) of an airway as obtained from the
three models of airway opening (A , B, and C) for a chain of six
branches and with a50.75 for models B and C.
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generation-dependent. In each case, the technique described
in this section could be used to obtain an analytical solution
for c(f) and GN(P). These results can then be combined
with a distribution of generation numbers of terminal
branches P(n) and the elastic P-V curve VE(P) to obtain
the final pressure-volume relationship of the lung.

V. FITTING EXPERIMENTAL DATA

We fit the f
v
(P) curves obtained from experimental data

~Fig. 4! with polynomial functions (nan(P/P0)n up to the
inflection point P3 in the curves. The maximum threshold
pressure P0 is given by the pressure above which all
branches are open and thus f

v
51. The inflection points in

the curves are determined by numerically differentiating the
curves for f

v
and finding the first maxima. For model A, we

determine P0 by fitting the curve up to P3 and extrapolating
it to f

v
51. For model C, P3 represents the point of cross-

over from avalanchelike behavior to pressure-wave mediated
behavior and thus the parameter a5P3 /P0.

We use polynomials of order 48, since this is the known
maximum depth in a dog lung @32#. The large number of
coefficients makes simple regression unstable, and we use an
additive diagonal term in the coefficient matrix to regularize
the results. The raw fit thus obtained is then fine-tuned by
randomly updating each coefficient by a small amount and
recalculating the fitting errors simultaneously in the normal
and logarithmic scales, to ensure the accuracy of the coeffi-
cients for small n.

For model A, f
v

is given by using Eqs. ~19! and ~27! as

^ f
v

A&5(
n

P~n !S P

P0
D n

~37!

and the coefficients of the fitted polynomial an5P(n), the
distribution of terminal generations. For model B, the expres-
sion for f

v
for pressures less than a is given by

^ f
v

B&5(
n

P~n !

an21 S P

P0
D n

~38!

and the distribution can be calculated from the polynomial fit
as P(n)5anan21. Similarly, for model C, the f

v
is given by

^ f
v

C&5(
n

P~n !
An~a !

n S P

P0
D n

~39!

for pressures up to a . Thus, the distribution of generation
numbers of the terminal segments can be estimated by
P(n)5nan /An(a).

For models B and C, we fit the region P.a using the
expressions for Gn(P) in this region as given by Eqs. ~31!
and ~35! and the same P(n) as obtained by fitting the region
P,a . The fitted curves for f

v
using models A and C for lobe

A are displayed in Fig. 11~a!. The distribution P(n) obtained
using model C is shown in Fig. 11~b!.

The distribution P(n) in Fig. 11~b! has two distinct re-
gions, a narrow peak for n,5 ~shown as open rectangles!

and a broad distribution for 15,n,40 ~shown as filled rect-
angles!. The second part of the distribution has two main
peaks in the region 22,n,30.

We compare P(n) to a known model for the airway tree
structure, the Horsfield model @32#, which is an asymmetric
self-similar description of averaged experimental data ob-
tained by physical measurements on a polymer cast of the
airway tree. The Horsfield distribution corresponds in shape
and position with the P(n) obtained by fitting the P-V data.
We are able to recover the two main peaks at approximately
their correct positions. The small-n part of the distribution
(n,5) that we obtain from our data does not correspond to
the branching structure of the tree since the dog lung is not
known to have terminals with depths n,13.

We attribute the existence of the small-n part of P(n) to
the airway wall elasticity and the volume of air contained in
the airways before any air sacs open ~Appendix A!. The first
few branches of the airway tree are held open by cartilagi-
nous rings, and the expansion of these branches at low P also
contributes to the small-n part of P(n). We ignore this re-
gion when focusing on the branching structure and normalize
the Horsfield model to only the area under the second part of
the distribution. The Horsfield model is an idealized descrip-
tion of the dog lung and does not account for the differences
between individual dogs. In contrast, with our approach we
can also identify the variation in structure among specific
samples.

Finally, using Eq. ~5!, we combine the effect of elasticity
to obtain the full P-V curves of our models using the expres-

FIG. 11. ~a! The volume fraction f
v

of the open air sacs obtained
using models A and C obtained by fitting the experimental data for
lobe A and ~b! the distribution P(n) of the generation numbers n of
the terminal branches obtained from the fit, compared to the distri-
bution for the Horsfield model of the dog lung.
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sion for VE(P) from Eq. ~4! along with the parameters ob-
tained from the fits shown in Fig. 3. Figure 12~a! compares
the distribution of opening pressures using model C with that
obtained using the experimental data. The resulting P-V
curves are compared in Fig. 12~b!.

The P-V curve of model C has a small deviation from the
experimental curve near the maximum threshold pressure
@Fig. 12~b!# due, we believe, to an underestimation of the
maximum threshold pressure, i.e., the pressure at which all
airways are opened. Our assumption that the maximum
threshold pressure of the branches corresponds to the pres-
sure at the point of inflection is only true when the distribu-
tion of threshold pressures is uniform and generation-
independent. However, if the threshold pressures are
generation-dependent, our method underestimates the maxi-
mum threshold pressure @27,48#. To estimate the effect of
generation dependence, we simulated inflation of randomly
branched trees using a simple generation-dependent thresh-
old pressure distribution with overlapping domains. We
found that the inflection point shifts to a pressure smaller
than the maximum threshold pressure, independent of the
exact distribution or the degree of randomness in branching.
The high pressure in this region would allow a more signifi-
cant contribution from the opening of the deeper air sacs @Eq.
~21!#, which we are unable to probe accurately. However, in
real lungs, these air sacs (n.30) are few in number @Fig.
11~b!# and do not contribute significantly to the shape of the
P-V curve.

VI. CONCLUSION

In conclusion, we have derived a general theory for qua-
sistatic fluid flow through collapsible bifurcating structures.

We show that while calculating the pressure-volume curve or
analogous average descriptions of fluid transport, the com-
plex branching structure can be partitioned into a linear su-
perposition of one-dimensional chains. Using this result we
constructed a comprehensive model of the lung P-V curve
based on the topology of the lung airway tree, the elasticity
of the lung tissue, and the mechanisms of airway openings.
We have shown that transient pressure waves during the pro-
cess of airway openings significantly affect the shape of the
P-V curve. Although the full P-V curve is a result of the
combination of influences, we have been able to separate the
effect of each of these factors using a single measurement.
The resulting method also provides an estimate of the distri-
bution of the generation number of the terminal branches in
the airway tree, or the depth of the air sacs in the lung. Since
the estimated distributions compare favorably to available
morphological data, our approach should be useful in clinical
situations as well as in developmental studies. In general, our
results, particularly those involving tree partitioning and the
general solution of the opening process, are equally appli-
cable to other physical systems involving transport in asym-
metrically branched structures.
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APPENDIX A: VOLUME OF AIRWAYS

We can calculate the contribution of airways to the total
volume of the lung using Eq. ~19!. Assuming each airway is
a cylinder whose radius r i and length , i are exponential
functions of generation number i @1#,

r i5b ir0 , ~A1a!

,i5g i
,0 , ~A1b!

the volume of an airway (i , j) can be written as

v i5pr i
2
,i5k i

v0 , ~A2!

where k5b2g and v0 is the volume of the root branch. For
a symmetric tree, there are 2 i branches at the ith generation
and the opening probability of each of them is G i(P). As-
suming that the elasticity of airways is identical to that of air
sacs, the averaged total volume Vb of open airways is thus
given by

Vb}VE~P !(
n

2n
vnGn~P !}VE~P !v0(

n
~2k !nGn~P !.

~A3!

FIG. 12. ~a! The distribution c(f) of opening pressures f using
model C compared to the experimental data from lobe A and ~b! the
full P-V curve reconstructed using Eq. ~3! and model C, compared
to the experimentally obtained data.
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If 2g,1, most of the contributing volume to Vb comes from
the small n region where the branching is symmetric. The
maximum airway volume Vb ,max can be approximated as that
Vb for an infinite tree with all branches open. Thus,

Vb ,max}
v0

122k
V0 . ~A4!

Thus the relative volume of the airways is given by

Vb

Vb ,max
5~122k !

VE~P !

V0
(

n
~2k !nGn~P !. ~A5!

We note that if the volume of air sacs Vb is allowed to
contribute to the total volume of the lung V(P), the terms in
the expansion with respect to Gn decay exponentially and are
only significant for small values of n, as can seen from the
open boxes in Fig. 11~b!.
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