SOME RIGOROUS RESULTS CONCERNING THE CROSSOVER BEHAVIOR
OF THE ISING MODEL WITH LATTICE ANISOTROPY *

L.L. LIU and H.E. STANLEY
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Received 15 June 1972

The following rigorous relations are established for the Ising model with interaction strengths J in some lattice directions and RJ in other directions: $\gamma_1 = 2\gamma, \gamma_2 \geq 3\gamma,$ and $\gamma_3 \geq 4\gamma,$ where $\chi_n (0) = (\delta^n \chi / \delta R^n)_{R=0} \sim e^{-\gamma_n}$, and $\gamma_0 = \gamma$ is the susceptibility exponent for the lattice when $R=0$. These results disagree with recently-reported numerical estimates of certain of the γ_n.

There has recently been considerable interest in systems with “lattice anisotropy” (different coupling strengths in different lattice directions). Consider, e.g., the d-dimensional nearest-neighbor (nn) Ising system

$$\mathcal{H} = -J \sum_{i=1}^{\text{nn}} s_i s_j - R J \sum_{i=1}^{\text{nn}} s_i s_j,$$

$$\equiv \mathcal{H}_0 + R \mathcal{H}_1,$$ (1)

where $r_i = (x_1, x_2, \ldots, x_d)$ and $u_i = (x_1, \ldots, x_d)$. For example, very recently there have been extensive calculations [1, 2] concerning the case $d=3, d=2$, corresponding to a “square to simple cubic crossover”. Henceforth we shall consider this system for the purpose of specificity and clarity; thus $r_i = (x_i, \psi_i, z_i) = (u_i, z_i)$ and $R \equiv J_x / J_{xy}$. Our approach is, however, more general.

According to the generalized scaling hypothesis, for which the parameter R is scaled (as well as ε, H, \ldots), the “crossover” exponent ϕ is the only exponent that one needs to describe the crossover behavior [8]. In particular,

$$\gamma_n = \gamma + n \phi,$$ (2)

where the new exponent γ_n is defined by

$$\chi_n (R=0) \equiv (\delta^n \chi / \delta R^n)_{R=0} \sim [T - T_c (0)]^{-\gamma_n}.$$ (3)

Here χ is the reduced zero-field magnetic susceptibility and $\gamma_0 = \gamma$ is the susceptibility exponent of the d-dimensional system.

The exponents γ_n cannot be calculated exactly but they can be estimated by extrapolations based upon high-temperature series expansions. There presently exists a dispute [1, 3 – 5] in the literature concerning numerical values of γ_n, and the most recent work claims that for sq \rightarrow sc Ising model,

$$\gamma_1 = 3.5, \quad \gamma_2 = 5.0 \pm 0.1, \quad \gamma_3 = 6.5 \pm 0.2, \quad \gamma_4 = 8.0 \pm 0.3.$$ (4)

In this note we shall report the following rigorous results:

$$\gamma_1 = 2\gamma$$ (5a)

$$\gamma_2 \geq 3\gamma$$ (5b)

$$\gamma_3 \geq 4\gamma.$$ (5c)

Since $\gamma = 1.75$ for a sq Ising model, the numerical estimates of (4) violate (5). Our results also lend support for the predictions (2) and $\gamma_n = (n + 1) \gamma$.

As a demonstration, we shall here outline the proof of (5b). Details of the analysis will be published elsewhere.

* Supported by NSF Grant GP-15428.
The expressions (7a) — (7d) are weighted by factors $4(N-1)$, $N(N-1)$, $2N$, and $2N$ respectively, arising from the fact that we can make interchanges of the form $i \leftrightarrow j$ etc. in fig. 1.

The second term in (6) has two factors,

$$
\sum R_i R_j (s_i s_j) = (N+1)M^2 x_0 (0)
$$

and

$$
\langle \mathcal{H}_i^2 \rangle = J^2 NM^2 \sum_u \langle s_0 s_u \rangle^2.
$$

Thus (6) becomes

$$
(\beta J)^{-2} (N+1)M^2 x_2 (0) = 4(N-1)M^2 [x_0 (0)]^3
$$

$$
-2NM^2 x_0 (0)M^2 \sum \langle s_0 s_u \rangle^2
$$

$$
+2NM^2 \sum \langle \sum_i s_i \rangle^2 \langle s_0 s_u \rangle \langle s_0 s_u \rangle
$$

$$
+2NM^2 \sum \langle s_0 s_u \langle \sum_i s_i \rangle^2.
$$

The Griffiths inequality [11],

$$
\langle s_i s_j s_k s_l \rangle \geq \langle s_0 s_u \rangle \langle s_0 s_u \rangle
$$

permits us to "cancel" the second and third terms on the right-hand side of eq. (10), and noting that the fourth term is positive, we have

$$
\chi_2 (0) \geq 4(\beta J)^2 [x_0 (0)]^3
$$

where we have neglected $O(1/N)$ with respect to unity, inequality (5b) follows from (11).

In conclusion, we have shown rigorously that $\gamma_1 = 2\gamma$, $\gamma_2 \geq 3\gamma$, and $\gamma_3 \geq 4\gamma$. If the scaling hypothesis is valid (so that $\gamma_n = \gamma + n\delta$), our work furnishes a simple but rigorous proof of $\phi = \gamma$. Moreover, our results (5b) and (5c) indicate that reported values of γ_2 and γ_3 are unreliable [1—3]. A detailed study of these (and other [12]) high-temperature series for the lattice anisotropy problem is now underway, and preliminary
numerical results indicate that $\gamma_n = (n+1)\gamma$ for $n = 1, 2, 3, 4$.

References