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We investigate numerically temporal correlations in a one-dimensional critical-slope sandpile model with
rules that on average conserve the number of particles. Our work is motivated by the existence of two
well-separated time scales in self-organized sandpile models, one related to the spreading of avalanches and the
other imposed by the external driving. We assume that avalanches are instantaneous events on the time scale
imposed by the external deposition and study the autocorrelation function of the series of successive avalanche
amplitudes. We find that the autocorrelation function has a log-normal form and for large system sizes tends to
a constant, implying that the temporal correlations become stronger in the limit of large system size. We
independently test this result by calculating the power spectrum of the series of successive avalanche lifetimes
and sizes. For large system sizesL there is a frequency regime where the power spectrum tends to a 1/f type
of noise, in agreement with the tendency of the autocorrelation function to approach a constant in large
systems.@S1063-651X~96!07212-1#

PACS number~s!: 64.60.Lx

I. INTRODUCTION

The concept of self-organized criticality~SOC! has been
introduced by Bak, Tang, and Wiesenfeld@1# in order to
describe the tendency of complex dynamical systems to
evolve into a critical state without fine tuning external pa-
rameters. Here the critical state refers to the absence of in-
trinsic length and time scales that reflects itself in the power-
law distributions of relevant quantities. Bak, Tang, and
Wiesenfeld@1# have illustrated the basic ingredients of SOC
on a simple cellular automaton model, i.e., the sandpile
model, defined on a discrete lattice ind dimensions, where
each site is characterized by a scalar variable that represents
a height. At each simulation step, the height of a randomly
chosen site is increased by a fixed amount. Whenever the
height exceeds a predefined threshold value the site relaxes,
i.e., the particles are distributed to the nearest neighbors, ac-
cording to rules that locally conserve the number of particles.
In this manner, events~avalanches! of various sizes and du-
rations occur. Except for the case ofd51, the model shows
nontrivial SOC behavior with power-law distributions of
avalanche amplitudes.

The basic motivation for introducing SOC was to explain
the ubiquitously occurring long-range temporal correlations
with a 1/f -type power spectrum, which is characteristic of a
variety of dynamical processes such as resistance fluctua-
tions, the flow of sand in an hourglass, luminosity of stars
@2#, the dynamics of traffic and the stock market@3#, and the
rate of the human heartbeat@4,5#. Later analytical and nu-
merical studies@6–8# on the sandpile model of Bak, Tang,
and Wiesenfeld revealed, however, that the power spectrum
S( f ) of the temporal activity scales as 1/f 2, which corre-
sponds to correlations characteristic of random walk-type
processes, i.e., with no long-range correlations.

Different dynamical rules have been investigated that
yield a variety of SOC universality classes. Kadanoffet al.
@9# introduced a series of such models by modifying the
threshold condition and local rules of relaxation. Among

these models is a one-dimensional local-limited~LL ! model
with the local slope rules that trigger the avalanche dynam-
ics. The LL model shows an unexpectedly complicated be-
havior @10#, in contrast to the Bak-Tang-Wiesenfeld~BTW!
model, which is trivial ind51.

The sandpile models are originally defined in the limit of
slow driving, meaning that each avalanche ends before an
external perturbation starts a new one. Hwa and Kardar@11#
generalized the LL model@9# in d51 to a ‘‘running sand-
pile,’’ which allows for different rates of the external driv-
ing. In the slow-driving regime where avalanches are sepa-
rate events, one recovers a 1/f 2-type of noise in the power
spectrum of the sand flow, in agreement with the temporal
behavior within the BTW critical-height model. In an
intermediate-driving regime, where avalanches overlap, the
power spectrum is found to be 1/f on a frequency interval
that increases with the lattice size. In a fast-driving regime,
the running sandpile exhibits system-wide discharge events
that are anticorrelated in time. Thus the running sandpile
reveals a rich temporal behavior, including long-range tem-
poral correlations, but only in the regime where avalanches
cannot be defined due to their mutual overlapping.

In the present paper we study the one-dimensional LL
model defined by Kadanoffet al. @9# and simulate a series of
successive avalanches. We investigate the temporal behavior
of this series by calculating the power spectrum in a way
similar to that in Ref.@11#, as well as the autocorrelation
function. However, we are not interested in the sandpile ac-
tivity on the microscopic time scale, i.e., the time scale of the
spreading of the avalanche. Instead, we study the dynamics
of the sandpile model on the time scale imposed by the ex-
ternal driving. Our idea is based on the fact that in sandpile
models there are always two time scales, one related to the
evolution of an avalanche and the other one imposed by the
external driving. Moreover, it is believed that SOC behavior
is possible only in the limit of slow driving, which is when
the two time scales are well separated@12#. On the time scale
of the external driving that we are investigating, avalanches
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are instantaneous events no matter how large the lifetime or
the size of an avalanche. As a measure of the activity in one
time step one can take either the lifetime of the avalanche or
the number of different sites involved in the avalanche, i.e.
the size of the avalanche, or some other quantity related to
the avalanche amplitude.

In Sec. II we briefly describe the model and its basic
ingredients. We also present numerical results for the ava-
lanche lifetime and size distributions, which we show to ex-
hibit multifractal scaling, consistent with earlier results on
related quantities@9#. In Sec. III we present numerical results
for the autocorrelation function and power spectrum, corre-
sponding to the series of successive avalanche lifetimes and
sizes. Our results show that the form of the correlation func-
tion is log-normal, tending to a constant for large system
sizes, meaning that the temporal correlations become stron-
ger in larger systems.

II. THE LOCAL-LIMITED MODEL

The one-dimensional LL model developed by Kadanoff
et al. @9# is a non-Abelian sandpile model with evolution
rules that depend on the local slope. An avalanche starts
whenever the local slope increases beyond a preset threshold
value. The boundary conditions consist of one reflecting and
one absorbing wall, and produce an average flux of particles
from the reflecting end to the absorbing end. The lack of
translational invariance and the existence of the ‘‘trapping
sites’’ make this model complicated. It has been shown that
the multifractal scaling of the distribution of relaxation
events and drop sizes might be more appropriate than finite-
size scaling@9#. A scaling theory based on two diverging
length scales has also been developed@10#.

We consider the LL model defined on a one-dimensional
lattice of lengthL. Each lattice sitei is associated with a
local slopes i , defined as the difference in height between
two neighboring sites,s i[hi2hi11, where the variablehi
represents the height of the sandpile at the sitei . One updat-
ing step in the simulation consists of two parts:~a! a site is
chosen randomly and a particle is added to it and~b! a re-
laxing procedure is applied for sites with local slope larger
than some threshold valuesc until all the slopes in the sys-
tem are smaller than or equal tosc . Adding a unit sand to
site i increasess i and decreasess i21. During the relaxation,
nf particles are transferred from sitek to the neighboring site
k11, so that the local slope is ‘‘distributed’’ to nearest
neighbors according to the rules

s i→s i22nf , s i11→s i111nf , s i21→s i211nf ,
~1!

wherenf>2 is needed in order to obtain nontrivial behavior
@9#. The above rules can easily be translated into rules for
local heightshi by taking into account the local slope defi-
nition, s i[hi2hi11 and the boundary conditionsh05h1
~reflecting wall! and hL1150 ~absorbing wall!. There are
several conservation laws and sum rules that are associated
with the LL model@9#. One of these laws is the conservation
of mass~the total number of particles! which is found also in
the critical-height sandpile models, such as the BTW model.
The total mass of the sandpile fluctuates around a constant

average value in the steady state, with the input flow of par-
ticles compensated by the output flow through the absorbing
wall.

In our simulation, we start the sandpile dynamics with a
random distribution of slopes, corresponding to an ‘‘over-
loaded’’ system, i.e., the initial mass is much larger com-
pared to the mean stationary mass. We allow the system to
relax and reach the stationary state, then we record succes-
sive avalanche lifetimesT and successive avalanche sizesS
~the number of distinct sites involved in an avalanche!. The
two time series, avalanche lifetimesT(t) and avalanche sizes
S(t), are then analyzed in two ways:~a! calculating the cor-
relation function, defined as

CA~t![^A~ t !A~ t1t!&2^A~ t !&2, ~2!

where A(t) is either the avalanche lifetimeT(t) or size
S(t) at a time stept, and ~b! using a Fourier transform to
calculate the corresponding power spectrumPA(V) as a
function of the frequencyV,

PA~V!5uF@A~ t !#u2, ~3!

where F denotes a Fourier transform. According to the
Wiener-Khinchin theorem@13#, a power spectrumPA(V) of
a given time signalA(t) is a Fourier transform of the auto-
correlation function CA(t)5^A(t)A(t1t)&. The power
spectraPT(V) and PS(V), if calculated directly from the
time series, provide independent quantifications of temporal
correlations.

III. RESULTS

We find that the distributions of avalanche lifetimes
D(T) and sizesD(S) scale in a multifractal way in agree-
ment with the scaling of drop sizes and general behavior of
the model@9#. Figures 1~a! and 1~b! show multifractal scal-
ing functions for avalanche amplitudesA, i.e., lifetimes and
sizes, respectively, as found by rescaling the calculated dis-
tribution functions in a double logarithmic plot

f A~a!5
log10D„A~a!…

log10~L/L0!
, ~4!

wherea5 log10(A/A0)/log10(L/L0) is an independent vari-
able andA0 andL0 are the best fit parameters to the scaling.
Figures 1~a! and 1~b! show rescaled distribution functions
obtained for various system sizes. The two scaling functions
f T(a) and f S(a) are fit to a cubic form~solid lines in Fig. 1!
to obtain approximate analytical expressions for the scaling
functions.

In accordance with the multifractal scaling of distribution
functions, the momentŝAq& can be expressed as integrals
weighted by the distribution function. Using a saddle-point
approximation to the integrals we find that the moments
^Aq& scale withL as

^Aq&; log10
1/2~L/L0!L

bA~q!. ~5!

Here bA(q)5(11q)a0(q)1 f A„a0(q)… and a0(q) repre-
sents the maximal value of a function (11q)a1 f A(a) with
respect to an independent variablea for a given moment
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q. The result, Eq.~5!, is a power law with a logarithmic
correction. We tested this analytical scaling form for the mo-
ments^Tq& and ^Sq& as a function of the system sizeL for
q51/2,q51, andq52. The results are plotted in Fig. 2 and
the corresponding exponentsb(q) are given in Table I.

The distributions themselves do not provide information
about correlations between successive avalanche amplitudes.
The information on temporal correlations can be extracted
from the correlation functionsCT(t) andCS(t) and/or from
the power spectraPT(V) andPS(V). The calculated corre-
lation functions are depicted in Fig. 3 for different system
sizes. The solid lines correspond to fits to the log-normal
form

CA~t!5CA~TA!exp@2gAlog10
2 ~t/TA!#, ~6!

where the coefficientgA is expected to scale with the system
size L, while the characteristic timeTA is expected to be
independent of the system size. The scaling ofgT and gS
with the system sizeL is presented in Fig. 4. Both coeffi-

FIG. 1. Multifractal scaling functions~a! f T(a) and ~b! f S(a)
for the avalanche lifetimesD(T) and the number of different sites
participating in the avalancheD(S), respectively. System sizes are
L564, 128, 256, 512, 1024, and 2048. The numerical data are
binned logarithmically with a binning parameter 21/2. The param-
eters from the fits areL050.02560.002 andT050.2560.02 for the
case of avalanche lifetimes andL050.02060.002 and
S050.2060.02 for the case of avalanche sizes. The solid lines are
the fits to a cubic form, i.e.,f (a)5a01a1x1a2x

21a3x
3. The pa-

rameters of the fits area0520.39, a1520.67, a253.64, and
a3526.09 ~lifetimes! anda0520.20,a1522.28,a258.00, and
a3529.62 ~sizes!.

FIG. 2. Scaling of the moments of the lifetimes^Tq& and sizes
^Sq& for ~a! q51/2, ~b! q51, and ~c! q52, calculated from the
numerically obtained distribution functions. The results are fit to a
power law with a logarithmic correction in accordance with the
multifractal scaling. The corresponding scaling exponents are pre-
sented in Table I.
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cients decrease with the system size L roughly asL21/2.
Thus, for largeL the correlations become stronger, i.e.,
CA(t) tends to a constant, independent oft.

To determine the type of temporal correlations in another
way, we calculate also the power spectra of the two time
seriesT(t) andS(t). The results are presented in Fig. 5. The
structure of both calculated power spectra is as follows:~i! in
the large frequency regime, which corresponds to short time
lags, the power spectra seem to be ‘‘white,’’ indicating an
absence of any correlations between successive avalanches;
~ii ! the white spectrum crosses over to a 1/f -type noise in an

FIG. 3. Autocorrelation functions for the time series of~a! ava-
lanche lifetimesCT(t) and ~b! sizesCS(t) calculated for system
sizesL564, 128, 256, 512, 1024, 2048, and 4096. The data are
binned with the binning parameter 21/2. Solid lines are log-normal
fits with the parametersgT andgS that scale withL as shown in
Fig. 4.

FIG. 4. Dependence of the parametersgT andgS from the log-
normal fit given by Eq. ~6! on L. The slopes are
gT520.5360.03 andgS520.5160.03.

FIG. 5. Power spectra of series of avalanche lifetimes and sizes
~a! PT(V) and ~b! PS(V), calculated numerically for system sizes
L564, 128, . . . ,8192. The data are binned with the binning pa-
rameter 21/2.

TABLE I. Summary of exponentsbA(q) defined in Eq.~5!.

q bT bS

1/2 0.2060.02 0.2160.02
1 0.4560.02 0.4760.02
2 1.0260.02 1.0760.02.
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intermediate frequency regime;~iii ! for relatively small sys-
tem sizesL, there is another regime of the spectrum at low
frequencies, where the spectrum indicates the presence of
temporal anticorrelations. Feature~iii ! seems not to be
present in the power spectra that correspond to large system
sizes. However, this may be due to insufficient maximum
observation time tmax, which in our simulations is
tmax5218. The structure of the spectra described above is
consistent with a log-normal form of the correlation func-
tions. We verified, using the Wiener-Khinchin theorem, that
this specific form of the power spectrum is obtained by a
Fourier transform of the log-normal functional dependence
of the correlation function, given by Eq.~6!.

IV. SUMMARY

In summary, we study temporal behavior of a one-
dimensional sandpile model. In our numerical analysis we
assume two well-separated time scales, one associated with
the microscopic avalanche dynamics and the other imposed
by the external driving. On the time scale of the external
driving, avalanches occur instantaneously. At each time step
we quantify the avalanche by its duration~lifetime! and its
spatial extention~size!. We investigate temporal correlations
in the series of successive avalanche amplitudes, i.e., life-
times or sizes. The calculated correlation function and the

power spectrum indicate the presence of nontrivial temporal
correlations of the log-normal form.

The local-limited model that we study belongs to the fam-
ily of directed critical slope-type models@9#. It is not a typi-
cal sandpile model, since the distributions of avalanche life-
times and sizes are not simple power laws. Rather, the
distributions of avalanche amplitudes exhibit multifractal
scaling and the average avalanche amplitude scales with the
system size as a power law with a logarithmic correction.

A natural question that arises from the above results is
whether such temporal correlations found in the one-
dimensional local-limited model are characteristic also for
other sandpile-type models, such as the undirected critical-
height model@1#. Another question is also whether these
correlations persist in higher dimensions. Unfortunately, the
local-limited model displays trivial behavior in two dimen-
sions. To answer these questions more systematic numerical
work on different types of sandpile models should be done.
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