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Relating Airway Diameter Distributions to Regular Branching Asymmetry in the Lung
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We study the distribution �n�D� of airway diameters D as a function of generation N in asymmetric
airway trees of mammalian lungs. We find that the airway bifurcations are self-similar in four species
studied. Specifically, the ratios of diameters of the major and minor daughters to their parent are constants
independent of N until a cutoff diameter is reached. We derive closed form expressions for �N�D� and
examine the flow resistance of the tree based on an asymmetric flow division model. Our findings suggest
that the observed diameter heterogeneity is consistent with an underlying regular branching asymmetry.
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FIG. 1. Illustration of the notation and model. The major
(minor) daughter corresponds to the daughter airways with larger
(smaller) diameter. The diameter ratios �maj and �min defined in
Eq. (1) are constant at every bifurcation in the tree. The flow Qi;j

of the parent airway �i; j� is partitioned according to Eq. (2).
Leonardo da Vinci observed five centuries ago that ‘‘all
the branches of a tree at every stage of its height when put
together are equal in thickness to the trunk’’ [1]. Similar
regularities are seen in distribution networks of plants, and
the respiratory and vascular systems in mammals [2]. The
ubiquity of regular branching structures has led to the study
of underlying optimization principles [3], as well as the
development of growth models governed by local rules of
branching [4]. The variation of size with generation is
related to allometric scaling of metabolic rate with body
mass [5].

Most models of the lung airway tree either do not
address the observed diameter heterogeneity or simply
consider it a result of random fluctuations. Here, we exam-
ine the branching pattern of the airway tree in mammalian
lungs, and demonstrate that the simplifying assumption of
deterministic branching asymmetry is sufficient to account
for the observed distribution of airway diameters at any
level of branching. In addition, we find that the same form
of asymmetry can determine the resistance to air flow in
the lung.

We first introduce some notation [6]. We label each
airway in the tree by a pair of indices �i; j�, where the
index i is the generation number of the airway and the
index j (0 � j < 2i) is used to distinguish between airways
of the same generation. The root of the tree, the trachea, is
labeled �0; 0�. The daughters of a bifurcating airway �i; j�
are �i� 1; 2j� and �i� 1; 2j� 1� (Fig. 1).

The diameter of airway �i; j� relative to the diameter of
the root is defined as Di;j, with D0;0 � 1. The daughter
with the smaller (larger) diameter is termed the minor
(major) daughter and labeled by an even (odd) value of
j. We define the diameter ratios �min and �maj, respectively,
as the ratios of diameters of the minor and major daughter
to their parent (Fig. 1),
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�min � Di�1;2j=Di;j (1a)

�maj � Di�1;2j�1=Di;j: (1b)

We analyze the airway diameters from published data on
four species: dog, rat, human, and rabbit [7,8]. Figure 2
shows the mean and standard deviations of �min and �maj as
functions of generation number N for one animal from
each species. For all four species, we find that values of
�min and �maj are significantly different from each other
and are independent of N. Table I shows the average values
of �min and �maj. Figure 3 shows an example of the
diameter distribution �N�D� and Fig. 4 shows mean air-
way diameters hDNi and their standard deviations ��DN�
as functions of N.
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FIG. 2. Mean diameter ratios for the major (�maj, �) and minor
(�min,�) daughters as a function of generation number N for one
animal from each of four different species: (a) dog, (b) rat,
(c) rabbit, and (d) human. The error bars show the standard
deviation of the corresponding distributions at each N.

TABLE I. Parameters for four species obtained from data [7,8]
and used in the model. The mean 	 standard deviation of the
diameter ratios �maj and �min are obtained from the data shown
in Fig. 2. Also shown are the values of r and � obtained by
solving Eq. (4).

Data Model
Species �maj �min r �

Dog 0:927	 0:085 0:574	 0:117 0.198 2.92
Rat 0:865	 0:165 0:583	 0:182 0.286 2.32
Rabbit 0:887	 0:263 0:529	 0:203 0.237 2.26
Human 0:876	 0:097 0:686	 0:118 0.326 2.97
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The flow Qi;j is defined for each airway �i; j�, with
Q0;0 � 1. At each bifurcation, the flow Qi;j of a parent
airway is partitioned between its daughters Qi�1;2j and
Qi�1;2j�1 according to

Qi�1;2j � rQi;j (2a)

Qi�1;2j�1 � �1� r�Qi;j; (2b)

where the parameter r � 1
2 determines the asymmetry of

flow partitioning (Fig. 1). For simplicity, we assume the
16810
same partitioning of air flow at each bifurcation, so r is a
constant [4].

We assume that the dimensionless diameter Di;j of an
airway �i; j� is related to the dimensionless flow Qi;j [9] as

Qi;j � �Di;j�
�; (3)

where the exponent � is the same for all generations within
the airway tree. Equation (3) arises from the optimization
of diameters of a single tube in order to minimize dissipa-
tion while maintaining biological viability. For laminar
flow the optimum value of � � 3 [9], while for turbulent
flow � � 2:33 [10]. The former result has also been ex-
tended for symmetric fractal trees [5].

We can express the diameter ratios by combining
Eqs. (1)–(3),

�min � r1=� (4a)

�maj � �1� r�1=�: (4b)

Table I shows the values of r and � as obtained from
experimental values of �min and �maj by solving Eq. (4).

We assume that when the flow through an airway falls
below a critical threshold value Qc, the gas transport
transitions to diffusion and the airway is terminated by
an air sac [4]. The cutoff diameter Dc at which airways
terminate is given by Dc � �Qc�

1=�.
From Eq. (1) we see that a daughter with an even (odd)

index j inherits the diameter of the parent airway multi-
plied by a factor �min (�maj). The diameter Di;j can thus be
expressed in terms of �min and �maj using the number of
even and odd steps required to reach airway �i; j� from the
root �0; 0�. At generation N, the diameters DN;j can take
values �mmaj�

N�m
min where m � 0 . . .N is the number of odd

steps necessary to reach �N; j� from �0; 0�. Hence, we can
express m as a function of the diameter D,

m�D� �
logD� N log�min

log�maj � log�min
: (5)

The number �N�m� of airways at generation N corre-
sponding to a particularm can be found by enumerating the
number of ways one can select the m odd steps among the
1-2
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N steps, �N�m� � �
N
m�. Using the Stirling formula,

�N�m� 
 2N

��������
2

�N

s
exp

�
�
�m� N=2�2

N=2

�
: (6)

Substituting m from Eq. (5) in Eq. (6), making a con-
tinuum approximation for m, and taking into account the
cutoff at Dc, we obtain the distribution �N�D� of diame-
ters at generation N. Thus, �N�D�dD / �N�m�dm��D�
Dc�, where ��x� is the Heaviside step function. After
normalization, we obtain

�N�D� �
AN

�N;1
exp

�
�

log2�D=�N�

2Ns2

�
��D�Dc�: (7)

The width and peak of the distribution �N�D� are deter-
mined by s � 1

2 log��maj=�min� and � � �������������������maj�min
p e�s

2
,

respectively. The log-normal distribution is normalized by

AN �

������������
2

�Ns2

s
��es

2=2��N (8)

and �N;1 reflects the effect of truncation at Dc, with

�N;q � erfc

2
4� ������

N
Nq

s
�

������
Nc
N

s �35; (9)

where Nc �
1

2s2 log2Dc and Nq � 2s2=�qs2 � log2��.
Figure 3 shows that �N�D� predicted by Eq. (7) agrees
well with empirical data on the dog lung.

The mean diameter hDNi at generation N is given by

hDNi � ��e3s2=2�N
�N;2

�N;1
: (10)

For small N the effect of Dc is negligible, so the term
�N;2=�N;1 
 1 and the mean diameter decreases exponen-
tially with N, hDNi 
 ��e

3s2=2�N. However, for large N,
hDNi approaches Dc. Figure 4(a) shows the calculated
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FIG. 3. Linear-log plot of a typical distribution �N�D� of
airway diameters D. Filled boxes show �N�D� for a dog lung
at generation N � 7. The solid line shows the model �N�D� as
given by Eq. (7) using the parameters in Table I.
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hDNi using the parameters in Table I in comparison to
the measured data for four species.

In order to calculate the standard deviation ��DN� �

�hD2
Ni � hDNi

2�1=2, we must calculate the second moment

hD2
Ni � ��

2e4s2
�N

�N;3

�N;1
: (11)

Figure 4(b) shows that ��DN� calculated using our model
compares well with the observed heterogeneity in mea-
sured data.

In order to investigate the functional consequence of the
asymmetry [11], we next examine the resistance R of the
airway tree. The Poiseuille flow resistance of an airway is
given by �i;j / Li;j�Di;j�

�4, where Li;j is the length of
airway �i; j�. We assume that Li;j / Di;j, i.e., the aspect
ratios of the airways are conserved [4], so

�i;j � �0;0�Di;j�
�3; (12)

where �0;0 is the resistance of the trachea.
For a symmetric tree with r � 1=2, � � �maj � �min �

2�1=� from Eq. (4), and thus the diameters Di;j � �i and
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FIG. 4. Semilog plot of (a) mean diameters hDNi and
(b) standard deviation of the diameters ��DN� plotted as a
function of generation N for four species: dog (�), rat (4),
rabbit (5), and human (�). Solid lines show the model predic-
tions using the parameters in Table I, and with Dc � 0:084,
0.070, 0.053, and 0.165, respectively, for the four species. The
curves are vertically shifted for clarity.
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FIG. 5. Total resistance R�r� of the airway tree relative to the
resistance R�12� for a symmetric tree, as a function of r for � �
2:0, 2.5, 3.0, and 3.5, with Qc � 10�4. For certain values of r,
indicated by arrows, the asymmetric tree has a lower R than the
corresponding symmetric tree which is indicated by the dotted
horizontal line.
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the resistances �i;j � �0;0w
i with w � 23=� from Eq. (12).

The total resistance RM of a tree withM generations can be
written using the recursion relation RM � �0;0 �
�wRM�1kwRM�1�, where �akb� � �a�1 � b�1��1 is the
equivalent resistance for a parallel combination. Thus,

RM � �0;0

XM
i�0

�
w
2

�
i
: (13)

For�> 3 the series in Eq. (13) quickly converges to RM 

�0;0=�1�

w
2�which is independent of the size of the tree, so

most of the contribution to the resistance is from the air-
ways with small i. However, for �< 3 the resistances of
terminal airways (i � M) dominate RM.

For a tree with r < 1
2 , asymmetry is introduced in two

ways: (a) the two daughter subtrees of a bifurcating airway
have different resistances since they have different diame-
ters and (b) airways with smaller diameters reach the cutoff
diameter Dc in fewer generations, resulting in missing
subtrees. First we assume Dc ! 0 in order to eliminate
the effect of the cutoff. The total resistance R1 of the
resulting infinite tree can be written as

R1 � �0;0 � �wminR1kwmajR1�; (14)

where wmin � ��3
min and wmaj � ��3

maj. The expression for
R1 is analogous to the symmetric R given by Eq. (13) with
w=2 � ��3

min � �
3
maj�

�1, so R1 is finite when �3
min �

�3
maj > 1. Since ��min � �

�
maj � 1 from Eq. (4) and

�min; �maj � 1, R1 converges for �> 3. Thus, for �< 3,
terminal airways contribute significantly to the total tree
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resistance and we cannot ignore the effect of the finite
nature of the tree due to Dc.

To study the resistance R of a finite asymmetric tree, we
used computer generated realizations for different values
of r and � with fixed Qc. Figure 5 shows the ratio of R for
the asymmetric airway tree relative to R for a symmetric
tree, for different �. For �> 3, the series in Eq. (13)
converges, which is reflected by the monotonic decrease
in R with increasing r. For �< 3 the curves are nonmono-
tonic functions of r as the terminal airways contribute
significantly to R. We find local minima in R for certain
values of r (arrows in Fig. 5).

We note that, while our assumption of Poiseuille flow is
valid for smaller airways which are important for �< 3,
turbulent and entrance effects are important for larger air-
ways [12] which are the dominant contributors to R for
�> 3. These effects are also responsible for the observed
differences between inspiratory and expiratory R, which
are identical in our model. Additionally, the elastic prop-
erties of the walls are not taken into account.

Finally, the nature of bifurcation asymmetry that deter-
mines the diameter distributions might be related to opti-
mization of function within the constraints imposed by the
shape of the lung. However, since the observed values of
� & 3, our findings suggest that over a wide range of r, the
asymmetry is not an appreciable impediment to the flow of
air into gas exchange units of the lung.
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