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We explore, in the mean-field approximation, robustness with respect to dissipation of self-organized criti-
cality in sandpile models. To this end, we generalize a recently introduced self-organized branching process,
and show that the model self-organizes not into a critical state but rather into a subcritical state: when
dissipation is present, the dynamical fixed point does not coincide with the critical point. Thus the level of
dissipation acts as a relevant parameter in the renormalization-group sense. We study the model numerically
and compute analytically the critical exponents for the avalanche size and lifetime distributions and the scaling
exponents for the corresponding cutoffs. @S1063-651X~96!08009-9#
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I. INTRODUCTION

Many driven systems in nature respond to external pertur-
bations by a hierarchy of avalanche events. This type of be-
havior is observed in magnetic systems @1#, flux lines in su-
perconductors @2#, fluid flow through porous media @3#,
microfracturing processes @4#, earthquakes @5#, and physi-
ological phenomena @6#. In these systems the distribution of
avalanche amplitudes s decays as a power law D(s);s2t

thus suggesting an analogy with critical phenomena. Self-
organized criticality ~SOC! was proposed @7# as a possible
framework to describe those phenomena. Power-law scaling
would emerge spontaneously due to the dynamics, without
the fine tuning of external parameters such as the tempera-
ture. Various models have been proposed with the aim of
capturing the essential features of avalanche dynamics and
self-organization. In particular, sandpile models stimulated
an intense experimental @8,9#, numerical @10,11# and theo-
retical @12–14# activity.

As in the case of phase transitions, mean-field theory rep-
resents the simplest approach that gives a qualitative descrip-
tion of the system. Mean-field exponents for SOC models
have been obtained in different ways @15–21#, but it turns
out that their values ~e.g., t53/2) are the same for all the
models considered thus far. This fact can easily be under-
stood since the spreading of an avalanche in mean-field
theory is a branching process @22# because an avalanche can
be described by a front of ‘‘noninteracting particles’’ that
can either trigger subsequent activity or die out. The connec-
tion between branching processes and SOC has been inves-
tigated, and it has been proposed that the mean-field behav-
ior of sandpile models can be described by a critical
branching process @23–26#.

However, the nature of the self-organization was not ad-
dressed by the previous approaches. In fact the branching
process is critical only for a given value of the branching
probability, while in sandpile models there is no such tuning.

Recently, we have introduced the ‘‘self-organized branching
process’’ ~SOBP! @27#, a mean-field model that allows one to
clarify the mechanism of self-organization in sandpile mod-
els. Moreover, the SOBP model can be exactly mapped onto
a two-state sandpile model in the limit d→` , where d is the
dimension of the system.

In experiments it can be difficult to determine whether the
cutoff in the scaling is due to finite-size effects or due to the
fact that the system is not at but rather only close to the
critical point. In this respect, it is important to test the ro-
bustness of SOC behavior by understanding which perturba-
tions destroy the critical properties of SOC models.

It has been shown numerically @28–30# that the breaking
of the conservation of particle numbers leads to a character-
istic size in the avalanche distributions. Here we generalize
the SOBP in order to allow for dissipation and we show, in
the mean-field approximation, how the system self-organizes
in a subcritical state. In other words, the degree of noncon-
servation is a relevant parameter in the renormalization
group sense @14#.

In Sec. II we derive the SOBP from a dissipative sandpile
model. In Sec. III we study the approach to the critical state.
The critical exponents are evaluated in Sec. IV, and the re-
sults are verified numerically. Section V is devoted to con-
clusions.

II. MODEL AND MEAN-FIELD THEORY

Sandpile models are cellular automata with an integer or
continuous variable z i ~energy! associated with each site i of
a d-dimensional lattice. At each time step the energy of a
randomly chosen site is increased by some amount. When
the energy on a site reaches a threshold zc the site becomes
unstable and relaxes by transferring its energy to its neigh-
bors according to the specific rules of the model. In this way,
a single relaxation can trigger other relaxations, leading to
the formation of an avalanche. The boundary conditions are
chosen to be open, so avalanches that reach the boundaries
release energy outside of the system. After a transient, the
system reaches a steady state characterized by a balance be-
tween the input and the output of energy.

Let us now consider a particular sandpile model: the two-
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state model introduced by Manna @31#. Energy can take only
two stable values z i50 ~empty site! and z i51 ~particle!.
When z i>2 the site relaxes, z i→z i22, and the energy of
two randomly chosen nearest neighbors is increased by one.
This rule conserves the energy, in this case the number of
particles, during an avalanche and leads to a stationary criti-
cal state.

Some degree of nonconservation can be introduced in the
model by allowing for energy dissipation in a relaxation
event. In a continuous energy model this can be done by
transferring to the neighboring sites only a fraction (12e) of
the energy lost by the relaxing site @28#. In a discrete energy
model, such as the Manna two-state model, one can intro-
duce as the probability e that the two particles transferred by
the relaxing site are annihilated @29#. For e50 one recovers
the original two-state model.

Numerical simulations @28,29# show that the two ways of
considering dissipation lead to the same effect: a character-
istic length is introduced into the system and the criticality is
lost. As a result, the avalanche size distribution decays not as
a pure power law but rather as

D~s !;s2ths~s/sc!. ~1!

Here hs(x) is a cutoff function and the cutoff size scales as

sc;e2w. ~2!

The size s is defined as the number of sites that relax in an
avalanche. We define the avalanche lifetime T as the number
of steps comprising an avalanche. The corresponding distri-
bution decays as

D~T !;T2yhT~T/Tc!, ~3!

where hT(x) is another cutoff function and Tc is a cutoff that
scales as

Tc;e2c. ~4!

The cutoff or ‘‘scaling’’ functions hs(x) and hT(x) fall off
exponentially for x@1.

To construct the mean-field theory, we consider the model
as d→` , i.e., for an infinite dimensional lattice. When a
particle is added to an arbitrary site, the site will relax if a
particle was already present, which occurs with probability
p5P(z51), the probability that the site is occupied. If a
relaxation occurs, the two particles are transferred with prob-
ability 12e to two of the infinitely many nearest neighbors,
or they are dissipated with probability e .

Since d→` implies that the lattice coordination number
tends to infinity, the avalanche will never visit the same site
twice, implying that each site that receives a particle from a
neighbor relaxes with the same probability. The avalanche
process in the mean-field limit is a branching process. More-
over, we note that the branching process can be described by
the effective branching probability

p̃[p~12e !, ~5!

where p̃ is the probability to create two new active sites.
From the theory of branching processes @22#, we know that
there is a critical value p̃51/2 or

p5pc[
1

2~12e !
, ~6!

such that for p.pc the probability to have an infinite ava-
lanche is nonzero, while for p,pc all avalanches are finite.
The value p5pc corresponds to the critical case where ava-
lanches are power law distributed.

Boundary conditions are important for the process of self-
organization. We can introduce the ‘‘boundary conditions’’
in the mean-field theory in a natural way by allowing for no
more than n generations for each avalanche. We can view
the evolution of a single avalanche of size s as taking place
on a tree of N52n11

21 sites ~see Fig. 1!. Note that we are
not studying the model on a Bethe lattice @32#; i.e., the
branching structure we are discussing is not directly related
to the geometry of the system. The number of generations
n can, nevertheless, be thought of as some measure of the
linear dimension of the system. If the avalanche reaches the
boundary of the tree, we count the number of active sites
sn ~which in the sandpile language corresponds to the en-
ergy leaving the system!, and we expect that p decreases for
the next avalanche. If, on the other hand, the avalanche stops
before reaching the boundary, then p will slightly increase.

To make the above statements quantitative, consider the
evolution of the total number of particles M (t) in the system
after each avalanche

M ~ t11 !5M ~ t !112s~p ,t !2k~p ,t !. ~7!

Here s is the number of particles that leave the system from
the boundaries and k is the number of particles lost by dis-
sipation. Since M (t)5NP(z51)5Np , we obtain an evolu-
tion equation for the parameter p

p~ t11 !5p~ t !1

12s~p ,t !2k~p ,t !

N
. ~8!

FIG. 1. Schematic drawing of an avalanche in a system with a
maximum of n53 avalanche generations corresponding to
N52n11

21515 sites. Each black site (d) can relax in three dif-
ferent ways: ~i! with probability p(12e) to two new black sites, ~ii!
with probability 12p the avalanche stops, and ~iii! with probability
pe two particles are dissipated at a black site, which then becomes
a marked site (% ), and the avalanche stops. The black sites are part
of an avalanche of size s56, whereas the active sites at the bound-
ary yield s3(p ,t)52. The total number of ‘‘stopped’’ sites are
m52, and there was one dissipation event such that k52.
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This equation reduces to the SOBP model @27# for the case
of no dissipation (k50). The implications of Eq. ~8! will be
discussed in the following sections.

III. SELF-ORGANIZATION: THE PROPERTIES
OF THE STEADY STATE

In order to characterize the steady state of the SOBP
model, we rewrite Eq. ~8! in terms of the average values of
s and k indicated by angular brackets. The average number
of particles ^sn& leaving the system from the boundaries in a
system of n generations is computed @22# from the recursive
nature of the process

^sn~p ,t !&5@2p~12e !#n. ~9!

The evaluation of the average number of particles dissi-
pated during an avalanche is somewhat more involved. We
can first relate the average value of k to the average number
of sites m where an avalanche does not branch—either be-
cause of dissipation or because the site was empty ~i.e., the
avalanche stops!,

^k&52^m&
pe

pe112p
. ~10!

The calculation of ^k& then reduces to the calculation of
^m&. If we denote by sm the number of active sites at gen-
eration m , then m is given by

m5 (
m50

n21 S sm2

sm11

2 D5

11s22sn

2
, ~11!

where s5(m50
n sm is the total size of the avalanche. The

average value of s is obtained by summing the series

^s&5 (
m50

n

^sm&5

12@2p~12e !#n11

122p~12e !
. ~12!

Combing Eqs. ~9!–~12!, one obtains that Eq. ~8! in the
continuum notation becomes

dp

dt
5

1

N S 12„2p~12e !…n2
pe

pe112p

3F11

12„2p~12e !…n11

122p~12e !
22„2p~12e !…nG D

1

h~p ,t !

N
. ~13!

In Eq. ~13!, we introduced the function h(p ,t) to describe
the fluctuations around the average values of s and k . We
have shown numerically that the effect of this ‘‘noise’’ term
is vanishingly small in the limit N→` .

Without the noise term we can study the fixed points of
Eq. ~13!. We find that there is only one fixed point,

p*51/2, ~14!

independent of the value of e; the corrections to this value
are of the order O(1/N). By linearizing Eq. ~13!, we find that

the fixed point is attractive. This result implies that the SOBP
model self-organizes into a state with p5p*. In Fig. 2 we
show the value of p as a function of time for different values
of the dissipation e . We find that independent of the initial
conditions after a transient p(t) reaches the self-organized
steady state described by the fixed point value p*51/2 and
fluctuates around it with short-range correlations ~of the or-
der of one time unit!. The fluctuations around the critical
value decrease with the system size as 1/N . Thus it follows
that in the limit N→` the distribution f(p) of p approaches
a d function

f~p !;d~p2p*!. ~15!

By comparing the fixed-point value ~14! with the critical
value ~6!, we obtain that in the presence of dissipation
(e.0) the self-organized steady state of the system is sub-
critical. Figure 3 is a schematic picture of the phase space of

FIG. 2. The value of the control parameter p(t) as a function of
time for a system with different levels of dissipation. After a tran-
sient, p(t) reaches its fixed-point value p*51/2 and fluctuates
around it with short-range time correlations.

FIG. 3. Phase diagram for the SOBP model with dissipation.
The dashed line shows the fixed points p*51/2 of the dynamics,
with the flow being indicated by the arrows. The solid line shows
the critical points, cf. Eq. ~6!.
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the model, including the line p5pc of critical behavior ~6!
and the line p5p* of fixed points ~14!. These two lines
intersect only for e50.

IV. CRITICAL EXPONENTS

In this section, we study the critical properties of the
model. In the limit n@1 we obtain analytical results for the
avalanche and lifetime distributions for any value of p̃ , the
effective branching probability defined in Eq. ~5!. We show
that the critical branching process with p̃51/2 ~obtained
when e50) correctly reduces to the mean-field exponents
t53/2 and y52.

A. Generating functions

The quantities Pn(s , p̃) and Qn(s , p̃) are defined to be the
probabilities of an avalanche of size s and boundary size s
respectively, in a system with n generations. The corre-
sponding generating functions are defined by @22#

f n~x , p̃ ![(
s
Pn~s , p̃ !xs, ~16a!

gn~x , p̃ ![(
s
Qn~s , p̃ !xs. ~16b!

From the hierarchical structure of the branching process, it is
possible to write down recursion relations for Pn(s , p̃) and
Qn(s , p̃), from which we obtain @22#

f n11~x , p̃ !5x@~12 p̃ !1 p̃ f n
2~x , p̃ !# ~17a!

and

gn11~x , p̃ !5~12 p̃ !1 p̃gn
2~x , p̃ !, ~17b!

where f 0(x , p̃)5g0(x , p̃)5x .

B. Avalanche size distribution

The solution of Eq. ~17a! in the limit n@1 is given by

f ~x , p̃ !5

12A124x2 p̃~12 p̃ !

2xp̃
. ~18!

We expand Eq. ~18! as a series in x , and by comparing with
the definition ~16a!, we obtain for sizes such that 1!s&n
@33#

Pn~s , p̃ !5

A2~12 p̃ !/p p̃

s3/2
exp@2s/sc~ p̃ !# . ~19!

The cutoff sc( p̃) is given by

sc~ p̃ !52

2

ln4 p̃~12 p̃ !
. ~20!

For avalanches with n&s&N it is possible to use a Taub-
erian theorem @34–36#, and show that Pn(s , p̃) will decay
exponentially.

The next step is to calculate the avalanche distribution
D(s) for the SOBP model. This can be calculated as the
average value of Pn(s , p̃) with respect to the probability den-
sity f(p), i.e., according to

D~s !5E
0

1

dpf~p !Pn~s , p̃ !. ~21!

Since the simulation results show that f(p) for N@1 ap-
proaches the d function d(p2p*) @cf. Eq. ~15!#, expression
~21! reduces to

D~s !5Pn~s , p̃ !u p̃5p*~12e ! . ~22!

As a result we obtain the distribution

D~s !5S 2
p

D 1/211e1•••

s3/2
exp@2s/sc~e !# . ~23!

We can expand sc( p̃) in e with the result

sc~e !;
2

ew , w52. ~24!

Furthermore, the mean-field exponent for the critical branch-
ing process is obtained setting e50, i.e.,

t53/2. ~25!

These results are in excellent agreement with the simula-
tion of D(s) for the SOBP model ~cf. Fig. 4!. The deviations
from the power-law behavior ~23! are due to the fact that Eq.
~19! is only valid for 1!s&n @33#.

C. Lifetime distribution

The avalanche lifetime distribution D(T) is defined, for
the model, as the probability to obtain an avalanche which
spans m generations; here, we identify m with the time T . It
follows that

P~m , p̃ !5Qm11~s50,p̃ !2Qm~s50,p̃ !. ~26!

As for the avalanche distribution D(s) we have that
D(T)5P(m5T , p̃) evaluated for p̃5p*(12e).

For p̃51/2 we use the general result @22#

1

12Qm~s50,p̃ !
511mp̃1O~ lnm !, m@1, ~27!

and obtain

P~T , p̃ !5

p̃ 21

T2
@11O~ lnT/T !1•••# . ~28!

Note the strong correction to scaling to D(T) in this case.
For p̃,1/2 we find @22#

12Qm~s50,p̃ !;c1~2 p̃ !m, ~29!
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for m@1, where c1.0 is an unknown constant. This expres-
sion yields D(T);e exp (2ne).

We can combine the above results in the scaling form

D~T !;T22exp~2T/Tc!, ~30!

where

Tc;e2c, c51. ~31!

The lifetime exponent y was defined in Eq. ~3!, wherefrom
we obtain the mean-field result

y52. ~32!

In Fig. 5, we show lifetime distributions for different values
of e , together with the data collapse produced by Eq. ~30!.

V. DISCUSSION AND CONCLUSIONS

We have studied the effect of dissipation in the dynamics
of the sandpile model in the mean-field limit (d→`). In this
limit, the dynamics of an avalanche is described by a branch-
ing process. We have derived an evolution equation for the
branching probability that generalizes the self-organized
branching process ~SOBP! introduced in Ref. @27#. By ana-
lyzing this evolution equation, we have shown that there is a
single attractive fixed point which in the presence of dissipa-
tion is not a critical point. The level of dissipation e therefore
acts as a relevant parameter for the SOBP model. We have
determined analytically the critical exponents describing the
scaling of the characteristic size with e and the form of the
avalanche distributions, and numerically verified the above
results.

These results prove, in the mean-field limit, that criticality
in the sandpile model is lost when dissipation is present. It
would be interesting to use a similar approach for other
forms of perturbations. In particular it has been shown for
other SOC models that the presence of a nonzero tempera-
ture @37# or of a nonzero driving rate @38# are relevant per-
turbations leading to a noncritical steady state.

FIG. 4. ~a! Log-log plot of the avalanche distribution D(s) for
different levels of dissipation. A line with slope t53/2 is plotted
for reference, and it describes the behavior of the data for interme-
diate s values, cf. Eq. ~23!. For large s , the distributions fall off
exponentially. ~b! Data collapse produced by Eq. ~23!.

FIG. 5. ~a! Log-log plot of the lifetime distribution D(T) for
different levels of dissipation. A line with slope y52 is plotted for
reference. Note the initial deviations from the power law for e50
due to the strong corrections to scaling, cf. Eq. ~28!. ~b! Data col-
lapse produced by Eq. ~30!.
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Finally, we discuss the relations between the SOBP model
and the simplest possible SOC system recently introduced by
Flyvbjerg @39#. The minimal definition of SOC, as a medium
in which externally driven disturbances propagate leading to
a stationary critical state, is well exemplified by the SOBP
model. The disturbance is described by the branching pro-
cess and the medium by the evolution equation for the den-
sity of particles in the system @Eq. ~8!#. The example given
by Flyvbjerg, being a two-state random-neighbor sandpile

model, differs from the SOBP @27# in the way open boundary
conditions are imposed.
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