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Estimating Tipping Points in Feedback-Driven
Financial Networks

Zvonko Kostanjčar, Member, IEEE, Stjepan Begušić, Harry Eugene Stanley, and Boris Podobnik

Abstract—Much research has been conducted arguing that tip-
ping points at which complex systems experience phase transitions
are difficult to identify. To test the existence of tipping points in
financial markets, based on the alternating offer strategic model
we propose a network of bargaining agents who mutually either co-
operate or compete, where the feedback mechanism between trad-
ing and price dynamics is driven by an external “hidden” variable
R that quantifies the degree of market overpricing. Due to the feed-
back mechanism, R fluctuates and oscillates over time, and thus
periods when the market is underpriced and overpriced occur re-
peatedly. As the market becomes overpriced, bubbles are created
that ultimately burst as the market reaches a crash tipping point
Rc . The market starts recovering from the crash as a recovery tip-
ping point Rr is reached. The probability that the index will drop
in the next year exhibits a strong hysteresis behavior very much
alike critical transitions in other complex systems. The probability
distribution function of R has a bimodal shape characteristic of
small systems near the tipping point. By examining the S&P500
index we illustrate the applicability of the model and demonstrate
that the financial data exhibit tipping points that agree with the
model. We report a cointegration between the returns of the S&P
500 index and its intrinsic value.

Index Terms—Complex systems, cooperative game theory,
feedback, networks, market crash, tipping point.

I. INTRODUCTION

A LTHOUGH a lot of network science research has focused
on how network collapse occurs when certain internal

parameters approach their tipping points [1], there is a broad
class of real-world complex networks in which the dynamics
are driven by “hidden” external variables [2]–[4] in the form of
feedback mechanisms [5], [6]. The tipping points at which these
networks collapse have not yet been adequately understood
[7]–[13].
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In a buyer/seller financial network the trading dynamics are
strongly affected by trader perceptions that the market is over-
priced or underpriced. In a landlord/renter network a hidden
variable is the ratio between the average apartment price and
the average renter income. In a university/student network a
hidden variable is the ratio between the average tuition and the
average family income. In each of these examples, increasing
the ratio increases the probability of network collapse, and our
goal is to quantify the ratio that causes networks to collapse.
Here we focus on financial trading markets where the trading
decisions made by the market players are influenced by their
expectations about the future. With the passing of time they
learn whether their expectations about future market behavior
were accurate. Overly-optimistic predictions in particular are
very time-limited and are often followed by adjustments in the
market price so abrupt that they cause the market to collapse.

Extensive research developments exist on the topic of col-
lapses in real-world networks such as ecological, social and
economic systems [1], [2]. Scheffer et al. [7] report evidence of
hysteretic behavior in ecological systems around their tipping
points, and later suggest generic early-warning signals, such
as critical slowing down, that precede catastrophic shifts [10],
[14]. The core concepts in microscopic modelling of ecological
systems [11] include mechanisms of cascading failures, herd
behavior and contagion [15], [16], and are crucial to a number
of other real-world networked systems [8].

Ideas of herd behavior and contagion and their application in
agent-based models are in the foundations of explaining critical
events in financial markets [17]–[19]. Lux [20] explains the
emergence of bubbles as an infection process among traders
which leads to equilibrium prices deviating from fundamental
values. Eventually, Lux and Marchesi [21], [22] challenge the
“efficient market hypothesis” and present a model of interacting
agents switching between “fundamentalist” and “noisy trader”
strategies, based on the fundamental price as the input. Although
their fundamental prices have Gaussian relative changes, the
interaction of agents generates power-law scaling properties and
temporal dependence in volatility. The Cont–Bouchaud model
[23] accounts for heavy tails in stock market returns through
agent interaction which induces herd behavior. They illustrate
the fact that a market model without such agent interaction
would give rise to normally distributed aggregate fluctuations,
whereas agent interaction accounts for known stylized facts on
market returns.

Sornette [24] identifies risk-driven and price-driven ap-
proaches to modelling financial bubbles and crashes—in the
risk-driven model the crash hazard comes from herding which
drives the bubble price, whereas in the price-driven model
the price itself creates the crash hazard through feedback
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mechanisms. Abreu and Brunnermeier [25] present a model
where market bubbles emerge, persist and burst due to synchro-
nization of agent strategies. They argue that rational arbitrageurs
are aware that the market will eventually collapse, but before
it happens they want to “ride the bubble” and generate high
returns. They indicate that a bubble bursts when the fraction of
speculative traders leaving the market exceeds some threshold,
which is the tipping point in their model.

Recently, studies applying concepts of herding and imitation
in both market crashes as well as rebounds report evidence of
similar mechanics in these phenomena [26]–[28]. Furthermore,
analytical studies of agent-based market models provide new
opportunities for parametrization directly from market data,
making such models applicable in a number of risk manage-
ment scenarios [29]. A particularly important problem is the
analysis of market drawdowns (so called “Dragon-kings” or
“Black swans”) [24], [30], which novel studies attempt to ac-
count for [31] since understanding them is of special value in risk
management [32].

According to Johnston and Djurić [33], with the advances
of signal processing, we can afford to study risk management
with high complexity models based on computational meth-
ods that include nonlinearities and many hidden unknowns.
So, from a signal processing perspective, we are presented
with the challenge of designing an appropriate model, as un-
conditional approaches will have an inherent misspecification.
Schweitzer et al. [34] identify network structures, heterogenous
agents and systemic feedbacks as some of the most important
challenges in modelling economic networks. In addition, a sig-
nificant issue in explaining critical phenomena is the lack of
empirical data—there are few occurrences of such phenom-
ena (bubbles and crashes) for which historic data are avail-
able, which makes identifying systemic risk factors difficult but
nevertheless crucial.

Here we introduce a combined approach, employing opinion
clustering, competition/cooperation and feedback mechanisms,
with the fundamental price (identified as the intrinsic value in
our model) as the input. We propose a network of bargain-
ing agents [35]–[39] along with the competition and coopera-
tion mechanisms between them [40]–[43]. This paper presents
a computational model which, with an intrinsic value input,
generates market prices—unlike generic computational models
(such as neural networks), the proposed model is built specif-
ically to illustrate market dynamics. We demonstrate how the
degree of market overpricing through a feedback mechanism be-
tween trading and price dynamics induces further market over-
pricing, market bubbles, and ultimately market collapse [25],
[44]–[47]. Beyond analyzing the crash tipping points, we also
inspect the points at which the network model rebounds and the
markets start recovering. We find that a well-known US finan-
cial index, the S&P 500 index, exhibits a hysteresis behavior,
as well as market-collapse tipping points and recovery tipping
points that confirm the predictions of our network model. We
report that the model, with only the change in the S&P 500
intrinsic value as input, consistently generates prices which ex-
hibit appropriate heavy-tailed drawdown and drawup distribu-
tions. Furthermore, we justify the applicability of the model by

Fig. 1. Competition, cooperation, and feedback mechanism between trading
process and price dynamics in a coupled network model. Inflow of information
determines intrinsic price, a genuine, fundamental information about an asset.
The ratio between market price and intrinsic price affects the trading dynamics
which in turn change the trading pattern.

demonstrating the possibility of deriving early-warning indica-
tors and drawing predictions of future market performances for
the S&P 500 index.

II. COMPLEX NETWORK MARKET MODEL

A. Initial Networks

Because most human activity is limited by the finite avail-
ability of resources, individuals are compelled to bargain over
the division of those resources [35], [43]. Bargaining has been
at the core of trade from the earliest recorded human history
when, prior to the introduction of currency, goods and services
were bartered. Today bargaining is ubiquitous and ranges from
haggling for food items in certain cultures to negotiations be-
tween large international business firms [3], [47]. The bottom
line in every market is the outcome of the bargaining process,
e.g., market price. Although standard axiomatic bargaining the-
ory idealizes the bargaining problem by assuming that indi-
viduals are highly rational as they negotiate their desires for
various resources, panic and irrational behavior [44] do occur
in real-world complex systems including political networks and
financial markets. This irrational behavior strongly affects the
bargaining process, affects entire complex network systems, and
causes bubbles and crashes. Irrespective of market trading rules,
players use strategic reasoning and the information available to
them when proposing initial bargaining prices [29], [35], [43],
[48]–[51]. For example, someone selling an apartment needs to
know the prices being listed by other sellers of similar apart-
ments in the same neighborhood before they can list an initial
bargaining price for their own apartment. The seller takes into
account that this initial price will probably be challenged by
potential buyers and that bargaining in competition with other
apartment sellers in the neighbor will ensue.

We propose a coupled network model composed of equally
sized demand (buyer) and supply (seller) networks, where agents
represented as network nodes, cooperate with agents on the
opposite side of the market [43], but compete with agents on
the same side of the market, as depicted in Fig. 1. Both demand
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Fig. 2. Above (left and right): Clustered chain networks of competing agents
for N = 10, with p = 0 (chain) and p = 1 (fully connected graph). Below:
Clustered chain network of competing agents for N = 50 and p = 0.3. The first
two are the trivial cases of the network model, and the last case is representative
of the networks in our model, since the values of p are non-trivial and vary as
defined in equation (3).

(buyer) and supply (seller) networks are initialized with a single
node, and new nodes together with their prices are added one
by one until each network has N nodes. At any given time step
and for each demand and supply network the new node is added
as follows.

1) With a constant probability p, a new node vi is added to
the already existing network structure:

1) node vi randomly links a node vj , where each j ∈
[1, i − 1] has equal probability 1/(i − 1) and node
vi is then connected to each neighbor of vj ,

2) node vi sets its market (traded) price Si as the
arithmetic mean of all its neighbors’ prices

Si =
1
ni

∑

k

Sk (1)

where k runs over all of vi’s neighbors and the size
of vi’s neighborhood is ni = nj + 1.

2) With a probability 1 − p a new node vi connects to node e
in the current network, which has the highest/lowest price
Se in the buyer/seller network, and sets its market price
Si as a percentage increase/decrease Δ from Se

Si = Se · (1 + Δ). (2)

For the limit case p = 0, all the nodes form a chain. In the
opposite limit case p = 1, each new node connects to a node
from the existing cluster and all its neighbors, forming a com-
plete graph. These trivial cases together with the case p = 0.3
are shown in Fig. 2.

B. Bargaining Process

Once both demand and supply networks are generated, the
trading between buyers and sellers is initiated. Trading and price
dynamics are driven by the inflow of information about an as-
set, which determines the intrinsic price SI . In contrast to this

relatively stable intrinsic price, the dynamics of which will be
explained below, the market price is volatile. To generate bub-
bles and crashes and the feedback mechanism between the trad-
ing and price processes, we use network parameters that are
time-dependent, not constant, i.e.,

ps(t) = 1 − e
−α

S ( t )
S I ( t ) , pd(t) = 1 − e−α

S I ( t )
S ( t ) (3)

where S(t) is the last traded price at time t. Here α is a
parameter controlling overall network clustering. We define this
ratio R = S (t)

S I (t) between the market price S and and the intrinsic
value SI as the Market-to-Intrinsic ratio.

Note that Eq. (3) implies that when the market price S(t)
greatly exceeds the intrinsic value SI (t), ps → 1, the competi-
tion between supply agents increases, their strategies begin to
converge, and their trading prices become increasingly similar
(generating the current market price). As a consequence, sup-
ply agents become increasingly insecure about their bargaining
position. In addition, ps → 1 implies pd → 0, which intensi-
fies the market situation because the demand agents now have
more strategic options and face less competition. This combina-
tion of increasing confidence levels in the demand network and
decreasing confidence levels in the supply network increases
the probability that there will be an abrupt price crash. This
is in agreement with Scheinkman and Xiong who report that
overconfidence generates disagreements among agents regard-
ing asset fundamentals which then causes a significant bubble
component in asset prices [52].

Demand and supply agents bargain with each other to reach
agreements and execute trades. Here we present a bargaining
framework based on the alternating offer strategic model pro-
posed by Rubinstein [36], [43]. Agents are randomly selected,
alternating between the demand and supply networks, to make
moves. A move is either accepting the best current price offered
by the other side or proposing a new price. Each time a trade
is executed, the trading agents are removed from their networks
and a new one is added in both demand and supply network,
thus keeping the number of agents N constant (since the net-
work dynamics determine which and how many agents will be
able to trade, this is not a critical assumption).

Agents joining the network follow the proposed network al-
gorithm but are not allowed to connect to the first cluster (the
neighborhood of the first node). This is due to the fact that these
traders have just bought/sold the asset and believe the price is
going to rise/fall, and thus would not go back into their former
position immediately. After each trade, there is a probability
β that the last node from each network will reconnect into the
existing network structure following the proposed algorithm,
giving the more “fundamental” long-term investors the possi-
bility of changing their position. The utility gained by agent
i from trading at price S is quantified by a monotonic utility
function ui(S) (see Appendix A). Before making a move, agent
i evaluates the possible outcome at two steps τ = {0, 1} using
a random utility function Ui(S, τ)

Ui(S, 0) = ui(S) (4)
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Ui(S ′, 1) =

{
ui(S ′), with probability λi

0, with probability 1 − λi

(5)

where λi ∈ [0, 1] quantifies “agent confidence,” the probability
calculated by agent i that his/her offer (price S ′) will be accepted
in the next step at τ = 1. The expected utility of immediately
accepting offer S (at τ = 0) is deterministic and equal to the
agent’s utility function of price S, as noted in Eq. (4). The
expected utility of proposing a new price S ′ can be calculated
from Eq. (5) as

E[Ui(S ′, 1)] = ui(S ′)λi . (6)

Agent i accepts the current offer at τ = 0 if the expected
utility at τ = 0 is larger than the expected utility at τ = 1.

Agent i evaluates his/her confidence level λi based on
his/her position in the network, taking into account any avail-
able information about trends in the intrinsic price value. De-
mand and supply agents evaluate their confidence based on
the probabilities

λ
(s)
i =

1

1 + n
( s )
i

n
(d )
0

· e−γrI (t)
λ

(d)
j =

1

1 +
n

(d )
j

n
( s )
0

· eγrI (t)
(7)

where n
(s)
i and n

(d)
j are the neighborhood sizes of supply agent

i and demand agent j, n(s)
0 , and n

(d)
0 is the neighborhood size of

the supply and demand agents (the best offers), and rI (t) is the
proportional change in the intrinsic value. Here γ is a parameter
controlling how much a change in the intrinsic value impacts
the market price. When the intrinsic value is approximately
constant then the agents evaluate their confidence based on their
position in the network only. For supply agent i note that the
more competing supply agents n

(s)
i rely on similar information

and have synchronized trading strategies, and the smaller the
number of demand agents n

(d)
0 , the lower the value of λ

(s)
i . More

details regarding utility functions ui(S), new proposed prices
S ′, and agent confidence λi are given in Appendix A. Note that
the competition-cooperation mechanism in trading dynamics in
which agents within the same group compete differs from the
mechanisms that drive the evolution of cooperation in which
agents within the same group cooperate.

III. QUANTIFYING THE DEGREE OF MARKET OVERPRICING

In our modelling we were led by the conjecture that market
bubbles are caused by complex cooperation-competition bar-
gaining dynamics and that market collapse occurs when the ra-
tio between market price and intrinsic price—close to the Tobin
q ratio and its expansions [53], [54]—reaches a critical (tip-
ping) point. To calculate this ratio, which quantifies the degree
of market overpricing, we must first estimate the intrinsic value
of the market. Our model for determining the intrinsic value is
based on the widely used free cash flow model (FCFM) [55],
[56], in which the stock of a company is worth the sum of all of

Fig. 3. Price dynamics. (a) The S&P 500 prices, earnings, and cash flows,
monthly recorded. (b) The S&P 500 index, and the intrinsic value of the S&P
500 index. Both charts are adjusted for inflation. (c) Different time series of
model prices together with the intrinsic value of the S&P 500 index from
January 1920 to March 2015, and the (market) S&P 500 price index.

its discounted future free cash flows (FCFs) [57]

SI (t) =
∞∑

j=1

FCFt+j∏j
k=1 (1 + WACCt+k )

(8)

and the discount rate is the future weighted average cost of
capital (WACC). Using information about past realizations of
FCF and WACC and Eq. (8) we determine the intrinsic value SI

at some past time t − T . The SI value is approximate because
for the t − T time period we know only those FCF and WACC
values from t − T up to time t and thus the FCF and WACC
values for times longer than t must be estimated. Thus the further
back we go (t � T ), the better will be the past price estimate



1044 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 6, SEPTEMBER 2016

Fig. 4. Early-warning indicators through the 1990–2015 period. (a) The scaled
variance of model price as an early-warning indicator. As the market is getting
overpriced, the variance of fluctuations is increasing. (b) Average clustering
coefficients of the supply and demand networks demonstrate the dynamics of
supply and demand agent opinion clustering.

at t − T . Because our goal is to estimate the current intrinsic
value, we use past SI values we estimate the current intrinsic
value and assume that the growth in cash flows is constant and
exponential. For a detailed discussion, see Appendix B. Our
model model has two stages, a volatile growth phase that lasts
T years followed by a stable “steady state” growth phase. We
first examine the steady state growth phase where the ultimate
question to be answered is: what are the dynamics that control
cash flow?

To this end, Fig. 3(a) shows the time series of Shiller’s
monthly recorded S&P price, S&P earnings, and S&P cash
flows, which represent the behavior of the total US economy
for the last 95 years [58]. Note that although the US economy
has radically changed over the last century, with traditional in-
dustry being replaced by advanced technology, both earning
levels and cash flows have on average increased exponentially
and the exponential growth rates are approximately constant.
This result indicates that the earning dynamics in the US econ-
omy during the last two decades have been similar to those
during the first two decades of the 20th century. According to
Abreu and Brunnermeier [25] bubbles are sometimes caused
when less sophisticated, overly optimistic traders believe that
some new technological innovation will guarentee permanently
higher growth rates. Fig. 3(b) also shows the S&P 500 index

Fig. 5. The Market-to-Intrinsic ratio for the S&P 500 index. (a) Historical
values, compared with the scaled Shiller’s P/E (green), the latter obtained by
dividing with 20 for clarity reasons. (b) Histogram of the ratio (in blue) resembles
a bimodal functional form, characteristic for nonlinear phenomena of small
systems near the tipping point. The red vertical line indicates today’s value of
the ratio, and the fitted Gaussian mixture model, scaled for visibility, with two
components at μ1 = 0.8 and μ2 = 1.3 is shown in green. The χ2 statistical
test of the null hypothesis that the Gaussian mixture accounts for the data gives
a χ2 statistic of 65.17, and the limit for 95% certainty is 81.38 – therefore, the
null hypothesis stands at a significance level of 0.05.

SM over the last 95 years together with the intrinsic value of
the S&P 500 index, SI , obtained using Shiller’s S&P 500 data
from January 1920 until March 2015 [58].

Recalling that in our model trader confidence [44] is quan-
tified by the ratio between between market price and intrinsic
value, Fig. 3(c) shows several realizations of the model mar-
ket price. These outputs represent all model outputs for this
intrinsic price input and no other realizations were discarded.
When the market becomes unsustainably overpriced a specu-
lative bubble is created [44] which in turn makes the agents
increasingly uncertain about current and future trading prices.
This accumulated collective uncertainty among agents we quan-
tify as the variance of model price, and Fig. 4(a) shows that the
variance is at its highest levels just before a market crash when
market price greatly exceeds intrinsic value. We also show the
average clustering coefficients (calculated as the mean of local
clustering coefficients of all vertices, as proposed by [59]) for
the supply and demand networks, shown in Fig. 4(b), which
demonstrate opinion clustering and global confidence levels in
the networks. Moreover, the clustering coefficients cross paths
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as the market became underpriced in the 2008. crisis. The re-
sults reported in Fig. 4(a)–(b) are in agreement with a complex
system phenomenon called critical slowing down [11] charac-
terized by the increase in the variance as the system approaches
criticality, which is, in our case, market collapse.

To test how the market and intrinsic prices are related in the
long run, Fig. 5(a) shows the ratio between the market S&P 500
index and the intrinsic value of the S&P 500 index. Although
the intrinsic value of the S&P 500 is not calculated by fitting
the market index, the average value of the ratio is close to one
(1.04), which is a result that contrasts with the results of a
theoretical model that assumes rational agents who do not know
the beliefs of other agents and the market price is larger than
the intrinsic value [45]. Fig. 5(a) further validates our intrinsic
price since we find that the peaks of the market-to-intrinsic ratio
follow the peaks of the Shiller P/E indicator widely used to
estimate the degree of market overpricing. These correspond
to the timings of known major financial crashes and crises in
the last century, marked in the figure. This fact affirms that
our SI represents a reasonable estimation of the intrinsic value
of the S&P 500 index. Fig. 5(a) further reveals that the periods
when the market is underpriced and overpriced occur repeatedly,
which agrees, when speaking of companies, with the suggestion
that expectations for a company should not be too high or too
low [60]. If a company promises investors blue-sky expected
outcomes that are not realized, not only will the share price
drop when the market realizes that the company cannot deliver,
but it may take years for the company to regain credibility. To
paraphrase Abraham Lincoln, by overestimating the market you
can fool some of the people all of the time, but all of the people
only some of the time. The final punishment of the market comes
in the ensuing period when the market is underpriced.

We confirm the intriguing possibility that two distinct under-
priced and overpriced modes are present in the financial complex
system. Fig. 5(b) shows the probability of the ratio between mar-
ket price and intrinsic value for the S&P 500 index. We apply a
statistical mixture model to reveal the presence of a substructure
in the ratio and show that the probability distribution function of
the ratio fits the Gaussian mixture model, which resembles the
bimodal shape characteristic for small nonlinear systems near a
tipping point [61]. Note that we can locate this substructure of
the financial system with the underpriced and overpriced modes
because we have a model that can estimate the intrinsic price.

Fig. 5(a) suggests that over a long period of time the mar-
ket price and the intrinsic value should follow each other. We
quantify this assumption by investigating the long-term rela-
tionship [62] between the S&P 500 index, SM (t), and the in-
trinsic value of the S&P 500 index, SI (t), i.e. the S&P 500
Market-to-Intrinsic ratio. Motivated by the finding of Camp-
bell and Shiller that dividends and the present discounted value
of expected future dividends cointegrate [62], we next employ
the Engle–Granger cointegration test [63], [64] and report the
cointegration relationship

log(SM (t)) − log(SI (t)) = 0 (9)

between two series at a 5% confidence level (see Table II).
The test is based on a Phillips–Perron Zt unit root test of

TABLE I
PHILLIPS–PERRON Zt UNIT ROOT TESTS OF S&P 500 INTRINSIC VALUE AND

S&P 500 INDEX PRICE; LAG LENGTH WAS SET TO 8 ACCORDING TO THE

STOCK–WATSON METHOD; 5% SIGNIFICANCE CRITICAL VALUE

EQUALS −8.025

Test statistics (intrinsic value) Test statistics (index price)

Levels
0.2645 0.387

First differences
−20.063 −919.714

TABLE II
ENGLE–GRANGER COINTEGRATION TEST BASED ON PP UNIT ROOT TEST OF

REGRESSION RESIDUALS BETWEEN S&P 500 INTRINSIC VALUE AND S&P 500
INDEX PRICE; LAG LENGTH WAS SET TO 8 ACCORDING TO THE

STOCK–WATSON METHOD

Test Statistic Critical values Significance levels

−16.642 −20.5032 1%
−14.034 5%
−11.213 10%

regression residuals, with 8 lags included in the Newey–West
estimator of the long-run variance (the lag parameter was set to
8 in accordance with the Stock–Watson method [64] 0.75N

1
3

in which N is the number of observations). Details about the
test are provided in Appendix B and in Table II. Intrinsic value
and index price may deviate from each other in the short run,
but in the long run the intrinsic value catches up to the market
realizations. As a consequence of the cointegration, the longer
the market is overvalued, the longer we may expect the market
to stay in the undervalued mode.

IV. TIPPING POINTS

We hypothesize that financial crashes occur when a sin-
gle parameter—the ratio R between market price and intrinsic
price—reaches a crash tipping point Rc , and that the recovery
begins as it reaches a recovery tipping point Rr . This extends
the idea of herding-induced equilibrium prices deviating from
fundamental values by Lux and Marchesi [21], and includes
the interpretation by Abreu and Brunnermeier [25] that bub-
bles burst when agent synchronization reaches a tipping point.
Moreover, we include crash as well as recovery tipping points
in our analysis. The tipping points are not deterministic, but
rather stochastic variables. In models in which a node’s activity
is dependent upon the activity of neighboring nodes, quantified
by thresholds as in the Watts model [15], we define thresh-
olds to be fixed numbers and the result are well-defined critical
points [27], [28]. However, if we assume that the thresholds are
stochastic variables, the critical points will also be stochastic
variables. Here we propose a procedure for estimating tipping
points Rc and Rr in both the network model and U.S. financial
market data. We first apply a variation on Hodrick-Prescott fil-
tering proposed in [65] (referred to as �1 trend filtering) on the
log-prices. The method minimizes the sum of squared errors of
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the estimated trend (�2 norm) and penalizes trend variations by
a sum of absolute values (�1 regularization [66])

z = argmin
{

1
2
‖S − z‖2

2 + θ ‖Dz‖1

}
(10)

where z = (z(1), . . . , z(n)) ∈ Rn is the estimated trend vec-
tor, S = (S(1), . . . , S(n)) ∈ Rn are either network model
prices or S&P 500 prices, θ is the smoothing parameter and
D ∈ R(n−2)×n is the second-order difference matrix:

⎡

⎢⎢⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
1 −2 1

1 −2 1

⎤

⎥⎥⎥⎥⎥⎦
. (11)

The resulting trend estimate z is a piecewise linear approxima-
tion of the original data S, with sparse slope changes. According
to Kim et al. [65], the changes of the estimated trend can be in-
terpreted as abrupt changes or events in the underlying dynamics
of the time series—here we identify them as the system’s tipping
points. To estimate the tipping points we define the set of time
points which correspond to the changes of the estimated trend
from positive to negative as the crash tipping times tc . Like-
wise, points at which the estimated trend changes from negative
to positive are defined as the recovery tipping times tr

tc = {t : z′(t − 1) ≥ 0, z′(t + 1) < 0} (12)

tr = {t : z′(t − 1) ≤ 0, z′(t + 1) > 0} . (13)

The values of R we consider for the estimation of the
crash tipping points and recovery tipping points are therefore
{R(t) : t ∈ tc} for crash tipping points and {R(t) : t ∈ tr} for
recovery tipping points.

Fig. 6(a) demonstrates the estimated financial trends and the
identified crash and recovery tipping moments in the S&P 500
log-prices, with the smoothing parameter θ = 10 chosen to iden-
tify major financial trends (and consequently—crashes) in the
considered period (1920–2015). Fig. 6(b) shows the values of
the Market-to-Intrinsic ratio of the S&P 500 with highlighted
tipping points identified from the log-prices. The tipping points
vary between different realizations—as one would expect for
tipping points in the social sciences, and we report the mean
values of the identified crash and recovery tipping points, to-
gether with their respective standard deviations. The S&P 500
market crashes as it reaches the crash tipping point 1.64 ± 0.41,
and rebounds as it reaches the subsequent recovery tipping point
0.72 ± 0.32. Our network model outputs (none of the model
outputs were discarded) follow the exact same pattern with the
values of its tipping points being 1.66 ± 0.22, and 0.85 ± 0.28.
Evidently, the network model generates trajectories which not
only exhibit crashes and rebounds at appropriate moments in
time [as demonstrated earlier in Fig. 3(c)], but also at corre-
sponding values of the variable R.

To further inspect the properties of the market and the net-
work model, we take on the approach proposed by Sornette [24]
and look into the distribution of drawdowns. A drawdown is
defined as a persistent decrease in the price over consecutive

Fig. 6. (a) S&P 500 log-prices from 1920 to 2015, with �1 trend estimates
and the identified tipping points. (b) S&P 500 Market-to-Intrinsic ratio and the
estimated tipping points.

days—and is thus the cumulative loss from the last maximum
to the next minimum of the price [24]. Similarly, a drawup is a
persistent increase in the price over consecutive days and is the
cumulative gain from the last minimum to the next maximum
of the price. Johansen and Sornette [24], [30] find that the draw-
down distribution of the Dow Jones Industrial Average index
prices exhibits heavy tails, which is not the case when the same
price series is “shuffled”. This means that drawdowns reveal the
subtle time-dependences, and that major financial crashes are in
fact outliers in the standard assumption of independent succes-
sive price variations [24]. Our network model accounts for these
intricate properties and in Fig. 7 we demonstrate the correspon-
dence between the distribution of drawdowns and drawups of
the S&P 500 index and the model for all the generated model
outputs. The heavy tails in the model-generated prices are due
to the emergence of herding modelled by opinion clusters in our
model, which can explain the occurrences of so-called “black
swans” (large drawdowns of huge impact)—in other words, ma-
jor market crashes.

In addition, we introduce a procedure to investigate the sys-
temic behavior around tipping points of the network model
and U.S. financial market data. In order to facilitate this, we
must first identify the model output and the parameter space
within which we search for the tipping points. For the model we
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Fig. 7. Normalized natural logarithm of the cumulative distribution of draw-
downs and of the complementary cumulative distribution of drawups for the
S&P 500 index and all of the model generated output prices.

Fig. 8. Hysteresis and critical points of financial networks. (a) Model: Proba-
bility that the price will drop during [t, t + NΔt], where N = 12 and Δt = 1
month, versus the Market-to-Intrinsic price ratio, R, shows a hysteresis behavior.
Approaching a tipping point, the probability of price decline exhibits an abrupt
change. (b) S&P 500: Probability that the price will drop during [t, t + NΔt]
versus R.

define the network output at time t as the fraction of future times
within the time interval [t + NΔt] which has a lower price than
the current, where Δt is the time step and N is an integer. We
generate a large number of simulations for the last two major
financial crises (Dot-com bubble in 2000 and the financial crisis
of 2008), and at any t for each price time series Si,t we record
the Market-to-Intrinsic price ratio Ri,t and the probability Ii,t ,

Fig. 9. Forecasting power. (a) Different time series of model price (in blue),
with the the S&P 500 price index (in green) for the estimated intrinsic values (in
red). (b) Cumulative distribution of potential loss L, P (L < x) (in red), with
cumulative distribution of potential gain G, P (G > x) (in blue) in period from
April 2015 to December 2016.

which indicates what fraction of the future prices are lower
than the current (i.e. S(t + kΔt) < S(t), 1 ≤ k ≤ N ). Com-
bining all pairs (Ri,t , Ii,t ), Fig. 8(a) shows that the probability
of a future price decline versus the ratio R exhibits a hysteresis
behavior. The hysteresis is revealed by analyzing the network
model when it moves from its underpriced to its overpriced
phase and vice versa.

Fig. 8(a) shows that the hysteresis obtained for the network
model agrees with the hysteresis shown Fig. 8(b) for the U.S.
financial market, represented by the S&P 500. The hysteresis
shown in Fig. 8(a) was obtained using a large number of numer-
ical simulations, and the hysteresis in Fig. 8(b) was obtained by
analyzing the S&P 500 during the 2000 dot-com crash and the
2007 recession. At any t for the S&P 500—precisely the price
time series Si,t—we record the ratio Rt of the S&P 500 and
the probability Ii,t indicating what fraction of the future prices
are lower than the current Si,t during t + NΔt. Collecting all
of the pairs (Rt, Ii,t ), we calculate for a given R the probability
that the price will decline during the time interval [t + NΔt].
We find that the tipping point at which the S&P 500 crashes
strongly resembles the tipping point we obtain by our model
shown in Fig. 8(a).
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Because theories with predictive power are highly valued in
science and in finance in particular [67], [68], we calculate fu-
ture intrinsic values of the S&P 500 by assuming that market
earnings and WACC in the future will follow the historical
trends. Specifically we use autoregressive models to make
predictions of earnings and WACC trends.

We further generate a large number of the network realiza-
tions, resulting in modeled prices shown in Fig. 9(a), and then
we count the modeled prices according to their relative change
with respect to the maximum or minimum value (which ever
occurs earlier) in period from April 2015 to December 2016.
Fig. 9(a) shows the cumulative frequencies for the cases with
the negative change, i.e. loss (in red) and cumulative frequen-
cies with the positive change, i.e. gain (in blue). Fig. 9(b) reveals
that the probability of S&P 500 declining from its peak for more
than 10% is approximately 80%. The same Figure further re-
veals that there is only 20% chance that the S&P 500 index will
grow more than 10% from its minimal value in the same time
period. This calculations assumes that the earning trends and
WACC obtained from the historical data will continue to hold,
at least in the near future, and Fig. 3 shows that this assumption
is reasonably correct.

V. CONCLUSION

In this paper we introduce a model based on a network of
bargaining agents who mutually either compete or cooperate.
This model assumes that agents compete when they use sim-
ilar strategies. Due to the feedback mechanism, driven by the
Market-to-Intrinsic ratio R, the network model produces mar-
ket prices which oscillate around the input (intrinsic values) and
exhibit bubbles and crashes. Moreover, due to the stochastic na-
ture of the model, the same input (intrinsic values) can generate
different outputs (market prices), which we can use to analyze
tipping points, drawdowns and trader confidence.

To test the model, we calculated the intrinsic values of the
S&P 500 market index, using the FCFM. The estimated intrinsic
values were shown to be cointegrated with the market prices in
the last 95 year period (1920–2015), and the estimated Market-
to-Intrinsic ratio R for the S&P 500 market oscillates around
1, on the long run. These results affirm our modelling approach
and support the use of the estimated intrinsic values as the input
to our network model.

The results show that crashes occur in the network model
when the ratio R between the model generated market prices
and the input intrinsic values reaches a crash tipping point, and
the recovery begins as the ratio reaches a recovery tipping point.
This is in line with the results from the S&P 500 market index,
which is shown to exhibit this exact bahavior at similar tipping
points. Moreover, we demonstrate that the network model pro-
duces heavy-tailed drawdowns, as seen in real-world markets—
the comparison with S&P 500 drawdowns further confirms the
value of the results. In addition, based on a range of estimates for
the future intrinsic values, we generate a number of predictions
for the future behavior or the market prices and demonstrate the
forecasting power of the model by calculating the the cumu-

lative distribution of potential gain and loss for the following
period (until December 2016).

These findings show that the proposed modelling approach
provides a novel perception about the mechanisms behind
tipping points in market—both crash and recovery. With fur-
ther insight into agent trading behavior and the effects of dif-
ferent parameter settings, future research will be able to apply
our model to the analysis of other important market phenomena
(such as bid-ask spread dynamics).

APPENDIX A
COMPLEX BARGAINING

Assume two agents (“players”) are involved in the sale of
a book. Player 1 is selling the book and values it at $60, and
player 2 wants to buy the book and values it at $30. The two
players are the only agents involved in the transaction, both
are rational, and both want the transaction to occur (neither
will withdraw). Because there are no other agents who might
be competitors and influence the transaction, the two players
rationally meet halfway and agree on a price of $45. We can
make the situation more complex by adding the assumption
that there is a probability 1 − λ = 0.8 that either player will
quit the bargaining process before an agreement is reached. In
this case each player’s anxiety that the other will back out of the
transaction gives them greater motivation to reach an agreement.
As a result, two equilibrium prices, $35 and $55, emerge. The
seller is assured of $35 without risk but must weigh that against
getting $55 with a confidence of λ = 0.8. The seller will accept
any price above $35 but will not offer a price below $55. These
described bargaining scenarios are rudimentary, and for a more
detailed discussion see Nash [35], Rubinstein [36] and a number
of other contributors[43], [49], [50].

The agent utility functions are linear functions of the offered
price that monotonically increase for supply agents and mono-
tonically decrease for buyer agents, i.e.,

u
(s)
i (S) =

S − S
(s)
init

S
(s)
i − S

(d)
init

, u
(d)
j (S) =

S
(s)
init − S

s
(s)
init − S

(d)
j

(14)

where S
(s)
init and S

(d)
init are the initial bargaining prices of the

supply and demand agents (the best supply and demand offers),
respectively. These are reset when a trade occurs and are fixed
between trades.

Agents evaluate the utility of accepting S, the offer in the
current step, using

U
(s)
i (S, 0) = u

(s)
i (S) , U

(d)
j (S, 0) = u

(d)
j (S). (15)

When evaluating whether to accept an offer in the next bar-
gaining step, an agent must assess the probability that another
trading agent will intervene and steal the trading opportunity.
For all supply and demand agents, the probability that this
“breakdown scenario” (b) will occur is u

(s)
i (b) = u

(d)
j (b) = 0.
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The utility of accepting offer S in the next bargaining step is
given by

E[U (s)
i (S, 1)] = u

(s)
i (S)λ(s)

i + u
(s)
i (b)

(
1 − λ

(s)
i

)

= u
(s)
i (x)λ(s)

i

E[U (d)
j (S, 1)] = u

(d)
j (S)λ(d)

j + u
(d)
j (b)

(
1 − λ

(d)
j

)

= u
(d)
j (S)λ(d)

j . (16)

Here λ
(s)
i and λ

(d)
j are the evaluated probabilities (the “agent

confidences”) of the supply agent i and demand agent j, re-
spectively, poised to trade (or not trade) in the next step. The
agents use their neighborhoods to evaluate their confidence fol-
lowing the expression (7). Since external information affects
one side positively and the other negatively, supply and demand
agents interpret this information reciprocally. In effect, the in-
trinsic value return rI (t) tilts the overall confidence evaluations
of agents and renders one side more confident and the other less,
and is calculated as

rI (t) =
SI (t) − SI (t − 1)

SI (t − 1)
. (17)

The network parameters used in this study are: α = 0.2,
β = 0.3 and γ = 90. These values were empirically chosen to
produce reasonable model outputs.

We use a version of the monotonic concession protocol to
simulate agent price movement during the bargaining process
[48]. Agents from the supply and demand sides alternate in
making their moves. A move can either be accepting the current
offer from the other side or proposing a new price. If the offer is
accepted and a trade in completed the trading agents are removed
from their networks and the agreed-upon price becomes the
trading price. An agent accepts the current offer if the expected
advantage of accepting it is greater than or equal to the expected
advantage of risking that a more attractive price will be agreed
upon in the next step. This condition can be expressed using
equations (15) and (16) for supply and demand agents

E
[
U

(s)
i

(
S

(d)
0 , 0

)]
≥ E

[
U

(s)
i

(
S

(s)
i ·

(
1 + δ

(s)
i

)
, 1

)]

E
[
U

(d)
j

(
S

(s)
0 , 0

)]
≥ E

[
U

(d)
j

(
S

(d)
j ·

(
1 + δ

(j )
d

)
, 1

)]
.

(18)

If the condition is not met, the agent proposes a new price,

S
(s)
i ← S

(s)
i ·

(
1 + δ

(s)
i

)
. The multiplicative concession steps

δ
(s)
i for supply and demand agents are defined

δ
(s)
i = δ(s)

(
1 − λ

(s)
i

)
, δ

(d)
j = δ(d)

(
1 − λ

(d)
j

)
(19)

where δ(s) ≤ 0 and δ(d) ≥ 0 are fixed concession step constants
for the supply and demand networks, respectively. This means
that the magnitude of concession steps made by agents will
be determined by the level of agent confidence. Less confident
agents offer a larger concession step. After a trade occurs and
the trading agents are removed from their networks, a new agent
is added to each network, which preserves the orders of both

networks. The new nodes are added according to the protocol
described above, with the probability p defined in Eq. (3). The
parameter values used are pc = 0.2, δ(d) = −δ(s) = 0.005. The
supply and demand networks each have 500 agents and each are
initialized with a single node with the initial price equal to the
initial intrinsic value. The network steps are Δ(s) = 0.01 and
Δ(d) = −0.01 for supply and demand networks, respectively.

APPENDIX B
INTRINSIC PRICE ESTIMATION

The FCFM is one of the most respected methods for deter-
mining the intrinsic value of a company. The model assumes
that a company’s stock is equal to the sum of all of its future
FCFs, discounted back to their present value using the future
WACC as the discount rate [see Eq. (8)]. FCF is the cash flow
generated by the core operations of the business after deducting
investments in new capital, and WACC is the rate of return that
investors expect to earn from investing in the company. Because
investors do not know future values of FCF and WACC, they
use estimates based on their own experience, knowledge, and
available information. To avoid false precision errors, investors
often split their forecast into two periods, (i) a detailed five-
year forecast that develops complete balance sheets and income
statements with as many links to real variables as possible, and
(ii) a simplified forecast for the remaining years. The stock is
then traded at a price

S(0) =
T∑

j=1

FCFE
j∏j

k=1 (1 + WACCE
k )

+
CV E

T∏T
k=1 (1 + WACCE

k )
(20)

where FCFE
j is the estimated FCF at the step j, WACCE

k

the estimated WACC at time step k, and CV E
T the estimated

continuing value at time step T [60]. Because the correct FCF
and WACC are known for the previous five years—time period
T—an estimation of a company’s intrinsic value at the beginning
of that five-year time period, SI (−T ), made today will be more
accurate than one made five years ago

SI (−T ) =
0∑

j=−T +1

FCFj∏j
k=−T +1 (1 + WACCk )

(21)

+
∞∑

j=1

FCFE
j∏0

k=−T +1 (1 + WACCk )
∏j

k=1 (1 + WACCE
k )

.

Although estimates of FCF and WACC must extend to the
indeterminate future, because of the discount effect these esti-
mates will have a decreasing impact on the price. For the sake
of simplicity, we assume (i) that the future FCF will grow at a
constant growth rate g, and (ii) that the future WACC will be
constant. Therefore (21) becomes

SI (−T ) =
0∑

j=−T +1

FCFj∏j
k=−T +1 (1 + WACCk )

(22)

+
FCF1∏0

k=−T +1 (1 + WACCk )(WACC∞ − g)
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where FCF1 is the expected FCF one time step in the future
(e.g., one year from now), and WACC∞ the expected long-term
WACC. The goal is to estimate the current intrinsic value of the
company now, not its value five years ago. Because over a long
period of time the growth rate of the company earnings will be
similar to its stock prices, we can estimate the current intrinsic
value of the company using

SI (0) = (1 + g)T SI (−T ) (23)

where g is the constant growth rate of earnings. Fig. 3(a) shows
that this assumption is reasonable, and Fig. 3(b) shows the in-
trinsic values with and without the forward correction from
Eq. (23). Based on the ratio between these two time series, we
define the 90% confidence interval, also shown in Fig. 3(b).

Because data for FCF and WACC are usually unavailable,
when we implement and test the model we replace these vari-
ables with quantities supplied in financial databases. FCF is, in
the first approximation,

FCF = E − NI (24)

where E is firm earnings and NI net investments—the increase
in invested capital from one year to the next, i.e., the portion of
earnings the firm reinvests. The investment rate (IR), the portion
of earnings invested back into the business, is

IR =
NI
E

. (25)

The return on invested capital (ROIC) is usually defined as the
return a company earns on each dollar invested in the business
[60]. This is approximately

ROIC =
E

Invested Capital
. (26)

Growth (g) is usually defined as the rate at which the
company’s earnings grows each year [60].

Note that FCF = E(1− IR) and from [60]: g = ROIC · IR.
Finally,

FCF = E
(
1 − g

ROIC

)
. (27)

In FCFM the discount rate is the WACC. In its simplest form,
the WACC is the market-based weighted average of the after-tax
cost of debt and cost of equity,

WACC =
D

D + E
(1 − Tm )kd +

E
D + E

ke (28)

where D/(D + E) is the debt-to-value target level, E/(D + E) the
equity-to-value target level, kd the cost of debt, Tm the marginal
tax rate, and ke the cost of equity [60].

We use data on the S&P 500 from January 1900 to March
2015 supplied by Robert Shiller when we implement our model.
These include data on real (inflation adjusted) earnings, real
prices, real long-term interest rates, and S&P500 historical av-
erages (inflation adjusted). The median debt-to-equity ratio for
the S&P500 is 19.7%, the median return on invested capital 7%,
and the median growth rate of earnings g = 1.7%. We use the
long-term interest rate as a proxy for the after-tax cost of debt,
and the S&P 500 earning yield as a proxy for the cost of equity.

Because the time period is T = 5 years, at each time step the
intrinsic value for the five previous years is determined, and
(23) is employed to determine the intrinsic value at the current
time step.

We next use the Engle-Granger cointegration test to investi-
gate the long-term relationship [62] between S&P500 intrinsic
values and S&P500 index prices. Prior to testing for cointegra-
tion, we ensure that both series have the same order of inte-
gration. To determine the order of integration, we employ the
Phillips-Perron Zt (PP) unit root test of the null hypothesis that
indicates whether the variable has a unit root against a station-
ary alternative. Table I shows the results of PP unit root tests
for both levels and the first differences of log-price series. The
results imply that both series contain a unit root in levels and
thus should be first differentiated to achieve stationarity. We
conclude that both series are integrated at the first order, I(1),
at a 5% confidence level. To determine whether there is cointe-
gration between the S&P500 intrinsic log-value and the index
log-price, we employ the Engle–Granger test [63], [64], which
is based on a PP unit root test of regression residuals, with
8 lags included in the Newey–West estimator of the long-run
variance (the lag parameter was set to 8 in accordance with the
Stock–Watson method [64] 0.75N

1
3 , where N is the number

of observations). Table II shows that the cointegration between
the two series is at a 5% confidence level. Note that intrinsic
value and index price can deviate slightly from each other in
the short term, but that market forces, government policies, and
investor behavior bring them back to a equilibrium in which
market realizations and our market expectations converge.

Because theories with predictive power are highly valued in
science we calculate future intrinsic values of the S&P 500 by
assuming that market earnings and WACC in the future will
follow the historical trends. Specifically we use AR(5) model
with constant term to make prediction of earnings trend and
AR(2) model with constant term to make prediction of WACC
trend. Historical earnings and WACC are used for estimation
of the models and Akaike information criterion is used for
lag order selection in both cases. The fitted models are used
in simulation of many possible estimates of the future intrin-
sic values. We then use these estimates to predict the future
market performance.
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