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Abstract. Two models for random two-conductor mixtures by diffusion processes are 
considered in the one-dimensional case. It is shown that the two models are not in the 
same universality class. This is seen to be an artefact of systems with pc = 1, however. A 
scaling theory proposed earlier is tested for this simple one-dimensional case and confirmed. 

1. Introduction 

In the spirit of de Gennes’ idea to study conductivity problems by investigating a 
corresponding diffusion process (de Gennes 1980), the conductivity of a random 
mixture of normal metal and superconductor has been modelled by various diffusion 
processes (Coniglio and Stanley 1984, Bunde et a1 1985, Adler et a1 1985, Hong et a1 
1985). It is the purpose of this paper to investigate these various processes in the 
one-dimensional case, where all the exponents can be exactly obtained. The most 
striking fact we notice is that two models that were both proposed to model the random 
superconducting normal mixture are in different universality classes. This peculiarity 
can, however, easily be explained and should not persist in higher dimensions, though 
it will presumably occur in any structure with p c  = 1. Further, we obtain various scaling 
exponents and thereby confirm predictions following from Hong et a1 (1985). Similar 
work on one dimension was recently done by Sahimi and Siddiqui (1985), though 
their numerical results disagree with the findings of Hong et a1 (1985). 

The two models proposed are as follows. 
( a )  The ‘short-circuit termite’, introduced by Coniglio and Stanley (1984) and 

extensively developed by Adler et a1 (1985) as the ‘Tel-Aviv termite’. In this model 
the random walker walks in the usual way on normal sites, using a time TB per step. 
As soon as it steps on a superconducting site, however, it can jump to any other 
superconducting site in the same cluster by means of instantaneous long-range jumps, 
as well as leave it for a neighbouring normal site. For a more detailed description of 
the algorithm, see Adler et a1 (1985). 

( b )  The ‘two-time termite’ also introduced by Coniglio and Stanley (1984) and 
developed as the ‘Boston termite: model I’ by Bunde et a1 (1985) is defined as follows. 
Consider a mixture of two components with conductivities uA, uB such that 
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Now define a random walker that has two time steps TA and T B  on each component 
A or B with T~ and T B  proportional to uA and uB respectively. If, further, the walker 
is assumed to move with a likelihood greater by a factor of h-’ from B to A than from 
A to B, then it is readily seen that this should describe a mixture of two conductors 
with conductivities uA and uB. We now proceed to investigate the properties of these 
random walks in the one-dimensional case. 

2. The mean square distance 

The ‘short-circuit’ termite does not spend any time inside a superconducting cluster. 
We can thus replace every superconducting cluster by a single ‘renormalised’ bond of 
length unity. The result is nearest-neighbour diffusion on a one-dimensional chain 
with a random distribution of two types of bonds. The random walker (termite) on 
this chain has the usual properties, i.e. the mean square distance L is given by 

( L’) a constant x t /  T~ ( 2 )  

where t is the number of steps. The renormalised length Lo of the chain is of the order 
of the number of ‘normal’ sites in the original chain. Therefore, if the original separation 
between two points was r, the renormalised distance Lo will be given by 

L , a ( l - p ) r .  ( 3 )  

(r’>= t / [ ( l  -p)2TB1.  (4) 

Combining (1) and ( 2 )  one finds 

Hence the diffusion coefficient D( p )  scales as ( 1  -p>-’ .  We emphasise that equation 
( 2 )  is true for all t 5 1 and therefore the result (4) also applies for all t 3 1. Note that 
if each normal site represented a resistance 1, then the average resistance of a sample 
of size r would scale as L a  (1 - p ) r  and the conductivity U = [length]/[resistance] 
scales as 

o a ( i - - p ) - ’  ( 5 )  

i.e. the exponent s, defined as ma&-’, is equal to 1. Thus we find that 

ua(1 - p ) D ( p ) .  ( 6 )  

Indeed, the Einstein relation demands that the ratio u / D  be proportional to the 
density of charge carriers n and the ‘short-circuit’ algorithm only involves charge 
carriers (i.e. ‘termites’) on the normal sites, so that n K ( 1  - p ) .  The extra factor of 
( p , - p )  is thus peculiar to systems with p c =  1 (one dimension, Sierpinski gasket, etc). 

For the two-time termite, however, n is not critical in one dimension since the 
termite can walk everywhere. Thus we expect D&)a ( 1  - p ) - ’ ,  where the subscript 
TT denotes the ‘two-time termite’. One can derive more rigorously this critical 
behaviour. Suppose the average termite density is pA and pB in A and B clusters 
respectively. Let the transition probability from B to A be W B A  and A to B W A B .  

Then at the boundary a detailed balance condition should be satisfied: 
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But P A X  NJ VA and p B X  NB/ VB where N A  and NB are the number of steps taken by 
the termite on A and B sites and VA and V, stand for the volume of the A and B 
clusters. Moreover, WBJ W A B  = uJuB and VJ VB = p / (  1 - p ) .  Thus we have 

or equivalently 

t A l  = P/ ( 1 -P) (9) 

where tA and tB are the actual times spent by the termite. Using equation (1) and 
t = tA+ t B  = N A T A +  N B T B ,  one can thus have 

DIT(aB,  p )  = DSC(‘B, (+A, p) ( l  - p )  (10) 

where Dsc(p )  is the diffusion constant of the short-circuit model. 
Thus we have 

DTT(P)Q:(l - P I P .  

3. The first exit time 

Previous work (Coniglio and Stanley 1984, Sahimi and Siddiqui 1985, Adler et a1 1985) 
had considered at length the ‘anomalous diffusion’ of termites for ‘short’ times, i.e. 
h<< t /rB<< 1. In the short-circuit model, however, this would be impossible, since 
diffusion over a superconducting cluster is instantaneous. Using a different average, 
however, one can obtain such a short-time behaviour; we worked at fixed r and averaged 
over the variations of the first exit time. The first exit time T is defined as the first 
time the termite travels a distance larger than r, i.e. at time T the distance is S r  and 
at time T + 1 it is > r. Clearly, if the origin lies in the middle of a superconducting 
cluster which contains more than 2 r  sites, T will be equal to zero; the clock does not 
advance until the termite reaches the edge of the cluster. 

We note at this point that one of the algorithms we will discuss below differs slightly 
from that presented in Adler et a1 (1985). In the old algorithm the termite was initially 
parachuted onto any lattice site x = 0 and then chose one of that site’s nearest neigh- 
bours. In the new algorithm it is again parachuted onto any site; however, only if the 
site chosen is a normal site does it immediately choose a neighbouring site. If it is 
initially parachuted onto a superconducting site in the new algorithm it first chooses 
another site of the superconducting cluster at random and only then proceeds to choose 
a neighbouring site. In both algorithms the procedure after the neighbouring site is 
chosen is the same, i.e. if it is a normal site the clock advances by one time step, 
whereas if it is a superconducting site it chooses another site of the same cluster at 
random. It then again looks at the neighbouring sites. The difference between the two 
algorithms is trivial for large r and t values but is considerable for small r values in 
one dimension, as we now proceed to demonstrate. 

For the case 1 << r<< (1 - p ) - ’ ,  we can estimate T for both algorithms. If there are 
no normal sites between r and -r,  then clearly T=O in both cases. If there is one 
normal site between r and -r, then if this site is adjacent to the site at x = 0 onto 
which the termite was dropped and if we are using the orignal algorithm of Adler et 
af (1985), wherein a termite parachuted on a superconducting site can immediately 
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choose a neighbouring site, we have a contribution of order (1 - p ) ~ ~ .  If, on the 
other hand, the normal site is situated at 1 < 1x1 s r or if we are using the new algorithm 
and 1x1 = 1 or if the termite is parachuted onto a normal site, the situation is quite 
different: the termite will leave the interval between r and - r  by the first jump (and 
therefore at T = 0, since the clock does not advance when the termite leaves a normal 
site, but only when it steps onto one) with probability 1 - ( r + l x l ) / S ,  where S is the 
expected number of sites on a cluster, given that one already is on a cluster. For an 
infinite system, using the fact that p is very close to one, one has S = 2p / ( l  - p )  + 1 = 
2/(1 - p ) .  If the termite does not exit by the first jump, then the situation is rather 
more complex. With probability 1/S it will immediately jump to the site adjoining x 
and since there are of the order of 2 r ( l  - p )  configurations of this type, it will thus 
give a contribution of order (1 - p ) 2 r T e  to ( T ) .  With probability (\xi+ r -  1) /S  it will 
immediately jump to one of the other sites on the cluster within the [ - r ,  r] interval 
and from here with probability 1 / S  it will then jump to the site adjacent to x, thus 
giving a contribution of order [ ( l ~ l + r - l ) ( l - p ) ~ r / 2 ] ~ ,  and so on. In the limit 
(1 - p ) r < <  1 these terms can be summed since 1x1 - 1 is of order r, to give a total 
contribution of order (we neglect 1 - p  compared to one) 

If there are two normal sites between r and -r-this happens with probability 
(1 -p)2r2-then ( T )  is of the order of unity if those sites are on opposite sides of r = 0, 
and thus we have 

T /TBa  a,(l  - p )  + az(l  - p ) ’ r +  a,(l - p ) 2 r 2  (13) 

where a ,  is zero in the new algorithm. In our limit the second term will be much 
smaller than the first for the original algorithm of Adler et a1 (1985), since (1 - p ) ’ r < <  
1 - p ,  and it will also be much smaller than the third term, since (1 - p ) * r < <  (1 - ~ ) ~ r ’ .  
Thus for both algorithms ( T ) < <  1, and for the original algorithm of Adler et a1 (1985) 
( T )  will be essentially independent of r with correction terms going as r2  and r. For 
the new algorithm ( T )  goes as rz  with correction terms going as r. 

For very large (1 - p ) r ,  on the other hand, the termite must perform a random walk 
through many normal sites before it reaches a distance r. In this limit we can thus 
return to the renormalised chain of § 2 and argue that 

T / T B a L 2 a ( l  - p ) ’ r 2 .  (14) 

Thus ( T )  scales in the same way as t for long distances, but differs from it for short 
ones in the original algorithm of Adler et a1 (1985). 

We can calculate exact lower bounds for ( T )  corresponding to small values of r 
from an asymptotic expansion in the limit where p is close to one. In order to do this, 
we must consider different configurations of normal and superconducting sites and 
the contribution of each to the first exit time. The different contributions that we will 
discuss in detail are listed in figure 1. These results complement those presented above 
for the limit 1 << r<< (1 - p ) - ’ ;  in this case we do not require (1 - p ) r < <  1 and r is in fact 
of the order of one. We note that while this calculation does give a lower bound for 
all values of p and r, it is only useful for small r and large p .  The contributions to 
( T )  from all the configurations listed in figure 1 are given in table 1. Configurations 
with one normal site are called C ,  two normal sites D and three E. We consider terms 
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-4 -3 -2 -1 0 1 2 3 4 

r =  1 c 1  
c 2  

r = 2  c 1  
c 2  
c3 

r = 3  c 1  
c 2  
c 3  

' 0 0 . .  
. 0 . . '  

' . . 0 . . .  
' . 0 . . . '  . . . . . . .  

' . . .  O . . . '  . . .  O . . . . '  . . . . . . . . .  
( b )  -4 -3 -2 - 1 0  1 2  3 4 

r =  1 D1 
D2 

r = 2  D1 
D2 
D3 

r = 3  D1 
D2 
D3 
D4 

0 . 0 '  
0 0 . .  
0 0 . 0 .  . . . . .  . . . . .  
0 . .  0 . .  
. 0 . . . '  
O . . . . '  . . . . . .  

Figure 1. ( a )  Configuration of superconductor and normal sites for r = 1, 2 and 3 that give 
contributions of order p2'(1 -p) to T. Note that those configurations that are not symmetric 
about the origin are only listed with the normal sites to the left, and that C3 includes all 
cases where there is a normal site at 1x1 > 1. ( b )  Configuration of superconductor and 
normal sites that give contributions of order p2'-'(l -p)' to T. Not all configurations are 
listed explicitly; for those that give identical contributions only one representative has been 
chosen. For example, D1 includes all cases where one normal site is at x, x > 0 and the 
other at x', x' < 0, D2 includes all cases where one normal site is at the origin, D3 includes 
all cases where one normal site is at x = *l and the other at x' where x and x' are on the 
same side of the origin and D4 is representative of cases where both normal sites are at 
1x1 > 1 and to the same side of x = 0. (0, superconductor, 0, normal, ., either superconduc- 
tor or normal.) 

Table 1. 

r = 1 Occurrence Probability of T = T* 

c 1  P2'(1 -PI ( S -  1)/2S2 
c 2  2P2'(1 -PI ( S  - l)/S2 
c 3  2 ( r - 1 ) p ~ ~ ( l - p )  ( S -  1)/2S2 
D1 [ r +  r ( r -  1)]p2'-'(1 - P ) ~  2 
D2 2rp2'-'(1 -p)2 1 
D3 2(r-  ~ ) p ~ ' - ' ( ~ - p ) ~  - 
D4 ( r -2) ( r  - 1)p2'-'(1 -p)' - 
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of highest orders in p (lowest order in 1 -p)  and assume that contributions of higher 
order can be neglected in the limit when r and p go to one. We discuss the bounds 
in detail for the new algorithm only. 

Let us illustrate the calculation of the bounds with two examples, the cases of r = 1, 
configuration C1 and C2. We wish to calculate the time taken to exit from the three 
sites, i.e. to reach 1x1 > 1. The termite is parachuted onto the origin at T = 0. On 
configuration C1 it then moves to x = *1 with equal probability. Since the sites at *l 
belong to superconducting clusters of expected size S, it then has to choose one site 
of the cluster at random. With probability ( S -  1) /S  it moves to / X I >  1 at this step 
and thus has r >  1 with no contribution to T. However, with probability 1/S it can 
stay at *l ,  and then has a probability of of returning to the origin at the next step. 
As it now goes onto a normal site, T = 1. It then returns to *l and with probability 
( S  - l)/ S exits when it chooses a random site of the cluster. Thus we have T = 1 for 
C1 with probability at least (S - 1)/S x f x ( l /S)  and we have probability p 2 (  1 - p )  of 
configuration C1 occurring. Configuration C2 occurs with probability 2p2( 1 - p )  and 
gives a contribution to T = 1 of at least (l/S) x f  x f from the path O+ O+ -1 + x < -1 
and of at least (1/ S )  x f x f x ( S  - 2)/ S from the path 0 + 0 + -1 + 0 + x > 1. The contri- 
butions listed above are the lowest order terms in 1/S for C1 and C2. All other paths 
on C1 and C2 are of order l/ S 2  and can thus be neglected in the asymptotic expansion 
for small r. 

The contributions from C1, C2, C3 and C4 for other values of r can be estimated 
by similar considerations. The D1 and D2 configurations for cases where the occurrence 
has a term of order (1 -p ) '  give a much larger contribution per term but occur far less 
frequently. For the limit 1 << r<< (1 - p ) - '  these terms dominated the C type configur- 
ations by a factor of r ;  here their contributions are of a similar order of magnitude, 
but still dominate in most cases. As an example we consider the case r = 1 configuration 
D1. The termite will take the path O+ *l + 1x1 > 1 with probability i, giving a contribu- 
t ionoff to(T) , thepathO+*l+O+*l+Ixl> 1 withprobabilityi,givingacontribution 
o f f  to ( T )  (since T = 2  for this path) and the path O + k l + O + * l + O + * l + ~ x ~ > l  
with probability giving a contribution of and so on. Thus ( T )  = 2:=,, k( f )k  = 2. For 
the D2 configuration the sum is half the D1 value since there is an initial probability 
of f for the termite to exit on a path with T=O. For the D3 and D4 configurations 
the contribution to ( T )  is not of order unity, since with probability of order 1 - 
constant x 1/S the termite exits before reaching a normal site. We do not discuss the 
E configurations in any detail. 

We note briefly that it is also possible to give exact lower bounds for the old 
algorithm. Here the leading terms are p 2 (  1 - p ) (  S - l)/S, p4( 1 - p ) (  S - 2)/2, and p6(  1 - 
p)(S-3) /S  for r = 1, 2 and 3 respectively; these come from configurations C2. In the 
old algorithm, the D3 contributions differ from the D4 ones, being of the same order 
as the D2 terms, but all D terms are of higher order in 1-p and the same order in 
1/S as the C2 ones and could thus be neglected as p + 1 for very small r. For larger 
r both must be considered. 

4. Numerical results: the short-circuit 

We have carried out more extensive calculations of the first exit time T for termites 
in one dimension, and also tested equation (1 1). A graph of first exit times as a function 
of r2 for the original algorithm of Adler er al (1985) is presented in figure 2; this graph 
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T 

Figure 2. Graph of T as a function of R2 for the original algorithm of Adler er a1 (1985). 
R is the distance travelled from the entry point x = 0. The lower bounds on the first exit 
time are indicated as a continuous curve for p = 0.995 and p = 0.975. Some typical error 
bars are shown. Note that R = r + 1 .  The circles show the results for p = 0.995, the triangles 
for p = 0.990, the squares for p = 0.9825 and the crosses for p = 0.975. 

replaces figure 5 of Adler et al (1985) since it contains more data points and better 
statistics for small values of R2. The lower bounds made up of contributions from 
C1, C2, C3, D1, D2 and D3 configurations are indicated for some p and R values. 
They are extremely close to the Monte Carlo results for small r and p close to 1, where 
the C2 contributions dominate. 

A graph of first exit times as a function of r2 for the new algorithm is presented 
in figure 3. Here we observe that the bounds are extremely close to the Monte Carlo 
results for 10 < R2 < 400 and are actually slightly above the data points in a few cases 
(this is probably due to scatter in the data). 

We note that both the bounds and the data for the new algorithm presented in 
figure 3 are much smaller than the bounds and data for the old one in the region below 
R2 - 1000 for large p .  The bounds and data for the new algorithm are consistent with 
R 2 a  T for all R, t and those of the old algorithm are consistent with R 2 a  1 - p  for 
small R, T and large p .  The departure of the bounds for the data for R 2 >  1000 in 
both cases is due to the contributions from terms with three or more normal sites, 
which begin to be significant in this region. 

In figure 4 we present a graph of D - ( r 2 ) /  t against p c  - p.  We find that D CC (1 - p ) - 2  
as predicted in 0 2. 
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1 o 3  

1 o 2  

1 0  

I 

1 0 - 4  1 0 . 3  10-2 l o - ’  1 

1 

Figure 3. Graph of T as a function of R2 for the new algorithm. The open circles show 
the results for p = 0.995 and the full circles for p = 0.975. R is the distance travelled from 
the entry point x = 0. The lower bounds on the first exit time are indicated as a continuous 
curve for p = 0.995 and p = 0.975. Some typical error bars are shown. Note that R = r + 1. 

5. Scaling 

General scaling theories, not only for one dimension, have been discussed in the past 
(Coniglio and Stanley 1984, Bunde et al 1985, Adler et a1 1985, Hong et a1 1985) with 
conflicting results. We feel that equation (6 .1 )  of Hong et a1 is the most plausible one, 
leading to two different characteristic scaling times diverging as TA( p c  - p ) - ( 2 ” + ” - p )  
and ~ B ( p ~ - p ) - ( ~ ” - ~ - ~ )  respectively, where /3 is the exponent for the size of the infinite 
cluster, v that for the connectivity length, p that for the conductivity of random resistor 
networks ( T~ = 1,  T~ = CO) and s that for the conductivity of random superconducting 
networks (TA=O, T B = ~ ) .  We take uB/uA to be much smaller than ( p c - p ) ” ’ s  and 
assume p s p c .  

For times much larger than these two characteristic times we expect ‘termite 
diffusion’, i.e. r z a  ( t / T B ) ( p c - p ) - ’ ;  for times much smaller than these times, we expect 
‘anomalous ant diffusion’, 

( 1 5 )  r 2 a  ( t /  T A ) ( 2 v - B ) l ( 2 u + f i - B )  

and for intermediate times we expect a plateau, r z a  ( p c  - P ) ~ - ’ ” .  No anomalous termite 
diffusion is predicted, in contrast to an assertion of Adler et aJ (1985)  (see also Coniglio 
and Stanley 1985). Their expectation, however, was based on an erroneous scaling 
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Figure 4. Graph of D as a function of p , - p .  

assumption: in their equation (7 )  the second argument must be multiplied by a 
frequency factor proportional to uA in order to be dimensionally correct. After this 
correction, their scaling assumption agrees with that of Hong et al (1985), whereas 
their equations (3) and (4) are no longer valid. 

= /3 = 0 and s = v = 1. These formulae give r 2 a  ( t/rB) 
x ( p C - p ) - '  after sufficiently many steps. But due to the peculiarities of one dimension, 
with p c  = 1, an additional factor of 1 - p = p c  - p appears in the short-circuit model as 
discussed in equation (6). Then the diffusivity r 2 / t  varies as (1 - P ) - ~ ,  as also observed 
in our Monte Carlo simulations for the short-circuit model. This complication does 
not arise in the general two-time model, as discussed in equation ( l l ) ,  where the 
diffusivity for long times diverges as ( p C - p ) - '  only. Thus these aspects of the scaling 
theory, as applied to one dimension, agree with our analytic and numerical results. 

In summary, we have analysed the various one-dimensional diffusion models 
capable of representing the random normal superconductor mixture. We have seen 
that, because one-dimensional percolation has a transition at p c  = 1 ,  the Einstein relation 
linking the conductivity to the diffusion coefficient gives qualitatively different results, 
depending on whether the charges are confined to the normal metal or not. Further, 
the small-time behaviour of those models was analysed exactly and found to depend 
sensitively on extremely detailed information on the model. 

For one dimension 
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