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Abstract

In this paper, we apply scaling laws from percolation theory to the problem of estimating
the time for a 3uid injected into an oil5eld to breakthrough into a production well. The main
contribution is to show that when these previously published results are used on realistic data
they are in good agreement with results calculated in a more conventional way, but they can be
obtained signi5cantly and more quickly. As a result, they may be used in practical engineering
circumstances and aid decision-making for real 5eld problems. c© 2002 Published by Elsevier
Science B.V.
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1. Introduction

Oil reservoirs are extremely complex containing geological structures on all length
scales. These heterogeneities have a signi5cant impact on hydrocarbon recovery. The
conventional approach to estimating recovery is to build a detailed geological model (of
around 10 million numerical grid cells), populate it with 3ow properties, coarse grain it
and then perform a 3ow simulation. In order to estimate the uncertainty in production a
number of possible geological realisations are constructed (with associated probabilities)
and this procedure repeated many times. A simple order of magnitude estimate of
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computing times (given today’s model sizes and computing speeds) indicates that this
could take many hundreds of days. Clearly, this is completely impractical for many
purposes.
Given this practical limitation a number of approaches have been taken, for example

improved coarse graining methods [1,2], fast simulation [3,4], and so on. In this paper,
we adopt a diFerent perspective. We simplify the geological model and 3ow physics
such that quasi-analytical predictions of uncertainty can be made extremely quickly.
The advantage is that the eFects of the complex geometry which in3uence the 3ow
can be readily estimated. Clearly, the disadvantage is that much of the 3ow physics
and subtleties of the heterogeneity distribution are missed. Whilst, it is the aim of
future research to address those issues we show, in this paper, that this simple model
can already give reasonable estimates of the production performance when applied to
a real data set.
We start by simplifying the rock heterogeneity by assuming that the permeability

can be split into “good” rock (i.e., 5nite, non-zero permeability) and “poor” rock (low
or zero permeability). For all practical purposes the 3ow takes place just in the good
rock. It is the interconnectivity of the permeable rock that controls the 3ow. The spatial
distribution of the sand is also governed by the geological process but can frequently
be considered as independent or of a short range correlation. Hence, the problem of the
connectivity of the sandbodies is precisely a continuum percolation problem. The place
of the occupancy probability p of percolation theory is taken by the volume fraction
of good sand (the net to gross ratio). This percolation view of sandbody connectivity
has been used before [5], but here we look not just at the static connectivity but also
at the dynamic displacement on this percolating system.
The second simpli5cation is of the 3ow physics. Here we shall assume that the

displacement is like passive tracer transport. In other words, we have single-phase
3ow from injector to producer (we only consider a single well pair) and we assume
that the injected 3uid is passively convected along these streamlines. To be speci5c,
we shall consider the time to breakthrough (or the 5rst passage time for a passive
tracer) as the measure of performance. These are gross simpli5cations which enable us
to use the scaling laws of percolation theory [6] to determine production performance
and its associated uncertainty.

2. Flow model

To simplify the model we shall assume that the permeability is either zero (shale)
or one (sand). The sandbodies are cuboidal. They are distributed independently and
randomly (i.e., as a Poisson process) in space to a volume fraction of p. Further, we
shall assume that the displacing 3uid has the same viscosity and density as the displaced
3uid. This has the advantage that as the injected 3uid displaces the oil the pressure 5eld
is unchanged. This pressure 5eld is determined by the solution of the single-phase 3ow
equations (∇ ·K∇P=0). The injected 3ow then just follows the streamlines (normals
to the isobars, pressure is P) of this 3ow. In dimensionless units the permeability (K)
is either zero or one as described before. The boundary conditions are 5xed pressure
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of +1 at the injection well and 0 at the production well. In this work, we shall only
consider a single well pair separated by a Euclidean distance r. The breakthrough time
then corresponds to the 5rst passage time for transport between the injector and the
producer.
For a given model of the reservoir we can then sample for diFerent realisations of

the locations of the wells (or equivalently for the same well locations for diFerent
models of the reservoir with the same underlying statistics) and plot the distribution
of breakthrough times. This is the conditional probability that the breakthrough time is
tbr given that the reservoir size (measured in dimensionless units of sandbody length)
is L and the net to gross is p, i.e., P(tbr|r; L; p). In previous studies [7,8], we have
shown that this distribution obeys the following scaling:

P(tbr|r; L; p) ∼ 1
rdt
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f1(x) = exp (−ax�) ;

f2(x) = exp (−bx ) ;

f3(x) = exp (−cx�) :

Currently, the best estimates of the various coeMcients and powers (as found from
detailed numerical experiments on lattices and theory, see Ref. [9]) in this are

dt = 1:33± 0:05; gt = 1:90± 0:03; a= 1:1; b= 5:0;

c = 1:6(p¡pc)2:6(p¿pc); �= 3:0;  = 3:0; �= 1:0 and

�= |p− pc|−� �= 4
3 ; pc = 0:668± 0:003

(for continuum percolation).
In this paper, we will not discuss the background to this scaling relationship, but

concentrate on how well it succeeds in predicting the breakthrough time for a realistic
permeability 5eld. However, it is worth spending some time describing the motivation
behind the form of the various functions. The 5rst expression (f1) is an extension
to the expression developed by others (see Ref. [6] for a detailed discussion) for the
shortest path length in a percolating cluster between two points. The breakthrough time
is strongly correlated with the shortest path length (or chemical path).
To this there are some corrections for real systems. In a 5nite size system very large

excursions of the streamlines are not permitted because of the boundaries so there is a
maximum length permitted (and also a maximum to the minimum transit time). This
cut-oF is given by the expression f2. Away from the percolation threshold the clus-
ters of connected bodies have a “typical” size (given by the percolation correlation
length, �) which also truncates the excursion of the streamlines. This leads to the
cut-oF given by the expression f3. The multiplication together with these three ex-
pressions is an assumption that has been tested by Dokholyan et al. [7]. Also a more
detailed derivation of this form is given there and the references therein. Here, we
shall concentrate on using this scaling form to make predictions about the distribution
of breakthrough times for a realistic data set.
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3. Application to a real �eld

We took as an example a deep water turbidite reservoir. The 5eld is approximately
10 km long by 1:5 km wide by 150 m thick. The turbidite channels, which make up
most of the net pay (permeable sand) in the reservoir, are typically 8 km long by
200 m wide by 15 m thick. These channels have their long axes aligned with that of
the reservoir. The net to gross ratio (percolation occupancy probability, p) is 50%. The
typical well spacing was around 1:5 km either aligned or perpendicular to the long axis
of the 5eld. In order to account for the anisotropy in the shape of the sand bodies and
the 5eld we 5rst make all length units dimensionless by scaling with the dimension
of the sand body in the appropriate direction (so the 5eld dimensions are then Lx, Ly

and Lz in the appropriate directions). Then scaling law, Eq. (1), can be applied with
the minimum of these three values (L = min (Lx, Ly, Lz)). The validity of using just
the minimum length has been previously tested [9].
The real 5eld is rather more complex than this, and a more realistic reservoir de-

scription was made and put into a conventional 3ow simulator. We could then enter
these dimensions into the scaling formula, Eq. (1). It should be noted that, 5rst the
dimensionless units were converted into real 5eld units to compare with the conven-
tional simulation results. Using these data we 5nd breakthrough times of around one
year. The full probability distribution of breakthrough times from the scaling law is
given by the solid curve in Fig. 1.
In addition conventional numerical simulations were carried out for the 5eld. We

could then collect the statistics for breakthrough times for the various well pairs to
compare with this theoretical prediction. Not all pairs exhibited breakthrough in the
timescale over which the simulations were run and there were only three injectors so
there were only 9 samples. The histogram of breakthrough times is also shown on
Fig. 1. Clearly, with such a small sample these results cannot be taken as conclusive
however, certainly they are indicative that the percolation prediction from the simple
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Fig. 1. Comparison of probability distribution of breakthrough times for example reservoir obtained from
percolation theory (smooth curve) and from full 5eld model (histogram).
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model is consistent with the results of the numerical simulation of the more com-
plex reservoir model. The agreement with the predictions is certainly good enough for
engineering purposes. We would hope that if the simulation had been run for longer
and more well pairs had broken through that better statistics could have been col-
lected. The main point being that the scaling predictions took a fraction of a second of
cpu time (and could be carried out on a simple spreadsheet) compared with the hours
required for the conventional simulation approach. This makes this a practical tool to
be used for making engineering and management decisions.

4. Conclusions

We have applied results obtained earlier for the scaling law for breakthrough time
distributions for oil5eld recovery to realistic 5eld data. We have shown that by making
a number of simplifying assumptions we can readily use previous results from per-
colation theory to make extremely rapid estimates of the uncertainty in breakthrough
time. The agreement between the theory and the conventional simulation approach is
accurate enough for engineering purposes and therefore makes it a practical tool for
supporting decision making.
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