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We introduce an inflexible contrarian opinion (ICO) model in which a fraction p of inflexible contrarians
within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage,
stable clusters of two opinions, A and B, exist. Then we introduce inflexible contrarians which hold a strong B

opinion into the opinion A group. Through their interactions, the inflexible contrarians are able to decrease the
size of the largest A opinion cluster and even destroy it. We see this kind of method in operation, e.g., when
companies send free new products to potential customers in order to convince them to adopt their products and
influence others to buy them. We study the ICO model, using two different strategies, on both Erdös-Rényi and
scale-free networks. In strategy I, the inflexible contrarians are positioned at random. In strategy II, the inflexible
contrarians are chosen to be the highest-degree nodes. We find that for both strategies the size of the largest
A cluster decreases to 0 as p increases as in a phase transition. At a critical threshold value, pc, the system
undergoes a second-order phase transition that belongs to the same universality class of mean-field percolation.
We find that even for an Erdös-Rényi type model, where the degrees of the nodes are not so distinct, strategy II
is significantly more effective in reducing the size of the largest A opinion cluster and, at very small values of p,
the largest A opinion cluster is destroyed.
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I. INTRODUCTION

Competition between two groups or among a larger number
of groups is ubiquitous in business and politics: the decades-
long battle between the Mac and the PC in the computer
industry, between Procter & Gamble and Unilever in the
personal products industry, among all major international and
local banks in the financial market, and among politicians and
interest groups in the world of governance. All competitors
want to increase the number of their supporters and thus
increase their chances of success. In gathering supporters,
competitors put much effort into persuading skeptics and
those opponents who may actually be potential supporters.
This kind of activity is normally modeled as a dynamic
process on a complex network in which the nodes are the
agents and the links are the interactions between agents.
The goal of these models is to understand how an initially
disordered configuration can become an ordered configuration
through the interaction between agents. In the context of
social science, order means agreement and disorder means
disagreement [1,2]. Most of these models—e.g., the Sznajd
model [3], the voter model [4,5], the majority rule model [6,7],
and the social impact model [8,9]—are based on two-state spin
systems which tend to reduce the variability of the initial state
and lead to a consensus state in which all the agents share
the same opinion. However this consensus state is not very
realistic, since in many real competitions there are always at
least two groups that coexist at the same time.

Recently a nonconsensus opinion (NCO) model [10] was
developed, where two opinions A and B compete and reach
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a nonconsensus stable state. At each time step each node
adopts the opinion of the majority in its “neighborhood,” which
consists of its nearest neighbors and itself. When there is a tie,
the node does not change its state. Considering also the node’s
own opinion leads to the nonconsensus state. The dynamics are
such that a steady state in which opinions A and B coexist is
quickly reached. It was conjectured, and supported by intensive
simulations [10], that the NCO model in complex networks
belongs to the same universality class as percolation [10–12].

The concepts of inflexible agents and contrarian agents
were introduced by Galam et al. in their recent work on opinion
models [13–16]. However, till now, no one has explored
the opinion model with “inflexible contrarians.” Here we
test how competition strategies are affected when “inflexible
contrarians” are introduced. Inflexible contrarians are agents
who hold a strong opinion that is opposite to the opinion
held by the rest of the group [13,14]. And the inflexible here
means that once the contrarians are chosen, they will not
change their opinions under any circumstances [15,16]. We
develop a spin-type inflexible contrarian opinion (ICO) model
in which inflexible contrarian agents are introduced into the
steady state of the NCO model. The goal of the inflexible
contrarians is to change the opinions of the current supporters
of the rival group [17]. We see this strategy in operation,
for example, when companies send free new products to
potential customers in order to convince them to adopt the
products and encourage their friends to do the same. We can
observe it also in political campaigns when candidates “bribe”
voters by offering favors. The questions we ask in our model
are as follows. Do these free products and bribes work and
how? Who are the best individuals to chose as inflexible
contrarians in order to make the most impact on opinion
change.
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FIG. 1. (Color online) Schematic plot of the dynamics of the ICO model showing the approach to a stable state on a network with N = 9
nodes. (a) At t = 0, we have a stable state where opinion A (open circle) and opinion B (solid circle) coexist. (b) At t = 1, we change node 1
into an inflexible contrarian (solid square), which will hold B opinion. Node 2 is now in the local minority opinion while the remaining nodes
are not. Notice that node 1 is an inflexible contrarian and even if he (she) is in the local minority he (she) does not change his (her) opinion. At
the end of this simulation step, node 2 is converted into B opinion. (c) At t = 2, node 3 is in the local minority opinion and therefore will be
converted into B opinion. (d) At t = 3, the system reaches a stable state where the system breaks into four disconnected clusters, one of them
composed of six B nodes and the other three with one A node.

In this paper we introduce, into group A, a fraction p
of inflexible contrarians, which are defined to be agents that
hold a strong B opinion, who will influence those who hold
the A opinion to change their opinion to B. We study two
different strategies of introducing inflexible contrarians: (I)
random choosing of inflexible contrarians and (II) targeted. We
study these strategies on two types of networks: Erdös-Rényi
(ER) [18,19] and scale free (SF) [20,21]. We find, for both
strategies, that the relative size of the largest cluster in state A
undergoes a second-order phase transition at a critical fraction
of inflexible contrarians pc. Moreover we find that, for both
networks analyzed here, the targeted strategy is much more
efficient than the random strategy. Our results indicate that the
observed second-order phase transition can be mapped into
mean-field percolation.

II. THE ICO MODEL

In the NCO model [10], initially, a fraction f of agents with
A opinions and 1 − f with B opinions are selected at random.
At each time step, each network node adopts the majority
opinion based on the opinions of its neighbors and itself. All
updates are performed simultaneously at each time step until a
steady state is reached in which both opinions coexist, which
occurs for f above a critical threshold f ≡ fc.

In our ICO model, the initial state is the final state of the
NCO model. Above fc we have stable clusters of both A or
B opinions in a network of N agents. We choose, initially, a
fraction p of A opinion agents that are changed into B opinion

agents and so become inflexible contrarians. By inflexible
contrarian we mean that they will never change their opinion
but they can influence others. Then we use again the NCO
dynamics to reach a new steady state. In the new steady state
the agents form again clusters of two opposite opinions above
a certain threshold fc that now depends on p. Because of the
inflexible contrarians of type B, the A clusters become smaller
and the B clusters increase. In Fig. 1 we show a schematic plot
of the dynamics of the ICO model.

We use both random and targeted strategies to choose a
fraction p of A agents that flip into state B, and we analyze
the results on ER and SF networks. In strategy I we randomly
choose a fraction p of A agents, and in strategy II we choose
the top p percent of the highest-degree A agents, to become
inflexible contrarians. Notice that the inflexible contrarians act
as a quenched disorder in the network [11,22].

III. SIMULATION RESULTS

We perform simulations of the ICO model in complex
networks, on both ER and SF networks. ER networks are
characterized by a Poisson degree distribution with P (k) =
e−〈k〉〈k〉k/k!, where k is the degree of a node and 〈k〉 is the
average degree [18]. In SF networks the degree distribution is
given by P (k) ∼ k−λ, for kmin ! k ! kmax, where kmin is the
smallest degree, kmax is the degree cutoff, and λ is the exponent
characterizing the broadness of the distribution [20]. In all
our simulations we use the natural cutoff, which is controlled

066101-2



STRATEGY OF COMPETITION BETWEEN TWO GROUPS . . . PHYSICAL REVIEW E 84, 066101 (2011)

by N1/(λ−1) [23]. We performed all the simulations for 103

network realizations.

A. ICO model on ER networks

We denote by S1 the size of the largest A cluster in the
steady state. We study the effect of the inflexible contrarians.
In Fig. 2 we plot s1 ≡ S1/N as a function of f for different
values of p for ER networks under both random and targeted
strategies. The plot shows that there exists a critical value
f ≡ fc that depends on p, below which s1 approaches 0. As
p increases, the largest cluster becomes significantly smaller
as well as less robust, as can been seen from the shift of fc

to the larger value. In the inset of Fig. 2, we plot the size
of the second largest A cluster, S2, as a function of f for
different values of p. S2 shows a sharp peak characteristic of a
second-order phase transition, where s1 is the order parameter
and f is the control parameter. Above a certain value of
p ≡ p∗, the phase transition does not occur because, above p∗,
the average connectivity of the A nodes decreases dramatically,
the networks break into small clusters, and no giant component
of opinion A appears. In Fig. 3 we show, for both strategies,
the average degree 〈k〉 of the A opinion agents as a function
of f for different values of p. As shown in Ref. [10] for
p = 0, 〈k〉 has a significant increase above f = 0.5 where
the nodes with opinion A are the majority. This is because

when these nodes are in the minority group, they have a
small average connectivity since the minority group does not
include high-degree nodes [10]. This process is analogous
to targeted removing of the high-degree nodes. Only when
they become majority nodes, close to f = 1, is the original
connectivity of the full network recovered. However, as p
increases, we never reach the original average degree of the
full network because increasing p is equivalent to increasing
the quenched disorder. It is known that for ER networks the
transition is lost when 〈k〉 < 1 [18]. As we can see from the
plots, for p∗ ≈ 0.6 (strategy I) and p∗ ≈ 0.4 (strategy II),
〈k〉 drops below 1, and then the giant component cannot be
sustained.

The loss of robustness is significantly more pronounced
in the targeted strategy compared to the random strategy, as
seen in Fig. 2(c), where we plot fc as a function of p for
both strategies. From this plot we can see that the targeted
strategy is significantly more efficient to annihilate the opinion
A clusters than the random strategy. For example, for p =
0.2, the network is 25% less robust in the targeted strategy
compared to the random one. The reason is that the initial state
of our model is the final state of the NCO model, which above
its threshold has clusters of nodes A of all sizes. Thus under
the random strategy we select nodes at random that are mainly
in small A clusters. Under the targeted strategy the selection
of inflexible contrarians from the nodes of the highest degree
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FIG. 2. (Color online) Plot of s1 as a function of f for different values of p for ER networks with 〈k〉 = 4 and N = 105. (a) Strategy I:
p = 0 (◦), 0.1 ("), 0.2 ()), 0.3 (*), 0.4 (+), and 0.5 (#) and p = p∗ = 0.6 (,). (b) Strategy II: p = 0 (◦), 0.1 ("), 0.2 ()), and 0.3 (*) and
p = p∗ = 0.4 (+). In the inset we plot, using the same symbols as in the main figure, S2 as a function of f for both strategies. (c) Plot of fc as
a function of p for strategy I (◦) and strategy II (").
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FIG. 3. (Color online) Plot of 〈k〉 as a function of f for different
value of p for ER networks with 〈k〉 = 4 and N = 105. (a) Strategy
I: p = 0 (◦), 0.1 (") 0.2 (*), 0.3 (+), 0.4 (#), 0.5 (,), and 0.6 (x).
(b) Strategy II: p = 0 (◦), 0.1 (") 0.2 (*), 0.3 (+), and 0.4 (#).

places them mainly in the largest initial A cluster where they
can have more influence than if they were isolated in smaller
clusters, as in the random strategy. The high-degree nodes
shorten the distances between all the pairs of nodes in a cluster,
which allows them to interact more easily. Also, because they
have many neighbors, they can influence the opinions of other
A nodes more efficiently.

In order to verify the above arguments, we compute, for
our initial condition (p = 0) before adding the inflexible
contrarians, the degree distribution of nodes A inside and
outside the largest cluster. In Fig. 4(a) we plot the degree
distributions P (k) of A nodes inside and outside the largest
cluster for three different values of f above the threshold
of the NCO model. Notice that the nodes outside the largest
cluster have a degree distribution with a high probability of low
connectivity. The probability of low connectivity increases as
f increases, and thus under a targeted strategy the nodes in
those small clusters are almost never designated as inflexible
contrarians. Thus nodes in the largest component are more
likely to be selected under a targeted strategy than under a
random one.

In order to further test our assumption, we compute the
fraction F (k), defined as the ratio of the number of nodes
with degree k in the largest A cluster and the total number
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FIG. 4. (Color online) For ER network with 〈k〉 = 4 and
N = 105. (a) Degree distribution P (k) of A nodes as a function of k

in our initial configuration with different values of f : f = 0.35 (solid
line), f = 0.4 (dotted line), and f = 0.45 (dashed line). In the top
panel, we show P (k) as a function of k of the finite A clusters, and in
the bottom panel we show the same for the largest A cluster. (b) Plot
of F (k) as a function of k for different values of f : f = 0.35 (◦), 0.4
("), and 0.45 ()).

of nodes in all the A clusters with the same degree. When
F (k) → 1, all the nodes with degree k are in the largest A
cluster. In Fig. 4(b), we plot F (k) as a function of k for different
values of f . As k increases, we see that F (k) → 1 is faster
for increasing f because the larger f is the larger S1 will be.
Thus the highest-degree nodes belong to the largest cluster
and the lower-degree nodes are less likely to be in the largest
cluster. This explains why a targeted strategy is significantly
more efficient than a random one.

Because p is our main parameter, we next investigate the
behavior of the system as a function of p for different values
of f . In Fig. 5 we plot s1 as a function of p for fixed f for
ER networks under both strategies. From the plot we can see
that S1 is more robust as f is larger, and the behavior of the
curve is again characteristic of a second-order phase transition.
However this curve seems to be smoother than the transition
found above (see Fig. 2) with f as the control parameter.

In the inset of Fig. 5(a) we plot the first derivative of s1
with respect to p for two different system sizes for f = 0.4.
We can see a jump that becomes sharper as the system size
increases. We find the same behavior for other values of f
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FIG. 5. (Color online) Plot of s1 as a function of p for different
values of f for ER network with 〈k〉 = 4 and N = 105. (a) Strategy I:
f = 0.35 (◦), 0.4 ("), 0.45 ()), and 0.5 (*). (b) Strategy II: f = 0.35
(◦), 0.4 ("), and 0.45 ()). In the inset of panel (a), we plot the first
derivative of s1 = S1/N with respect to p (ds1/dp) with different
system sizes: N = 105 (◦) and N = 106 (").

above the threshold. In Figs. 6(a) and 6(b) we show S2 and
the first derivative of s1 with respect to p for N = 105 and
for different values of f . We find that the peak of S2 and the
jump of the derivative of s1 occurs at the same value of p. This
behavior is characteristic of a second-order phase transition,
where the peak of S2 indicates the position of the threshold
pc. In Fig. 6(c) we plot the critical threshold pc as a function
of f for both strategies. Comparing the two strategies for
the same value of f , strategy II always has the smaller pc.
This demonstrates again that strategy II is better because a
very small fraction of p is enough to destroy the A opinion
clusters.

Next, we present results indicating that the ICO model is in
the same universality class as regular percolation. Percolation
in random networks (e.g, ER) [11,12,21] predicts that at
criticality the cluster size distribution of finite clusters ns ∼
s−τ with τ = 2.5. In Fig. 7 we plot ns for both random and
targeted strategies as a function of s for finite A clusters
at criticality. As we can see for both strategies, τ ≈ 2.5.
Moreover, from S2 we calculate the exponent γ , which
represents how the mean finite size diverges with distance to
criticality (not shown here), from which we obtain γ ≈ 1, as
in mean-field percolation. The values of the two exponents we
obtain strongly indicate that our ICO model in ER networks

is in the same universality class as mean-field percolation in
complex networks below p∗ [24].

B. ICO model on SF networks

Many real social networks are not ER, but instead possess a
SF degree distribution. It is well known that dynamic processes
in SF networks propagate significantly more efficiently [25–
30] than in ER networks. For SF networks we find that the
system also undergoes a second-order phase transition as in
ER networks with mean-field exponents (not shown here).

In Fig. 8(a) we plot fc as a function of p for SF networks
with λ = 3.5. For a certain value of p, when f < fc, we lose
the largest A cluster. Thus the larger the value of fc the less
robust the networks are. From the plot, we find that for all
values of p, strategy II has much larger fc than strategy I. This
shows that SF networks are significantly less robust under
strategy II than under strategy I, which shows that, for SF
networks, strategy II is significantly more efficient compared
to strategy I. To further test our conclusion, in Fig. 8(b), we
plot pc as a function of f for the same SF networks. As pc is
the minimum concentration of inflexible contrarians needed to
destroy the largest A cluster, for the same initial condition, the
networks are less robust with smaller pc than with larger pc. As
shown in Fig. 8(b), for the same value of f , pc under strategy
II is always significantly smaller than that under strategy I.
This result again supports our former conclusion that, for
SF networks, strategy II is more efficient than strategy I. As
mentioned above, this is because the targeted strategy sends
most of the inflexible contrarians into the largest A cluster.
In order to test that, in Fig. 9 we plot F (k) as a function of
k for SF networks. As we can see from Fig. 9, almost all of
the high-degree nodes (k $ 10) belong to the largest A cluster.
This behavior is more pronounced as f increases because S1
increases with f .

C. Comparison between ER and SF networks

If we compare all our results between ER and SF networks,
we find that both strategies are more efficient for SF networks.
For example, when we compare Fig. 8(a) with Fig. 2(c) we see
that for all the values of p, fc for SF networks is larger than
that for ER networks for both strategies. The main difference
between ER and SF networks is that SF networks possess
larger hubs than ER networks, and thus it is more efficient to
destroy the largest A cluster. We also find that the targeted
strategy is more efficient in SF networks than in ER networks
due to the presence of these large hubs. For example, when
p = 0.1, the SF network is 64% less robust under the targeted
strategy than under the random strategy. In ER networks, for
the same value of p, the robustness of the networks decreases
only by 17%. If we compare Fig. 4(b) with Fig. 9 we see that
higher degree nodes are more likely to belong to the largest
cluster in SF networks than in ER networks, since F (k) → 1
faster in SF networks compared to ER networks.

D. Minority vs majority

When two groups compete, either group can use both
random and targeted strategies to influence the other group.
Will the impact of these strategies differ if the group using
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FIG. 6. (Color online) Plot of S2 as a function of p (top panel) and ds1/dp as a function of p (bottom panel) for different values of f for
(a) strategy I and (b) strategy II [f = 0.35 (◦), 0.4 ("), 0.45 ())] for ER networks with 〈k〉 = 4 and N = 105. We can see that in both cases the
peak of S2 coincides with the position of the jump, also indicating a second-order phase transition. In panel (c) we plot pc as a function of f

for both strategies: strategy I (◦) and strategy II (").

them is in the majority, as opposed to being in the minority?
Because the largest majority cluster will have a larger average
degree than the largest minority cluster, we assume it will be
harder to change the opinion of the majority than the minority
for p < pc. In order to quantitatively understand the effect of
inflexible contrarians in both a minority group and a majority
group, we compute the relative change of the size of the largest
minority and majority clusters, $S1, given by

$S1 =
(
S initial

1 − Sfinal
1

)/
S initial

1 ,

where Sfinal
1 is the size of the largest A cluster in our final

steady state and S initial
1 is the cluster before adding the inflexible

contrarians. Notice that f < 0.5 (f > 0.5) means that the A
agents are minority (majority). We compute $S1 for f = 0.55
(majority) to compare with f = 0.45 (minority). For a more
extreme case like f = 0.8 (majority) and f = 0.2 (minority),
as can be seen in Fig. 3, when f = 0.2, the average degree
of minority agents is close to 0. This means that there exist
only small minority clusters and the influence of inflexible
contrarians is negligible since one can change the minority
opinion of an agent mostly when one becomes an inflexible
contrarian oneself. We therefore focus on intermediate f
values, where our results show that, even when the size of
the majority group and the size of the minority group are very

close (one is slightly bigger than the other), still the power of
the inflexible contrarians placed in the minority is significantly
higher than that of the inflexible contrarians placed in the
majority. In Fig. 10 we plot $S1 as a function of p for f = 0.45
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FIG. 7. (Color online) Plot of ns as a function of s under strategy
I (◦) and strategy II (") for ER networks with 〈k〉 = 4 and N = 105 at
criticality p = pc. The dashed line represents a slope τ = 2.5. These
simulations were done over 105 realizations.
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FIG. 8. (Color online) Plot of (a) fc as a function of p and (b)
pc as a function of f for strategy I (◦) and strategy II (") for SF
networks with λ = 3.5, kmin = 2, and N = 105.

(minority) and f = 0.55 (majority) under both strategies for
both ER and SF networks. From the plots we can see that
below pc (marked by arrows in the plots), $S1 is larger for
the minority than for the majority for the same value of p,
under both strategies I and II, and for the two networks used
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scale, of k for ER networks with 〈k〉 = 4 and N = 105 with different
values of f : f = 0.35 (◦), 0.4 ("), 0.45 ()). The reason for using
linear-log scale is that for SF networks F (k) increases very fast for
small values of k.
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FIG. 10. (Color online) Plot of $S1 as a function of p for f =
0.45 (◦) and for f = 0.55 (") under strategy I (left plot) and strategy
II (right plot) for (a) ER networks with 〈k〉 = 4 and N = 105 and
(b) SF networks with λ = 3.5 and N = 105. The arrows indicate the
position of p∗ above which there is no phase transition. In the insets
we show the ratio R between $S1 for f = 0.45 and $S1 for f = 0.55
for strategy I (∗) and strategy II (x). All the simulations were done
for 105 network realizations.

here, ER and SF. Thus, as argued above, the minority groups
are easier to convince than the majority groups. Moreover, this
phenomenon is more pronounced under the targeted strategy
than under the random strategy. In the inset of Fig. 10 we plot
R, which is the ratio between $S1 of the minority and $S1
of the majority, as a function of p. As we can see for the ER
network, the inflexible contrarians under a targeted strategy
are twice as effective when they are in the minority group than
when they are in the majority group, while under a random
strategy they are approximately 1.5 times more effective. We
can see a similar but more significant tendency in SF networks.
This agrees with empirical fact, where majority groups always
have more power than minority groups, and thus it is easier for
a majority group to change the opinion of a minority group. We
conclude that our model seems to mimic well the two-group
competition in the real world and that it also reveals some
underlying complex phenomena associated with the process.

IV. CONCLUSIONS

In introducing inflexible contrarians into a system, we have
used two strategies: (i) random and (ii) targeted. Our inflexible
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contrarians hold a strong B opinion and the system has two
stable opinion A clusters and opinion B clusters. We find
that, for both strategies, the size of the largest A opinion
cluster shrinks, as in a phase transition phenomena. As the
concentration of inflexible contrarians increases, the largest
A cluster becomes smaller and smaller until it reaches 0 at
a critical concentration pc. Above pc, the largest A cluster
disappears. Our results show that the system undergoes a
second-order phase transition for both control parameters f
and p, behavior that resembles mean-field percolation. We
also find that, for both ER and SF networks, the targeted
strategy is more efficient than the random strategy because the
targeted strategy always sends more inflexible contrarians into
the largest cluster than the random strategy. Both strategies
affect more the minority group and much less the majority
group. Note that since SF networks have hubs, both strategies

work better in SF networks than in ER networks. Based on
our results, we can answer the questions we raise in the
Introduction. Free products and favors (“bribes”) do effectively
attract more supporters, but the most effective strategy is to
target those potential supporters with the most connections
and offer the free products and favors to them. We also note
that our ICO results support Galam’s conclusion that inflexible
agents do play a key role in winning a public debate [31], as
in our ICO model inflexible contrarians play a key role in
changing others’ group opinion.
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