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Abstract

We develop a scale-invariant truncated L#evy (STL) process to describe physical systems

characterized by correlated stochastic variables. The STL process exhibits L#evy stability for the

probability density, and hence shows scaling properties (as observed in empirical data); it has

the advantage that all moments are 5nite (and so accounts for the empirical scaling of the mo-

ments). To test the potential utility of the STL process, we analyze 5nancial data. c© 2001

Elsevier Science B.V. All rights reserved.
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In recent years, the L#evy process [1] has been proposed to describe the statistical

properties of a variety of complex phenomena [2–13]. The L#evy process is characterized

by “fat tails” (power law), and displays scaling behavior similar to that observed in a

wide range of empirical data. However, the application of the L#evy process to empirical

data is limited because it is characterized by in5nite second and higher moments, while

empirical data have 5nite moments.

Truncated L#evy (TL) processes are de5ned to have a L#evy probability density func-

tion (PDF) in the central regime, truncated by a function decaying faster than a L#evy

distribution in the tails [14]. The TL process is introduced to account for the 5-

nite moments observed for empirical data [15,16]. However, the TL process (with

either abrupt [14] or smooth [17] truncation) has limitations when applied to empirical

data. (i) The TL process is introduced for independent and identically distributed

∗ Corresponding author. Center for Polymer Studies, Department of Physics, Boston University, Boston,

MA 02215, USA.

0378-4371/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.

PII: S 0378 -4371(01)00290 -4



P.Ch. Ivanov et al. / Physica A 299 (2001) 154–160 155

Fig. 1. The S&P500 index shows two scaling regimes for the standard deviation �. The correlated

(superdiGusive) regime at small Ht corresponds to the STL process with slope �=�=0:7. To account for the

crossover to uncorrelated (normal diGusion) regime, we introduce a breakdown in the scaling for the STL

process: �Ht ≡ �× = const and AHt ≡ (Ht)A× for Ht ¿ (Ht)×. The breakdown in the STL is equivalent

to a transition to a TL process at large time scales. This TL process corresponds to an initial �TL larger than

the empirical �1. This is the reason for the delay (at time scale (Ht)s ≈ 103) in the transition from L#evy

to Gaussian behavior observed for PHt(0) (see Fig. 2). Note, that the TL process with an initial standard

deviation �1 (as observed in the data) would exhibit for PHt(0) a transition from L#evy to Gaussian at

shorter time scales (Fig. 2).

(i.i.d.) stochastic variables, while variables describing many physical systems are not

i.i.d.—e.g. there are correlations in the random variable and=or the random variable is

not stationary [18–21]. (ii) The PDF of the TL process tends to the Gaussian dis-

tribution (according to the central limit theorem), and hence does not exhibit scale

invariance; PDFs for a variety of complex systems, however, are often characterized

by regions of scale-invariant behavior. (iii) The time scale above which the L#evy pro-

5le becomes Gaussian depends on the truncation cutoG (or the standard deviation)

[14,17]; to mimic the L#evy type scale invariant behavior observed for the data, the TL

process must be de5ned with a standard deviation larger than the one observed for the

data (see caption of Fig. 1).

Here, we introduce a stochastic process which we call the scale-invariant truncated

L#evy (STL) process. Stochastic variables z in the STL process are generated by the

symmetrical probability function f(z)=Ae−�|z|
� |z|−1−�, where 0¡�¡ 2. For �=0

the probability function f(z) approximates the L#evy distribution for large values of z.

The exponential prefactor [17] ensures a smooth truncation of the L#evy distribution,

where the parameter � can take any positive value, �−1 is related to the truncation

cutoG, and A is a measure of the “spread” in the central region.

From the probability function f(z), we calculate the characteristic function

�(k) ≡ exp[ −
∫∞

−∞
dz(1 − e−ikz)f(z)] [22]. The PDF P(z) is the Fourier transform
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of �(k) [22]:

P(z) ≡ 1

2�

∫

�(k)eikz dk ; (1)

since f(z) ≈ A|z|−1−� for small values of z, P(z) has a L#evy pro5le in the central

part. To maintain scale invariance for P(z) in the entire range including the tails, we

de5ne the STL process by the scaling transformations

AHt ≡ (Ht)�A1; �Ht ≡ (Ht)−��=��1 ; (2)

where Ht is the time scale and � can take any positive value. Under these transforma-

tions, the PDF P(z)=PHt(z) scales as the L#evy stable distribution:

z ≡ (Ht)�=�z1; PHt(z) ≡
P1(z1)

(Ht)�=�
: (3)

With the transformations of Eqs. (2) and (3), we obtain a process with controlled

dynamical properties—PHt(z) for any value of Ht can be calculated from the PDF at

any chosen Ht (e.g. Ht=1). Note that the STL process characterized by given � can

scale with any scaling exponent �=� in contrast to the L#evy stable process which scales

with the scaling exponent 1=�. The parameter � controls the dynamics of the process—

probability distributions characterized with the same � can exhibit diGerent scaling

behavior for diGerent values of �. E.g. for �=1 and �=0 under the transformations

of Eqs. (2), the probability density P(z) scales as the L#evy stable process.

Although the PDF PHt(z) exhibits scaling properties identical to the L#evy stable

distribution, the process de5ned by Eqs. (1) and (2) is diGerent. While the L#evy

process is de5ned for i.i.d. variables the STL process is characterized by correlated

stochastic variables—the STL is a non-i.i.d. process. To demonstrate this, we consider

the scaling of the second moment �2, determined as the second derivative of �(k) at

small values of k [22]:

�2Ht =
2A�((2− �)=�)�(�−2)=�

�
=(Ht)2�=��21 ; (4)

where �1 is the standard deviation for Ht=1. The second equality on the right-hand

side follows from the transformations of Eq. (2). For an appropriate choice of �=� (�=0:5),

the scaling relation (4) indicates the presence of correlations that can be positive (or

negative). In addition, the STL process exhibits scaling not only for the second moment

but also for all higher moments:

〈|z|n〉 ≡
∫

dz|z|nPHt(z)=Ht�n=�〈|z1|n〉 : (5)

Hence, the STL is a process for which the PDF PHt(z), the second moment �2, and

all higher moments 〈|z|n〉 scale with the same scaling exponent �=�.

Often with empirical data, we observe several diGerent scaling regimes. To account

for a crossover at given time scale (Ht)×, we introduce diGerent scaling transformations
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from the type of Eq. (2) for two diGerent regimes of time scales:

�Ht =

{

(Ht)−�1�=��1 16Ht6 (Ht)× ;

(Ht)−�2�=��× Ht ¿ (Ht)× ;
(6)

AHt =

{

(Ht)�1A1 16Ht6 (Ht)× ;

(Ht)�2A× Ht ¿ (Ht)× :
(7)

Here �, A1 and �1 are free parameters, chosen to 5t PHt(z) at the time scale Ht=1.

Continuity of the PDF and the moments at the crossover point is ensured by continuity

in the values of A and �: from Eqs. (6) and (7) we 5nd A× ≡ (Ht)�1−�2× A1 and

�× ≡ (Ht)
�(�1−�2)=�
× �1.

To exemplify the features of the STL process we analyze the S&P500 stock index

over the 12-year period January 1984–December 1995. The index change z is the

stochastic variable analyzed. In particular, we focus on the scaling behavior of several

statistical characteristics: (1) the second and higher moments, (2) the probability of

return to the origin PHt(0), and (3) the PDF PHt(z). For simplicity we set �=1.

We make three empirical observations: (i) Experimental results for the standard

deviation as a function of Ht show two diGerent scaling regimes with a crossover

at (Ht)× ≈ 30 min [15,16] (Fig. 1). The regime at small time scales is character-

ized by slope 0:7, indicating the presence of positive correlations in the index change

z (“superdiGusive” regime). The second regime has slope 0:5, indicating absence of

correlations (“normal diGusion” regime). Therefore, the change in the S&P500 index

cannot be described by an i.i.d. stochastic process, such as the L#evy or the TL process.

(ii) The probability of return to the origin PHt(0), however, exhibits a L#evy type of

scaling for more than three decades (Fig. 2). Such scaling for PHt(0) therefore in-

dicates L#evy scale invariance of the central part of the probability density. (iii) The

scaling exponent of PHt(0) is identical to the exponent of the standard deviation in the

5rst scaling regime. However, the crossover in the scaling of the standard deviation is

not followed by a change in the slope of PHt(0).

To account for the 5rst empirical observations, we introduce a stochastic process with

two diGerent regimes: (a) a STL regime with AHt ≡ (Ht)�A1 and �Ht ≡ (Ht)−�=��1,

to account for the superdiGusive behavior �˙ (Ht)�=� (Eq. (4)) at short time scales

Ht ¡ (Ht)× (Fig. 1); and (b) a regime with breakdown of scaling de5ned by �Ht ≡
�× = const and AHt ≡ (Ht)A× for Ht ¿ (Ht)× to account for the normal diGusive

behavior �˙ (Ht)1=2 (Eq. (4) and Fig. 1). This breakdown allows for a transition

from a non-i.i.d. STL process to an i.i.d. TL process.

The STL process in the regime Ht ¡ (Ht)× accounts for the second empirical ob-

servation, the identical scaling exponent (�=�) experimentally observed for both the

standard deviation � (Eq. (4)) and the probability of return to the origin PHt(0)

(Eq. (3) and Fig. 2). From 5tting the initial probability distribution P1(z), we obtain

�=1:43. Since empirically the standard deviation scales with exponent �=�=0:7, we

5nd that �=1 for this process.
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Fig. 2. S&P500 data for the probability of return to the origin PHt(0) mimics L#evy scaling for more than

3 decades in Ht. The slope and the intercept of the straight line which represents the scaling of the L#evy

distribution are determined from the parameters �=1:43 and A1 =0:0014 by 5tting the initial PDF P1(z)

for the S&P500 index. From the same 5t, we obtain �1 =0:7. These initial parameters are used to de5ne

the STL process. As expected, the STL process follows the L#evy scaling for PHt(0) at all time scales.

The TL process (with �1 =0:07, identical to the empirical value) exhibits a transition at short time scales

to the Gaussian process (with the same value of �1), in disagreement with the data. The STL process

with a breakdown at (Ht)×, however, is in agreement with the data and explains the delayed transition (at

(Ht)s ≈ 103) to the Gaussian observed in the data.

Third, we 5nd that the theoretical prediction for the STL process with a scaling

breakdown is in good agreement with the empirical result for PHt(0) for more than

three decades (Fig. 2). We note that the transition at (Ht)× ≈ 30 from STL (non-i.i.d.)

process to a TL (i.i.d.) process in the scaling of � (Fig. 1), does not imply a sharp

transition in the scaling of PHt(0) from a L#evy to Gaussian behavior (Fig. 2). The

reason is that for the STL scaling regime (Eq. (2)), PHt(0) exhibits L#evy scaling be-

havior (Eq. (3)) up to (Ht)× ≈ 30. In this scaling regime, � increases superdiGusively

with exponent 0.7, that is much faster than 0.5 for an i.i.d. process. At the crossover

scale (Ht)×, the standard deviation reaches the value �× =(Ht)0:7× �1. The value of

�× =(Ht)0:5× �TL can also be related to an i.i.d. TL process with initial standard devi-

ation �TL¿�1 (Fig. 1). According to the central limit theorem, an i.i.d. TL process

asymptotically converges to a Gaussian process. Thus while in the short time regime

(small Ht) the index change z over time Ht is a sum of correlated stochastic variables,

in the asymptotic regime (large Ht), z can be treated as a sum of newly-de5ned inde-

pendent stochastic variables with standard deviation �TL. Since such a Gaussian process

is de5ned with large initial standard deviation �TL, the transition from the L#evy to the

Gaussian behavior is delayed (Fig. 2). The time scale (Ht)s of this transition can be

calculated by equating the return probability PHt(0) for the L#evy and Gaussian distribu-

tions. We obtain the following analytic expression: B= [
√
2��1L1(0)]

2�=(2−�), where

L1 is the L#evy PDF at Ht=1 [17]. We 5nd that (Ht)s =B(Ht)×, where B ≈ 70
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Fig. 3. S&P500 probability distributions PHt(z) of index changes z for diGerent time scales Ht. With solid

lines, we show the PDF of the STL, with breakdown, process for the same time scales and parameters

used in Fig. 2. Good agreement between data and the theoretical PDFs is observed for the central part. We

5t only the curve for Ht=1. For any Ht ¿ 1 the theoretical PDF PHt(z) is calculated from P1(z). To

reproduce better the experimentally observed change in slope of the far tails, we use �=1:43, A1 =0:0028,

and �1 =2:6. The shape of PHt(z) changes as a function of Ht from exponential-like (for small Ht—STL

non-i.i.d. regime) to Gaussian-like pro5le of the tails (for large Ht—TL i.i.d. regime). Fitting the empirical

data with a probability distribution of the TL process at Ht=1, does not lead to a good agreement with the

data at larger time scales (including Ht ¡ (Ht)×), since the standard deviation of the TL process increases

much slower than the empirical standard deviation (see Fig. 1).

(Fig. 2). Such a relation is interesting, since it explicitly connects the crossover from

the L#evy to Gaussian with the crossover from non-i.i.d. to i.i.d. process.

Finally, we compare the empirical distributions of the change z of the S&P500 index,

for diGerent time scales Ht, with the shape of the distributions obtained analytically

(Fig. 3). Good agreement between data and the theoretical distributions is observed

both for the central part and for the tails. At small time scales, the scale-invariant

behavior of PHt(z) is maintained in the entire range (L#evy for the central pro5le, and

exponential in the tails) due to the scaling transformations of the STL process (Eq. 2).

The crossover to an i.i.d. TL process at large time scales ensures a smooth transition

to a Gaussian-like pro5le. We 5nd that the proposed mechanism of a STL process,

with breakdown, provides a reliable control of the dynamical properties of the PDF.

We have proposed a stochastic process that even in the presence of correlations

among the stochastic variables exhibits a L#evy stability for the PDF. The STL process

is characterized by identical scaling exponent for both the moments and the PDF.

The STL process provides an uni5ed dynamical picture to describe diGerent statistical

properties, and can be generalized for situations when the moments and the PDF exhibit

diGerent scaling behavior. The STL process can be utilized—as we show in the case

for 5nancial data—not only for processes with a single scaling regime but also for

physical systems with diGerent regimes of scaling behavior.
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