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Recent experiments on liquid water show collective dipole orientation fluctuations dramatically slower than
expected �with relaxation time �50 ns� �D.P. Shelton, Phys. Rev. B 72, 020201�R� �2005��. Molecular dy-
namics simulations of extended simple point charge �SPC/E� water show a large vortexlike structure of the
dipole field at ambient conditions surviving over 300 ps �J. Higo et al., Proc. Natl. Acad. Sci. U.S.A. 98, 5961
�2001��. Both results disagree with previous results on water dipoles in similar conditions, for which autocor-
relation times are a few picoseconds. Motivated by these recent results, we study the water dipole reorientation
using molecular dynamics simulations of the SPC/E model in bulk water for temperatures ranging from
ambient 300 K down to the deep supercooled region of the phase diagram at 210 K. First, we calculate the
dipole autocorrelation function and find that our simulations are well described by a stretched exponential
decay, from which we calculate the orientational autocorrelation time �a. Second, we define a second charac-
teristic time, namely, the time required for the randomization of molecular dipole orientation, the self-dipole
randomization time �r, which is an upper limit on �a; we find that �r�5�a. Third, to check if there are
correlated domains of dipoles in water which have large relaxation times compared to the individual dipoles,
we calculate the randomization time �box of the site-dipole field, the net dipole moment formed by a set of
molecules belonging to a box of edge Lbox. We find that the site-dipole randomization time �box�2.5�a for
Lbox�3 Å, i.e., it is shorter than the same quantity calculated for the self-dipole. Finally, we find that the
orientational correlation length is short even at low T.
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I. INTRODUCTION

Cooperative motion of water molecules �1� has been
widely investigated in recent years, both by experiments
�2–21� and using molecular dynamics �MD� simulations
�22–35�. When water is cooled, the cooperativity of water
molecules increases. Recent experiments on water show
large correlated domains of dipoles at ambient conditions
which have a relaxation time much larger than the autocor-
relation time of individual dipoles �21�. MD studies of water
models also show the possibility of formation of large corre-
lated domains of dipoles in bulk as well as interfacial water
�35� �where these correlated patterns of dipoles are pinned to
solvated amino acids�. These two studies are the principal
motivation for the present investigation of the rotational co-
operativity of water molecules.

A challenging problem is to develop methods of describ-
ing molecular motion in water that are better able to interpret
experimental results, such as incoherent quasielastic neutron
scattering, light scattering, dielectric, and nuclear magnetic
resonance experiments �2,18�. Several approximation pro-
posals have been made for various autocorrelation functions
describing both rotational and translational motion �20,27�.
These methods usually assume the Kohlrausch-Williams-
Watts stretched exponential for the long-time relaxation be-
havior of autocorrelation functions ��t�, as predicted by
mode coupling theory �MCT�,

��t� = A exp�− � t

�a
��	 . �1�

The relaxation time �a, the exponent �, and the nonergodic-
ity factor A are fitting parameters that depend on temperature
T and density � �22–25,27–31�.

Our interest here is to study the orientational dynamics of
water by simulating water using the extended simple point
charge �SPC/E� model. First we calculate the orientational
autocorrelation time as the fitting parameter �a appearing in
Eq. �1� �22,23�. Other definitions are possible, e.g., based on
other fitting functions for the orientational autocorrelation
function decay, such as the biexponential �26,36� or the von
Schweidler law �33�. In all cases, the orientational autocor-
relation times are the result of multiparameter fitting proce-
dures �37� and roughly correspond to the characteristic time
over which the orientational autocorrelation function decays
by a factor of e�2.7.

To find an upper limit of the orientational autocorrelation
time �a, we will introduce the dipole randomization time �r
as the time after which the fluctuations of the dipoles re-
semble an uncorrelated random variable �38� �Sec. IV A�.
We find �r��a, and that �r and �a are linearly related �Sec.
IV B�, which is consistent with the MCT predictions that �i�
the autocorrelation times of all the autocorrelation functions
of any fluctuation coupled to density fluctuations diverge at
the same temperature TMCT with the same power law expo-
nent; and �ii� all the characteristic times of a supercooled
liquid are proportional to one another.

PHYSICAL REVIEW E 73, 041505 �2006�

1539-3755/2006/73�4�/041505�8�/$23.00 ©2006 The American Physical Society041505-1

http://dx.doi.org/10.1103/PhysRevE.73.041505


To characterize the increase of cooperativity and test for
the presence of large correlated domains of dipoles, we also
estimate the randomization time �box for the site-dipole field
�Sec. V�, a quantity which measures the relaxation of the net
dipole moment of all the molecules inside a box of edge Lbox.
Our calculations show that �box when Lbox�3 Å has a power
law divergence at TMCT, but with �box��r. This result shows
that the site-dipole field relaxes faster than the individual
dipoles, resolving the apparent contradiction between Ref.
�35� and previous results. Calculations of �box for larger
boxes show that �box does not depend on the box size and
hence do not support the experimental observation of long-
lived large domains of correlated dipoles �21�.

II. THE SPC/E MODEL

Our results are based on MD simulations of the extended
simple point charge model �39�. The distance between the
oxygen atom and each of the hydrogen atoms is 0.1 nm, and
the HOH angle is the tetrahedral angle 109.47� �40�. Each
hydrogen atom has a charge qH=0.432e, where e is the elec-
tron charge, and the oxygen atom has a charge qO=−2H. In
addition, to model the van der Waals interaction, pairs of
oxygen atoms of different molecules interact with a Lennard-
Jones potential,

Vij�rij� = 4��� �

rij
�12

− � �

rij
�6	 , �2�

where rij is the distance between molecules i and j, �
=0.65 kJ/mol, and �=0.3166 nm. The SPC/E model has
been used extensively to study various liquid properties of
water �24�. It reproduces the density and diffusion anomalies
qualitatively, and displays a power law behavior of dynamic
quantities as observed in supercooled water at ambient pres-
sure �41,42�. Compared with other water models, the SPC/E
model describes the liquid-vapor coexistence better �43� �and
the solid phase less well �44��.

We perform MD simulations for a system of N=1728
molecules at density �=1.0 g/cm3, 210	T	300 K, with
periodic boundary conditions and a simulation time step of
1 fs. The temperature is controlled by the Berendsen method
of rescaling the velocities �45�. The long-range Coulombic
interactions �46� are treated with the reaction field technique
with a cutoff of 0.79 nm. For each state point, we run two
independent simulations to improve statistics.

III. THE ORIENTATIONAL AUTOCORRELATION
FUNCTION C1„t…

To estimate the orientational autocorrelation time of water
molecules in the supercooled regime, we average the scalar
product of the normalized dipole vectors 
� i of each water
molecule i in the system,

C1�t� 
 ��
i=1

N


� i�t� · 
� i�0� =
1

N
�
i=1

N

�cos �i�t�� , �3�

where �i�t� is the angle between 
� i�t� and 
� i�0�. This func-
tion corresponds to the average of the Legendre polynomial

P1(cos �i�t�) evaluated for each molecule and can be directly
measured by dielectric experiments.

Figure 1�a� plots C1�t� for 210	T	300 K, and displays
the two-step decay of typical glass-forming systems. The
long-time regime at low T can be fit well by Eq. �1� and the
fitting parameters are shown in Table I. Both parameters in
Eq. �1�, A and �, show weak dependences on T. The result-
ing values of these parameters are consistent with previous
simulations of a smaller system of SPC/E molecules �23�.

FIG. 1. �a� The orientational autocorrelation function C1 as a
function of time t for T�K�=210 ���, 220 ���, 230 ���, 240 ���,
250 ���, 260 ���, 300 ���. Symbols are simulations, lines are fits
over the range for t�0.03 ps to Eq. �1� with the fitting parameters
listed in Table I. �b� Test of the time-temperature superposition prin-
ciple, as predicted by MCT. The symbols and the lines for different
T fall on a single curve if the times are rescaled by �a�T�.

TABLE I. Parameters of the fit of C1�t� in Fig. 1 with Eq. �1�.
The error on each parameter is ±10%.

T �K� A �a �ps� �

300 0.93 4.9100 0.88

260 0.94 1.7101 0.85

250 0.94 2.8101 0.85

240 0.94 4.9101 0.84

230 0.94 1.1102 0.84

220 0.94 2.7102 0.83

210 0.94 1.1103 0.82
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The estimated autocorrelation times �a agree �Fig. 2� with
the power law behavior predicted by the MCT,

�a � �T − TMCT�−�a. �4�

We estimate TMCT=194±4 K and �a=2.9±0.3, in agreement
with previous results for similar densities and temperatures
�24�.

The estimated values of �a, verify well the von Sch-
weidler law �see the Appendix� and the time-temperature su-
perposition principle predicted by MCT, i.e., that the auto-
correlation functions in the �-relaxation regime at different
temperatures follow the same master curve if the time is
rescaled by the autocorrelation time �Fig. 1�b�� �29�.

IV. THE SELF-DIPOLE RANDOMIZATION TIME �r

A. Definition and methods

Here we define the randomization time �r, a quantity that
we propose to characterize the orientational autocorrelation
time. We consider the normalized dipole 
� i of molecule i
over a time interval �t=N�t,

�̄i 

1

N�
k=1

N


� i�tk� , �5�

where �̄i is a function of �t and �t, tk
k�t, and �t is the
time interval between two consecutive samples of 
� i.

If �t is greater than the autocorrelation time of 
� i, then
two consecutive samples 
� i�t� and 
� i�t+�t� are independent;

hence �
� i�tj� ·
� i�tk��=0 if j�k, where �¯� denotes the av-
erage over all the molecules N in the system. Hence

��̄i
2� 
 ��̄i · �̄i� 


1

N2��
j,k

N


� i�tj� · 
� i�tk� =
1

N
, �6�

because ��
� i�2�=1 for any tk, and


rms 
 ���̄i
2� =

1

�N
=� �t

�t
. �7�

This is the result of a freely jointed chain of N bonds of
the same length, for which the mean square end-to-end dis-
tance is N2��̄i

2�=N �47�. Therefore, if �t is larger than the
orientational autocorrelation time for 
� i, the 
rms decreases
as 1/��t.

If, instead, �t is shorter than the orientational autocorrela-
tion time, consecutive elements in the sum in Eq. �6� are
correlated �
� i�t� ·
� i�t+�t��=z, resulting in a smaller fluctua-
tion. This can be formally understood by considering the
freely rotating chain model �47�, where consecutive bonds in
the chain are free to rotate, each around the axis of the pre-
vious bond, at an angle �, such that cos���=z. With this
assumption, the resulting mean square end-to-end distance
for n bonds of unit length is

�rn
2� = n

1 + z

1 − z
− 2z

1 − zn

�1 − z�2 . �8�

In the case of small �, we have z=1−�+O��2�, with �
=�2 /2�1 and zn�exp�−n��. Then, from Eq. �8�, we obtain

� 1

n
�rn

2 =
1

n�
�2�n� − 1 + e−n���1/2. �9�

In our problem, the bonds are dipole vectors sampled at
time intervals �t, and n=�t /�t=N. Therefore Eq. �9� be-
comes


rms �
1

N�
�2�N� − 1 + e−N���1/2. �10�

The right-hand side of this equation behaves as 1/��t for
N→�, i.e., the random case behavior is recovered for large
�t /�t.

Therefore, if we define �r as the time at which the corre-
lation goes to zero as 1/��t, it is possible to see that


rms � 1/��t�for any �t if �t � �r,

for �t � �r if �t � �r.
. �11�

If we consider the fluctuation of any observable, the relation
�11� defines the randomization time �r for that observable
�38� and �r is equal to the smallest �t such that 
rms
�1/��t for any �t.

B. Calculation of �r

In Fig. 3, we show 
rms for T=220 K calculated for dif-
ferent values of �t. For small �t and small �t, 
rms deviates
greatly from the asymptotic law. However, for increasing �t,

FIG. 2. �a� Power law behavior of orientational autocorrelation
time �a extracted from C1�t�, as a function of T−TMCT, as predicted
by MCT �Eq. �4��. The line is a fit to the MCT power law with
TMCT=194 K and exponent �a=2.9. �b� To optimize the fit, we vary
TMCT, calculate the autocorrelation coefficient R �solid line� and the
�2 �dashed line�, and choose as our estimate of TMCT the value
corresponding to the maximum or minimum of these quantities,
within a 10% variation in our range of T. R and �2 are rescaled to
the maximum and minimum values we found for 188	TMCT

	202 K. �c� The MCT exponent �a corresponding to different
choices of TMCT. Note that the exponent �a decreases almost lin-
early with increasing choice of TMCT. Based on the results in �b�,
our estimates are TMCT=194±4 K and �a=2.9±0.3.
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the deviation decreases. For �t=1280 ps the asymptotic be-
havior, within the error of our calculations, is reached.

The evaluation of �r from a plot such as in Fig. 3 could be
problematic, since it depends critically on the data errors.
Therefore, to define in a clear way �r, we fit the first eight
points ��t=�t ,2�t , . . . ,8�t� using


rms � ��t��, �12�

where �=���t�. In this way we study how the deviation from
the asymptotic regime decreases by increasing �t. We find
that the exponent � increases toward the asymptotic value
1/2 for increasing �t, and �=1/2 for any �t��r �Fig. 4�. We
therefore define �r as the extrapolated value of �t at which
�=1/2. We find that � approaches 1/2 as 1/�t, to the lead-
ing order, for low temperatures �Fig. 4�.

The resulting values of �r are presented in Fig. 5�a� as
functions of T−TMCT, showing that the power law behavior

Eq. �4� is well satisfied by �r. In this case our estimates are
TMCT=191.5±2.5 K and �r=3.3±0.2, both consistent within
the errors with the estimates based on �a �Fig. 2�. Therefore,
the prediction �i� of MCT is verified.

By plotting �r against �a, we verify the MCT prediction
�ii�. We find �Fig. 6� that �r and �a are linearly related and
that �r is approximately five times larger than �a.

The large value of �r with respect to �a is consistent with
the fact that the latter measures the decay of the self-dipole

FIG. 3. �a� The 
rms of Eq. �7� for T=220 K, plotted versus �t
for a range of different time steps �t=128 ���, 576 �+�, 832 ��,
1088 ���, and 1280 ps ���. Dashed lines show the predicted
asymptotic behavior 
rms�1/��t. The fit with Eq. �10� �solid
lines� is good when �t�576 ps, but we are unable to fit the data for
�t=128 ps, showing that the angle between the dipoles in Eq. �6� is
not independent, as assumed in the freely rotating chain model.
However, Eq. �10� gives a fair description of the approach to the
asymptotic regime. �b� 
rms

��t vs �t approaches a constant asymp-
totically when �t��r. In both �a� and �b� the errors are roughly the
size of the symbols.

FIG. 4. The exponent �, defined in Eq. �12� and calculated using
the first eight points of the curves in Fig. 3, versus the inverse of
time step �t, for T=300 K ���, 260 K ���, 250 K ���, 240 K �	�,
230 K ���, 220 K �
�. Where not shown the errors are smaller
than the symbol size. The horizontal dashed line corresponds to �
=0.5. By a quadratic fit of the data with ��0.5, we find the self-
dipole randomization time �r, defined as the value of �t where �
=1/2.

FIG. 5. Analog of Fig. 2 for the self-dipole randomization time
�r. �a� �r follows a power law behavior in T−TMCT �Eq. �4��, as
predicted by MCT. The line is a fit with TMCT=191.5 K and power
�r=3.3. �b� As in Fig. 2, to optimize the estimate of TMCT we
calculate the autocorrelation coefficient R �solid line� and the �2

�dashed line�. In �b�, R and �2 are rescaled to the maximum and
minimum values we found for 187	TMCT	200 K. �c� The fitting
parameter �r corresponding to different estimates of TMCT. The ex-
ponent �r decreases linearly with increasing estimates of TMCT.
Based on the results in �b�, our estimates are TMCT=191.5±2.5 K
and �r=3.3±0.2.
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correlation to a finite value, while the former measures the
time needed for the self-dipole autocorrelation to decay to
zero. This result is also reminiscent of the recent MD analy-
sis in bulk water for the site-dipole field, a measure of the
average orientation of the molecules passing through each
spatial position, introduced in Ref. �35�. Higo et al. �35� find
coherent patterns for the site-dipole field, at ambient pressure
and T=298 and 300 K, that persist for more than 100 ps, a
time much larger than the single molecule orientational
relaxation time �a of approximately 5 ps �Table I�. A
similar analysis for water dipoles at the interface with
nanometer-size hydrophobic solutes has confirmed these re-
sults �48�. It is, therefore, interesting to calculate the random-
ization time �box and to find its relation with the autocorrela-
tion time �a for T→TMCT.

V. THE SITE-DIPOLE FIELD

To check if there are large correlated domains of dipoles
in water which have large relaxation times compared to the
individual dipole correlation time, we next study site-dipole
field introduced by Higo et al. �35�. We define the instanta-
neous coarse-grained site-dipole field

d� i
v 
 d��ri

� ,t� 

1

ni�t�
�
box


� i �13�

as the average of dipoles 
� i of all the molecules ni�t� at time
t belonging to box i of edge Lbox, volume v=Lbox

3 , and cen-

tered at ri
� . If ni�t�=0, then d� i

v=0 by definition �48,49�. We

chose vectors ri
� in such a way that the corresponding boxes

do not overlap �51�. The time average d̄i
v over an interval �t

is defined analogously to Eq. �5�. The rms average drms
v is

defined in analogy to Eqs. �6� and �7�, but instead of sum-
mation over all molecules we perform a summation over all
boxes.

Since the argument presented for 
rms is also valid for
drms

v , the relation �11� also holds for drms
v and allows us to

estimate the randomization time �box for drms
v . We find that

�box, calculated for Lbox=3.33 Å, diverges at Tbox
=194±2 K with a power law with exponent �box=3.2±0.2,
consistent with our estimates of �a and TMCT, respectively
�Fig. 7�.

If we compare �box with �r �Fig. 8�, we again find a linear
relation, as in Fig. 6 for �a, consistent with the MCT state-
ment �ii�. The proportionality factor is approximately 2.5
�52�, smaller than the factor �5 found for �r in Fig. 6. There-
fore, we conclude that in bulk water the coarse-grained site-
dipole randomization time �box is larger than the self-dipole
autocorrelation time �a, but smaller than �r. Thus we do not
find a significant increase in the box dipole autocorrelation
time compared to the autocorrelation time �a.

FIG. 6. Parametric plot of the times �r�T� and �a�T�, within the
range 220	T	300 K, with the lowest time corresponding to the
highest T. The line reflects the linear one-parameter fit �r

= �5.1±0.2��a. FIG. 7. Analog of Figs. 2 and 6 for the site-dipole randomiza-
tion time �box. �a� We find a power law behavior in T−Tbox, calcu-
lated for Lbox=3.33 Å. The line is a fit with TMCT=194 K and ex-
ponent �box=3.2. �b� Optimization analysis for Tbox: correlation
coefficient R �solid line� and �2 �dashed line�, both rescaled to the
maximum and minimum values found for 188	Tbox	202 K. �c�
The exponent �box corresponding to different choices of Tbox de-
creases linearly with increasing choice of Tbox. We estimate Tbox

=194±2 K and �box=3.2±0.2.

FIG. 8. Analog of Fig. 6; a parametric plot of the site-dipole
randomization time �box�T� and the orientational autocorrelation
time �a�T� over the range 220	T	300 K, with the lowest time
corresponding to the highest T. The line reflects the linear one-
parameter fit �box= �2.5±0.2��a.
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To test the existence of cooperative domains in the SPC/E
model, we perform coarse-graining of the dipole field for
boxes of sizes 3.33	Lbox	10 Å. If the dipoles of molecules
in the box are independent random variables, drms

v must be
inversely proportional to ��ni���v, since the average num-
ber of molecules in the box is proportional to its volume. The
dependence of drms

v �v on time t must be the same for the
boxes of different volumes v. We show in Fig. 9 the behavior
of drms

v �v for T=220 and 300 K. The collapse of all the
curves confirms the hypothesis of very weak autocorrelations
among neighboring dipoles. Only for T=220 K do we ob-
serve a weak size dependence of drms

v �v for the smallest size,
suggesting that at this T the correlation length is between
3.33 and 6 Å, comparable to the dipole-dipole correlation
length at ambient T �50�. Thus our simulations support the
existence of only short-range orientational autocorrelation in
SPC/E water even at low T.

VI. DISCUSSION

Considerable numerical evidence shows that MCT predic-
tions apply to orientational dynamics of water, despite the

fact that MCT has been developed for particles interacting
through spherically symmetric potentials �53�. However, re-
cent extensions of MCT to liquids of linear molecules
�54,55�, and single solute molecules in a simple solvent liq-
uid �56�, confirm the main MCT predictions about the orien-
tational autocorrelation functions �33�.

Our study of supercooled water confirms the validity of
MCT predictions for the orientational autocorrelation time
�a, estimated through a stretched exponential of the dipole
autocorrelation function, for the temperature range 210	T
	300 K at density �=1 g/cm3. Our results agree with the
time-temperature superposition principle and the power law
Eq. �4�, with TMCT=194±4 K and �a=2.9±0.3.

By evaluating the randomization time �r, defined as the
time needed to randomize the molecular dipoles, we verify
the MCT prediction that all the characteristic times of quan-
tities coupled to density fluctuations of a supercooled liquid
are proportional to each other and follow the same power law
Eq. �4�. We find �r�5 �a, with TMCT=191.5±2.5 K and �r
=3.3±0.2, consistent with the estimates based on the calcu-
lation of �a.

We also calculate the randomization time �box for the box
dipole field, a quantity introduced in Ref. �35� to measure the
local orientational memory of molecules passing through a
given spatial position. Our results for Lbox=3.33 Å show that
�box diverges at Tbox=TMCT, following a power law with ex-
ponent �box=�a, and that �box��r /2. As a consequence, the
local memory is lost faster than the self-dipole orientational
memory.

Our results also show the existence of domains of corre-
lated dipoles of short spatial range, with a correlation length
comparable to the dipole-dipole correlation length at ambient
T �50�, raising the possibility of using the calculations on
confined water to study the interesting case when the corre-
lation length is comparable to the system size �57–59�.
Whether this conclusion is specific to the SPC/E model with
reaction field is an open question, and requires further inves-
tigation using other models of water, e.g., polarizable mod-
els.
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APPENDIX: THE VON SCHWEIDLER LAW

The MCT predicts that the autocorrelation function de-
parts from the plateau A as a power law with exponent b,
known as the von Schweidler law,

C1�t� − A � − �t/�a�b, �A1�

where the von Schweidler exponent b does not depend on T.
We verify that at lower temperatures Eq. �A1� holds for

FIG. 9. Size dependence of site-dipole autocorrelation function
drms

v as a function of t for Lbox=3.33 ���, 6 ���, and 10 Å ��� and
for two different temperatures T= �a� 300 and �b� =220 K. In �a� the
line is a fit of data for Lbox=3.33 Å with drms

v =a /�t, with a
=0.08±0.01. In �b� the same fit is for the data at Lbox=6 Å and t
�103, with a=0.49±0.01. For each T all the values of drms

v �v over-
lap, suggesting that the orientational autocorrelation is short range.
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roughly two decades in time �Fig. 10� and we find a clear
deviation only for T�260 K at short times, possibly due to
the fact that for T�260 K it is more difficult to estimate the

plateau A. The estimated value of b is 0.6±0.1, consistent
with previous results �29� and with the MCT prediction that
�a, a, and b are related by the equation

�a =
1

2a
+

1

2b
. �A2�

Here a is the exponent of the power law that describes the
short-time approach to the plateau C1−A� t−a, and a is re-
lated to b by the transcendental equation

���1 − a��2

��1 − 2a�
=

���1 + b��2

��1 + 2b�
, �A3�

where ��x� is the Euler gamma function. Our estimates of b
and �a are consistent with both Eqs. �A2� and �A3� with a
=0.25±0.05.

The values of the exponents a, b, and �a are not universal,
but depend on density. However, the rescaling of the auto-
correlation functions for different T on the same master
curve, shows that the orientational correlation function de-
pends on T and � only through the dependence on �a, as
predicted by the MCT.
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