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Complex networks appear in almost every aspect of science and technology. Previous work
in network theory has focused primarily on analyzing single networks that do not interact
with other networks, despite the fact that many real-world networks interact with and
depend on each other. Very recently an analytical framework for studying the percolation
properties of interacting networks has been introduced. Here we review the analytical
framework and the results for percolation laws for a Network Of Networks (NONs) formed
by n interdependent random networks. The percolation properties of a network of net-
works differ greatly from those of single isolated networks. In particular, because the con-
stituent networks of a NON are connected by node dependencies, a NON is subject to
cascading failure. When there is strong interdependent coupling between networks, the
percolation transition is discontinuous (first-order) phase transition, unlike the well-
known continuous second-order transition in single isolated networks. Moreover, although
networks with broader degree distributions, e.g., scale-free networks, are more robust
when analyzed as single networks, they become more vulnerable in a NON. We also review
the effect of space embedding on network vulnerability. It is shown that for spatially
embedded networks any finite fraction of dependency nodes will lead to abrupt transition.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The interdisciplinary field of network science has
attracted great attention in recent years [1–27]. This has
taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has
become available over the past two decades as a result of
the information and communication revolution brought
about by the rapid increase in computing power. The inves-
tigation and growing understanding of this extraordinary
amount of data will enable us to make the infrastructures
we use in everyday life more efficient and more robust.
The original model of networks, random graph theory,
developed in the 1960s by Erd}os and Rényi (ER), is based
on the assumption that every pair of nodes is randomly
connected with the same probability (leading to a Poisson
degree distribution). In parallel, lattice networks in which
each node has the same number of links have been used
in physics to model physical systems. While graph theory
was a well-established tool in the mathematics and com-
puter science literature, it could not adequately describe
modern, real-world networks. Indeed, the pioneering
observation by Barabási in 1999 [2], that many real net-
works do not follow the ER model but that organizational
principles naturally arise in most systems, led to an over-
whelming accumulation of supporting data, new models,
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and novel computational and analytical results, and led to
the emergence of a new and very active multidisciplinary
field: network science.

Significant advances in understanding the structure and
function of networks, and mathematical models of net-
works have been achieved in the past few years. These
are now widely used to describe a broad range of complex
systems, from techno-social systems to interactions
amongst proteins. A large number of new measures and
methods have been developed to characterize network
properties, including measures of node clustering, node
centrality, network modularity, correlation between
degrees of neighboring nodes, measures of node impor-
tance, and methods for the identification and extraction
of community structures. These measures demonstrated
that many real networks, and in particular biological net-
works, contain network motifs—small specific subnet-
works—that occur repeatedly and provide information
about functionality [9]. Dynamical processes, such as flow
and electrical transport in heterogeneous networks, were
shown to be significantly more efficient compared to ER
networks [28,29].

Complex networks are usually non-homogeneous
structures that exhibit a power-law form in their degree
(number of links per node) distribution. These systems
are called scale-free networks [30]. Some examples of
real-world scale-free networks include the Internet [3],
the WWW [4], social networks representing the relations
between individuals, infrastructure networks such as air-
lines [31,32], networks in biology, in particular networks
of protein–protein interactions [33], gene regulation, and
biochemical pathways, and networks in physics, such as
polymer networks or the potential energy landscape net-
work. The discovery of scale-free networks has led to a
re-evaluation of the basic properties of networks, such as
their robustness, which exhibit a character that differs
drastically from that of ER networks. For example, while
homogeneous ER networks are vulnerable to random fail-
ures, heterogeneous scale-free networks are extremely
robust [4,5]. Much of our current knowledge of networks
is based on ideas borrowed from statistical physics, e.g.,
percolation theory, fractal analysis, and scaling analysis.
An important property of these infrastructures is their sta-
bility, and it is thus important that we understand and
quantify their robustness in terms of node and link func-
tionality. Percolation theory was introduced to study net-
work stability and to predict the critical percolation
threshold [5]. The robustness of a network is usually (i)
characterized by the value of the critical threshold ana-
lyzed using percolation theory [34] or (ii) defined as the
integrated size of the largest connected cluster during the
entire attack process [35]. The percolation approach was
also extremely useful in addressing other scenarios, such
as efficient attacks or immunization [6,8,15,36,37], for
obtaining optimal path [38] as well as for designing robust
networks [35]. Network concepts were also useful in the
analysis and understanding of the spread of epidemics
[39,40], and the organizational laws of social interactions,
such as friendships [41,42] or scientific collaborations
[43]. Moreira et al. investigated topologically-biased fail-
ure in scale-free networks and controlled the robustness
or fragility by fine-tuning the topological bias during the
failure process [44].

Because current methods deal almost exclusively with
individual networks treated as isolated systems, many
challenges remain [45]. In most real-world systems an
individual network is one component within a much larger
complex multi-level network (a specific type of a network
of networks). As technology has advanced, coupling
between networks has become increasingly strong. Node
failures in one network will cause the failure of dependent
nodes in other networks, and vice versa [46]. This recursive
process can lead to a cascade of failures throughout the
network of networks system. The study of individual parti-
cles has enabled physicists to understand the properties of
a gas, but in order to understand and describe a liquid or a
solid the interactions between the particles also need to be
understood. So also in network theory, the study of iso-
lated single networks brings extremely limited results—
real-world noninteracting systems are extremely rare in
both classical physics and complex systems. Most real-
world network systems continuously interact with other
networks, especially since modern technology has acceler-
ated network interdependency.

To adequately model most real-world systems, under-
standing the interdependence of networks and the effect
of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing cou-
pling between networks is analogous to the introduction of
interactions between particles in statistical physics, which
allowed physicists to understand the cooperative behavior
of such rich phenomena as phase transitions. Surprisingly,
preliminary results on mathematical models [46,47] show
that analyzing complex systems as a network of coupled
networks may alter the basic assumptions that network
theory has relied on for single networks. Here we will
review the main features of the theoretical framework of
Network of Networks, NON [48,49], and present some real
world applications.
2. Overview

In order to model interdependent networks, we con-
sider two networks, A and B, in which the functionality
of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1, and vice
versa: the functionality of a node in network B is depen-
dent upon the functionality of one or more nodes in net-
work A. The networks can be interconnected in several
ways. In the most general case we specify a number of
links that arbitrarily connect pairs of nodes across net-
works A and B. The direction of a link specifies the depen-
dency of the nodes it connects, i.e., link Ai ! Bj provides a
critical resource from node Ai to node Bj. If node Ai stops
functioning due to attack or failure, node Bj stops function-
ing as well but not vice versa. Analogously, link Bi ! Aj

provides a critical resource from node Bi to node Aj.
To study the robustness of interdependent networks

systems, we begin by removing a fraction 1� p of network
A nodes and all the A-edges connected to these nodes. As
an outcome, all the nodes in network B that are dependent



Fig. 1. Example of two interdependent networks. Nodes in network B (communications network) are dependent on nodes in network A (power grid) for
power; nodes in network A are dependent on network B for control information.
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Fig. 2. Schematic demonstration of first and second order percolation
transitions. In the second order case, the giant component is continuously
approaching zero at the percolation threshold p ¼ pc . In the first order
case the giant component approaches zero discontinuously. After Gao
et al. [49].
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on the removed A-nodes by A! B links are also removed
and their B nodes will cause the removal of additional
nodes in network A which are dependent on the removed
B-nodes by B! A links. As a result, a cascade of failures
that eliminates virtually all nodes in both networks can
occur. As nodes and edges are removed, each network
breaks up into connected components (clusters). The clus-
ters in network A (connected by A-edges) and the clusters
in network B (connected by B-edges) are different since the
networks are each connected differently. If one assumes
that small clusters not connected to the giant component
become non-functional, this may invoke a recursive pro-
cess of failures that we now formally describe.

Our insight based on percolation theory is that when
the network is fragmented the nodes belonging to the
giant component connecting a finite fraction of the net-
work are still functional, but the nodes that are part of
the remaining small clusters become non-functional. Thus
in interdependent networks only the giant mutually-
connected cluster is of interest. Unlike clusters in regular
percolation whose size distribution is a power law with a
p-dependent cutoff, at the final stage of the cascading
failure process just described only a large number of small
mutual clusters and one giant mutual cluster are evident.
This is the case because the probability that two nodes that
are connected by an A-link and their corresponding two
nodes are also connected by a B-link scales as 1=NB, where
NB is the number of nodes in network B. So the centrality of
the giant mutually-connected cluster emerges naturally
and the mutual giant component plays a prominent role
in the functioning of interdependent networks. When it
exists, the networks preserve their functionality, and when
it does not exist, the networks split into fragments so small
they cannot function on their own.

We ask three questions: What is the critical p ¼ pc

below which the size of any mutual cluster constitutes
an infinitesimal fraction of the network, i.e., no mutual
giant component can exist? What is the fraction of nodes
P1ðpÞ in the mutual giant component at a given p? How
do the cascade failures at each step damage the giant func-
tional component?

Note that the problem of interacting networks is com-
plex and may be strongly affected by variants in the model,
in particular by how networks and dependency links are
characterized. In the following section we describe several
of these model variants.

3. Theory of interdependent networks

In order to better understand how present-day cru-
cially-important infrastructures interact, Buldyrev et al.
[46] recently developed a mathematical framework to
study percolation in a system of two coupled interdepen-
dent networks subject to cascading failure. Their analytical
framework is based on iterations of the generating func-
tion widely used in studies of single-network percolation
and single-network structure [43,46,50]. Using the frame-
work to study interdependent networks, we can follow
the dynamics of the cascading failures as well as derive
analytic solutions for the final steady state. Buldyrev
et al. [46] found that interdependent networks were signif-
icantly more vulnerable than their noninteracting counter-
parts. The failure of even a small number of elements
within a an interdependent single network in a system
may trigger a catastrophic cascade of events that propa-
gates across the global system. For a fully coupled case in
which each node in one network depends on a functioning
node in other networks and vice versa, Buldyrev et al. [46]
found a first-order discontinuous phase transition, which
differs significantly from the second-order continuous
phase transition found in single isolated networks (Fig. 2.
This interesting phenomenon is caused by the presence
of two types of links: (i) connectivity links within each
network and (ii) dependency links between networks.
Parshani et al. [47] showed that, when the dependency
coupling between the networks is reduced, at a critical
coupling strength the percolation transition becomes
second-order.
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We now present the theoretical methodology used to
investigate networks of interdependent networks (see
[49]), and provide examples from different classes of
networks.

3.1. Generating functions for a single network

We begin by describing the generating function formal-
ism for a single network that is also useful when studying
interdependent networks. Here we assume that all Ni

nodes in network i are randomly assigned a degree k from
a probability distribution PiðkÞ, and are randomly con-
nected, the only constraint being that the node with degree
k has exactly k links [51]. We define the generating func-
tion of the degree distribution

GiðxÞ �
X1
k¼0

PiðkÞxk; ð1Þ

where x is an arbitrary complex variable. The average
degree of network i is

hkii ¼
X1
k¼0

kPiðkÞ ¼
@Gi

@x

����
x!1
¼ G0ið1Þ: ð2Þ

In the limit of infinitely large networks Ni !1, the ran-
dom connection process can be modeled as a branching
process in which an outgoing link of any node has a prob-
ability kPiðkÞ=hkii of being connected to a node with degree
k, which in turn has k� 1 outgoing links. The generating
function of this branching process is defined as

HiðxÞ �
P1

k¼0PiðkÞkxk�1

hkii
¼ G0iðxÞ

G0ið1Þ
: ð3Þ

The probability f i that a randomly chosen outgoing link
does not lead to an infinitely large giant component satis-
fies a recursive relation f i ¼ Hið f iÞ. Accordingly, the proba-
bility that a randomly chosen node does belong to a giant
component is given by gi ¼ Gið f iÞ. Once a fraction 1� p
of nodes is randomly removed from a network, its generat-
ing function remains the same, but must be computed
from a new argument z � pxþ 1� p [50]. Thus P1;i, the
fraction of nodes that belongs to the giant component, is
given by Shao et al. [50],

P1;i ¼ pgiðpÞ; ð4Þ

where

giðpÞ ¼ 1� Gi½pfiðpÞ þ 1� p�; ð5Þ

and f iðpÞ satisfies

f iðpÞ ¼ Hi½pfiðpÞ þ 1� p�: ð6Þ

As p decreases, the nontrivial solution f i < 1 of Eq. (6)
gradually approaches the trivial solution f i ¼ 1. Accord-
ingly, P1;i—selected as the order parameter of the transi-
tion—gradually approaches zero as in a second-order
phase transition and becomes zero when two solutions of
Eq. (6) coincide at p ¼ pc . At this point the straight line cor-
responding to the right hand side of Eq. (6) becomes tan-
gent to the curve corresponding to its left hand side,
yielding
pc ¼ 1=H0ið1Þ: ð7Þ

For example, for Erd}os–Rényi (ER) networks [52–54],
characterized by the Poisson degree distribution,

GiðxÞ ¼ HiðxÞ ¼ exp hkiiðx� 1Þ½ �; ð8Þ

giðpÞ ¼ 1� f iðpÞ; ð9Þ

f iðpÞ ¼ exp phkii½ f iðpÞ � 1�
� �

; ð10Þ

and

pc ¼
1
hkii

: ð11Þ

Finally, using Eqs. (4), (9), and (10), one obtains a direct
equation for P1;i

P1;i ¼ p 1� expð�hkiiP1;iÞ
� �

: ð12Þ
3.2. Two networks with one-to-one correspondence of
interdependent nodes

To initiate and simplify the multitude of problems asso-
ciated with interacting networks, Buldyrev et al. [46]
restricted themselves to the case of two randomly interde-
pendent networks with the same number of nodes, speci-
fied by their degree distributions PAðkÞ and PBðkÞ. They
also assumed every node in the two networks to have
one B! A link and one A! B link connecting the same
pair of nodes, i.e., the dependencies between networks A
and B establish an isomorphism between them that allows
us to assume that nodes in A and B coincide (e.g., are at the
same corresponding geographic location—if a node in net-
work A fails, the corresponding node in network B also
fails, and vice versa). We also assume, however, that the
A-edges and B-edges in the two networks are independent.

Unlike the percolation transition in a single network,
the mutual percolation transition in this model is a first-
order phase transition at which the order parameter (i.e.,
the fraction of nodes in the mutual giant component)
abruptly drops from a finite value at pc þ e to zero at
pc � e. Here e is a small number that vanishes as the size
of network increases N !1. In this range of p, a removal
of single critical node may lead to a complete collapse of
a seemingly robust network. The size of the largest compo-
nent drops from NP1 to a small value, which rarely exceeds
2. Note that Zhou et al. [55] analyzed this first order tran-
sition and found that a simultaneous second order percola-
tion occurs during this abrupt transition.

Note that the value of pc is significantly larger than in
single-network percolation. In two interdependent ER
networks, for example, pc ¼ 2:4554=hki, while in a single
network, pc ¼ 1=hki. For two interdependent scale-
free networks with a power-law degree distribution PAðkÞ
� k�k, the mutual percolation threshold is pc > 0, even
when 2 < k � 3, when the percolation threshold in a single
network is zero.

Note also that, in this new model, networks with a
broader degree distribution are less robust against random
attack than networks having a narrower degree distribu-
tion but the same average degree. This behavior also differs
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from that found in single networks. To understand this we
note that (i) in interdependent networks, nodes are ran-
domly connected—high degree nodes in one network can
connect to low degree nodes in other networks, and (ii)
at each time step, failing nodes in one network cause their
corresponding nodes (and their edges) in the other net-
work to also fail. Thus although hubs in single networks
strongly contribute to network robustness, in interdepen-
dent networks they are vulnerable to cascading failure. If
a network has a fixed average degree, a broader distribu-
tion means more nodes with low degree to balance the
high degree nodes. Since the low degree nodes are more
easily disconnected the advantage of a broad distribution
in single networks becomes a disadvantage in interdepen-
dent networks.

Buldyrev et al. [46] show that, in a system of two fully
interdependent random networks, when the fraction of
failed nodes 1� p is smaller than a critical value, p > pc ,
the cascading failures stop after some iterations and a
finite fraction of the system, P1 > 0, remains functioning
and connected to the giant component. A larger initial
damage, p < pc , invokes a cascading failure that fragments
the entire system and P1 ¼ 0. Thus, when p approaches pc

from above, the giant component, P1, discontinuously
jumps to zero in a form of a first order transition. The num-
ber of iterations in the cascade, s, diverges when p
approaches pc , a behavior that was suggested as a clear
indication for the transition point in numerical simulations
[56].

Among the main features found are the collapse of the
system with time in a plateau form (see Fig. 3), and the
increase of the plateau time with the system size. Although
this phenomena was observed in different models and in
real data, its origin remained unclear [46]. To understand
the origin of the plateau phenomena, Zhou et al. [55]
focused on fully interdependent ER networks. Surprisingly,
they find that during the abrupt collapse there appears a
hidden spontaneous second order percolation transition
that controls the cascading failures, as demonstrated in
Fig. 3. It is shown that this simultaneous second order
phase transition is the origin of the observed long plateau
regime in the cascading failures and its dependence on sys-
tem size. Moreover, the second order transition sheds light
on the critical behavior observed in the collapse of real
Fig. 3. Demonstration of the simultaneous first and second order transitions in
the mutual giant component has a sudden jump to zero, while (b) the dynamica
plateau stage, a second order percolation occurs, which is (c) characterized by a ra
After Zhou et al. [55].
world systems such as the power law distribution of black-
out sizes [57,58,55].

3.3. Framework of two partially interdependent networks

A generalization of the percolation theory for two fully
interdependent networks was developed by Parshani et al.
[47], who studied a more realistic case of a pair of partially-
interdependent networks. Here both interacting networks
have a certain fraction of completely autonomous nodes
whose function does not directly depend on nodes in the
other network. They found that when the fraction of
autonomous nodes increases above a certain threshold,
the collapse of the interdependent networks characterized
by a first-order transition observed in Buldyrev et al. [46]
changes, at a critical coupling strength, to a continuous
second-order transition as in classical percolation theory
[34].

We now describe in more detail the framework devel-
oped in Parshani et al. [47]. This framework consists of
two networks A and B with the number of nodes NA and
NB, respectively. Within network A, the nodes are ran-
domly connected by A edges with degree distribution
PAðkÞ, and the nodes in network B are randomly connected
by B edges with degree distribution PBðkÞ. In addition, a
fraction qA of network A nodes depends on the nodes in
network B and a fraction qB of network B nodes depends
on the nodes in network A. Note that the case of
qA ¼ qB ¼ 1 was studied by Buldyrev et al. [46]. We assume
that a node from one network depends on no more than
one node from the other network, and if Ai depends on
Bj, and Bj depends on Ak, then k ¼ i. The latter ‘‘no-feed-
back’’ condition (see Fig. 4 disallows configurations that
can collapse without taking into account their internal
connectivity [49]. Suppose that the initial removal of nodes
from network A is a fraction 1� p.

We next review the formalism for the cascade process,
step by step (see Fig. 5. The remaining fraction of network
A nodes after an initial removal of nodes is w01 � p. The ini-
tial removal of nodes disconnects some nodes from the
giant component. The remaining functional part of net-
work A thus contains a fraction w1 ¼ w01gAðw01Þ of the net-
work nodes, where gAðw01Þ is defined by Eqs. (5) and (6).
Since a fraction qB of nodes from network B depends on
cascading failures of interdependent networks. At the critical point pc , (a)
l process of cascading failures is governed by a long plateau stage. In this
ndom branching process at criticality, i.e., average branching factor is one.



Fig. 4. Description of differences between the (a) feedback condition and
(b) no-feedback condition. In the case (a), node A3 depends on node B2,
and node B3 – B2 depends on node A3, while in case (b) this is forbidden.
In case (a), when q ¼ 1 both networks will collapse if one node is removed
from one network, which is far from being real. So in our model, we use
the no-feedback condition (case (b)). The blue links between two
networks show the dependency links and the red links in each network
show the connectivity links which enable each network to functional.
After Gao et al. [49]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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nodes from network A, the number of nodes in network B
that become nonfunctional is ð1�w1ÞqB¼ qB½1�w01gAðw01Þ�.
Accordingly, the remaining fraction of network B nodes is
/01¼1�qB½1�w01gAðw01Þ�, and the fraction of nodes in the
giant component of network B is /1¼/01gBð/01Þ.

Following this approach we construct the sequence, w0t
and /0t , of the remaining fraction of nodes at each stage
of the cascade of failures. The general form is given by

w01 � p;

/01 ¼ 1� qB½1� pgAðw01Þ�;
w0t ¼ p 1� qAð1� gBð/0t�1ÞÞ

� �
;

/0t ¼ 1� qB½1� pgAðw0t�1Þ�:

ð13Þ

To determine the state of the system at the end of the
cascade process we look at w0s and /0s at the limit of
s!1. This limit must satisfy the equations w0s ¼ w0sþ1

and /0s ¼ /0sþ1 since eventually the clusters stop fragment-
ing and the fractions of randomly removed nodes at step s
and sþ 1 are equal. Denoting w0s ¼ x and /0s ¼ y, we arrive
at the stationary state to a system of two equations with
two unknowns [47],

x ¼ p 1� qA½1� gBðyÞ�f g;
y ¼ 1� qB½1� gAðxÞp�:

ð14Þ

The giant components of networks A and B at the end of
the cascade of failures are, respectively, P1;A ¼ w1 ¼ xgAðxÞ
and P1;B ¼ /1 ¼ ygBðyÞ. The numerical results were
obtained by iterating system (13), where gAðw0tÞ and
gBð/0tÞ are computed using Eqs. (9) and (10). Fig. 6 shows
excellent agreement between simulations of cascading
failures of two partially interdependent networks with
N ¼ 2� 105 nodes and the numerical iterations of system
(13). In the simulations, pc can be determined by the sharp
peak in the average number of cascades (iterations), hsi,
before the network either stabilizes or collapses [47].

An investigation of Eq. (14) can be illustrated graphically
by two curves crossing in the ðx; yÞ plane. For sufficiently
large qA and qB the curves intersect at two points
(0 < x0;0 < y0) and (x0 < x1 < 1; y0 < y1 < 1). Only the sec-
ond solution (x1; y1) has any physical meaning. As p
decreases, the two solutions become closer to each other,
remaining inside the unit square ð0 < x < 1; 0 < y < 1Þ,
and at a certain threshold p ¼ pc they coincide:
0 < x0 ¼ x1 ¼ xc < 1, 0 < y0 ¼ y1 ¼ yc < 1. For sufficiently
large qA and qB, P1;A and P1;B as a function of p show a first
order phase transition. As qB decreases, P1;A as a function of
p shows a second order phase transition. For the graphical
representation of Eq. (14) and all possible solutions, see
[47].

In a recent study [35,59], it was shown that a pair of
interdependent networks can be designed to be more
robust by choosing the autonomous nodes to be high
degree nodes. This choice mitigates the probability of cat-
astrophic cascading failure.

3.4. Framework for a network of interdependent networks

In many real systems there are more than two interde-
pendent networks, and diverse infrastructures—water and
food supply networks, communications networks, fuel net-
works, financial transaction networks, or power station
networks—are coupled together and depend on each other
[60]. Understanding the way system robustness is affected
by such interdependencies is one of the major challenges
when designing resilient infrastructures.

Here we review the generalization of the theory of a
pair of interdependent networks [46,61] to a system of n
interacting networks [48,62,63], which can be graphically
represented (see Fig. 7 as a network of networks (NON).
We review an exact analytical approach for percolation of
an NON system composed of n fully or partially coupled
randomly interdependent networks. The approach is based
on analyzing the dynamical process of the cascading fail-
ures. The results generalize the known results for percola-
tion of a single network (n ¼ 1) and the n ¼ 2 result found
in Buldyrev et al. and Parshani et al. [46,47], and show that
while for n ¼ 1 the percolation transition is a second-order
transition, for n > 1 cascading failures occur and the tran-
sition becomes first-order. Our results for n interdependent
networks suggest that the classical percolation theory
extensively studied in physics and mathematics is a limit-
ing case of n ¼ 1 of a general theory of percolation in NON.
As we will discuss here, this general theory has many novel
features that are not present in classical percolation
theory.

In our generalization, each node in the NON is a net-
work itself and each link represents a fully or partially
dependent pair of networks. We assume that each network
i (i ¼ 1;2; . . . ;n) of the NON consists of Ni nodes linked
together by connectivity links. Two networks i and j form
a partially dependent pair if a certain fraction qji > 0 of



Fig. 5. Description of the dynamic process of cascading failures on two partially interdependent networks, which can be generalized to n partially
interdependent networks. In this figure, the black nodes are the survival nodes, the yellow node represents the initially attacked node, the red nodes are the
nodes removed because they do not belong to the largest cluster, and the blue nodes are the nodes removed because they depend on the failed nodes in the
other network. In each stage, for one network, we first remove the nodes that depend on the failed nodes in the other network or on the initially attacked
nodes. Next we remove the nodes which do not belong to the largest cluster of the network. After Gao et al. [49]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Cascade of failures in two partially interdependent ER networks.
The giant component /t for every iteration of the cascading failures is
shown for the case of a first order phase transition with the initial
parameters p ¼ 0:8505; a ¼ b ¼ 2:5; qA ¼ 0:7 and qB ¼ 0:8. In the simu-
lations, N ¼ 2� 105 with over 20 realizations. The gray lines represent
different realizations. The squares is the average over all realizations and
the black line is the theory, Eq. (13). After Gao et al. [49].

Fig. 7. Schematic representation of a network of networks. Circles
represent interdependent networks, and the arrows connect the partially
interdependent pairs. For example, a fraction of q3i of nodes in network i
depend on the nodes in network 3. The networks which are not connected
by the dependency links do not have nodes that directly depend on one
another. After Gao et al. [49].
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nodes of network i directly depends on nodes of network j,
i.e., they cannot function if the nodes in network j on which
they depend do not function. Dependent pairs are con-
nected by unidirectional dependency links pointing from
network j to network i. This convention indicates that
nodes in network i get a crucial commodity from nodes
in network j, e.g., electric power if network j is a power
grid.

We assume that after an attack or failure only a fraction
of nodes pi in each network i will remain. We also assume
that only nodes that belong to a giant connected compo-
nent of each network i will remain functional. This
assumption helps explain the cascade of failures: nodes
in network i that do not belong to its giant component fail,
causing failures of nodes in other networks that depend on
the failing nodes of network i. The failure of these nodes
causes the direct failure of dependency nodes in other net-
works, failures of isolated nodes in them, and further fail-
ure of nodes in network i and so on. Our goal is to find
the fraction of nodes P1;i of each network that remain
functional at the end of the cascade of failures as a function
of all fractions pi and all fractions qij. All networks in the
NON are randomly connected networks characterized by
a degree distribution of links PiðkÞ, where k is a degree of
a node in network i. We further assume that each node a
in network i may depend with probability qji on only one
node b in network j with no feed-back condition.

To study different models of cascading failures, we
vary the survival time of the dependent nodes after the
failure of the nodes in other networks on which they
depend, and the survival time of the disconnected nodes.
We conclude that the final state of the networks does not
depend on these details but can be described by a system
of equations somewhat analogous to the Kirchhoff equa-
tions for a resistor network. This system of equations
has n unknowns xi. These represent the fraction of nodes
that survive in network i after the nodes that fail in the
initial attack are removed and the nodes depending on
the failed nodes in other networks at the end of cascading
failure are also removed, but without taking into account
any further node failure due to the internal connectivity
of the network. The final giant component of each net-
work is P1;i ¼ xigiðxiÞ, where giðxiÞ is the fraction of the
remaining nodes of network i that belongs to its giant
component given by Eq. (5).

The unknowns xi satisfy the system of n equations,

xi ¼ pi

YK

j¼1

½qjiyjigjðxjÞ � qji þ 1�; ð15Þ

where the product is taken over the K networks interlinked
with network i by partial dependency links (see Fig. 7) and

yij ¼
xi

pjqjiyjigjðxjÞ � qji þ 1
; ð16Þ

is the fraction of nodes in network j that survives after the
damage from all the networks connected to network j
except network i is taken into account. The damage from
network i must be excluded due to the no-feedback condi-
tion. In the absence of the no-feedback condition, Eq. (15)
becomes much simpler since yji ¼ xj. Eq. (15) is valid for
any case of interdependent NON, while Eq. (16) represents
the no-feedback condition.

A more general case of interdependency links was stud-
ied by Shao et al. [64]. They assumed that a node in net-
work i is connected by s supply links to s nodes in
network j from which it gets a crucial commodity. If
s ¼ 1, the node does not depend on nodes in network j
and can function without receiving any supply from them.

The generating function of the degree distribution PijðsÞ of

the supply links GjiðxÞ ¼
P1

i¼0PjiðsÞxs does not include the

term Pjið1Þ ¼ 1� qji, and hence Gjið1Þ ¼ qji 6 1. It is also
assumed that nodes with s <1 can function only if they
are connected to at least one functional node in network
j. In this case, Eq. (15) must be changed to

xi ¼ pi

YK

j¼1

1� Gji½1� xjgjðxjÞ
n o

: ð17Þ

When all dependent nodes have exactly one supply link,
GijðxÞ ¼ xqij and Eq. (18) becomes

xi ¼ pi

YK

j¼1

½1� qji þ qjixjgjðxjÞ�; ð18Þ

analogous to Eq. (15) without the no-feedback condition.

4. Examples of classes of network of networks

We present four examples that can be explicitly solved
analytically: (i) a tree-like ER NON fully dependent, (ii) a
tree-like random regular (RR) NON fully dependent, (iii) a
loop-like ER NON partially dependent, and (iv) an RR net-
work of partially dependent ER networks. All cases repre-
sent different generalizations of percolation theory for a
single network.

4.1. Tree-like NON of ER networks

We solve explicitly the case of a tree-like NON (see
Fig. 8) formed by n ER [52–54] networks with average
degrees k1; k2; . . . ki; . . . ; kn; p1 ¼ p; pi ¼ 1 for i – 1 and
qij ¼ 1 (fully interdependent). Using Eqs. (15) and (16) for
xi and taking into account Eqs. (8)–(10), we find that

f i ¼ exp �pki

Yn

j¼1

ð1� f jÞ
" #

; i ¼ 1;2; . . . ;n: ð19Þ

These equations have been solved analytically [48].
They have only a trivial solution (f i ¼ 1) if p < pc , where
pc is the mutual percolation threshold. When the n net-
works have the same average degree k; ki ¼ k
(i ¼ 1;2; . . . ;n), we obtain from Eq. (19) that f c � f iðpcÞ
satisfies

f c ¼ exp
f c � 1

nfc

� �
: ð20Þ

where the solution can be expressed in terms of the Lam-

bert function W�ðxÞ; f c ¼ � nW� � 1
n e�1

n

	 
h i�1
, where

W�ðxÞ is the most negative of the two real roots of the
Lambert equation WðxÞ exp½WðxÞ� ¼ x for x < 0.



Fig. 8. Three types of loopless networks of networks composed of five coupled networks. All have same percolation threshold and same giant component.
The dark node is the origin network on which failures initially occur. After Gao et al. [49].
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Once f c is known, we can obtain pc and the giant com-
ponent at pc:

pc ¼ nkfcð1� f cÞ
ðn�1Þ

h i�1
;

P1ðpcÞ ¼
1� f c

nkfc
:

ð21Þ

Eq. (21) generalizes known results for n ¼ 1;2. For
n ¼ 1, we obtain the known result pc ¼ 1=k, Eq. (11), of
an ER network [52–54] and P1ðpcÞ ¼ 0, which corresponds
to a continuous second-order phase transition. Substitut-
ing n ¼ 2 in Eqs. (20) and (21) yields the exact results of
Buldyrev et al. [46].

From Eqs. (15) and (16) we obtain an exact expression
for the order parameter P1ðpcÞ, the size of the mutual giant
component for all p; k, and n values,

P1 ¼ p½1� expð�kP1Þ�n: ð22Þ

Solutions of Eq. (22) are shown in Fig. 10(a) for several
values of n. Results are in excellent agreement with
simulations. The special case n ¼ 1 is the known ER
second-order percolation law, Eq. (12), for a single network
[52–54]. In contrast, for any n > 1 the solution of (22)
yields a first-order percolation transition, i.e., a discontinu-
ity of P1 at pc .

To analyze pc as a function of n for different k values, we
find f c from Eq. (20), substitute it into Eq. (21), and obtain
pc . Fig. 10 shows that the NON becomes more vulnerable
with increasing n or decreasing k (pc increases when n
increases or k decreases). Furthermore, when n is fixed
and k is smaller than a critical number kminðnÞ; pc P 1,
which means that when k < kminðnÞ the NON will collapse
even if a single node fails. The minimum average degree
kmin as a function of the number of networks is

kminðnÞ ¼ nfcð1� f cÞ
ðn�1Þ

h i�1
: ð23Þ

Eqs. (19)–(23) are valid for all tree-like structures such
as those shown in Fig. 7. Note that Eq. (23) together with
Eq. (20) yield the value of kminð1Þ ¼ 1, reproducing the
known ER result, that hki ¼ 1 is the minimum average
degree needed to have a giant component. For n ¼ 2, Eq.
(23) also yields results obtained in Buldyrev et al. [46],
i.e., kmin ¼ 2:4554.
4.2. Tree-like NON of RR networks

We review the case of a tree-like network of interde-
pendent RR networks [48,62] in which the degree of all
nodes within each network is assumed to be the same k

(Fig. 8). By introducing a new variable r ¼ f
1

k�1 into Eqs.
(15) and (16) and the generating function of RR network
[48], the n equations reduce to a single equation

r ¼ ðrk�1 � 1Þpð1� rkÞn�1 þ 1; ð24Þ

which can be solved graphically for any p. The critical case
corresponds to the tangential condition leading to critical
threshold pc and P1

pc ¼
r � 1

ðrk�1 � 1Þð1� rkÞn�1 ; ð25Þ

P1 ¼ p 1� p
1
nP

n�1
n
1 1� P1

p

� �1
n

 !k�1
k

� 1

2
4

3
5þ 1

8<
:

9=
;

k0
B@

1
CA

n

:

ð26Þ

Comparing this with the results of a tree-like ER NON,
we find that the robustness of n coupled RR networks of
degree k is significantly higher than the n interdependent
ER networks of average degree k. Although for an ER
NON there exists a critical minimum average degree
k ¼ kmin that increases with n below which the system col-
lapses, there is no such analogous kmin for a RR NON sys-
tem. For any k > 2, the RR NON is stable, i.e., pc < 1. In
general, this is the case for any network with any degree
distribution such that Pið0Þ ¼ Pið1Þ ¼ 0, i.e., for a network
without disconnected and singly-connected nodes [62].

4.3. Loop-like NON of ER networks

In the case of a loop-like NON (for dependencies in one
direction) of n ER networks, all the links are unidirectional
and the no-feedback condition is irrelevant (see Fig. 9). If
the initial attack on each network is the same
1� p; qi�1i ¼ qn1 ¼ q, and ki ¼ k, using Eqs. (15) and (16)
we find that P1 satisfies [49]

P1 ¼ pð1� e�kP1ÞðqP1 � qþ 1Þ: ð27Þ



(a) (b) (c)

Fig. 9. Illustration of tree-like network of networks and loop-like network of networks. (a) In this tree-like network of networks the mutually
interdependent nodes are distinguished by color (red, green and blue) and the tree-like topology guarantees that the size of a mutually interdependent set
be exactly n (assuming full interdependency, q ¼ 1, as in this example). (b) In this network of networks with loops the dependency behavior is identical to
(a) because the added dependency links do not change the partition to sets of mutually interdependent nodes. Thus, with respect to dependency and
cascading failures, (b) can be regarded as tree-like. (c) In contrast, if the loops are not closed, a situation can emerge in which all of the nodes are dependent
upon one another, i.e., the size of the set of mutually interdependent nodes can be up to N � n. After Shekhtman et al. [65]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Note that when q ¼ 1 Eq. (27) has only a trivial solution
P1 ¼ 0, but when q ¼ 0 it yields the known giant compo-
nent of a single network, Eq. (12), as expected. We present
numerical solutions of Eq. (27) for two values of q. Note
that when q ¼ 1 and the structure is tree-like, Eqs. (22)
and (26) depend on n, but for loop-like NON structures,
Eq. (27) is independent of n.

4.4. NON of ER networks

Now we review results [48,49,63] for a NON in which
each ER network is dependent on exactly m other ER net-
works. This system represents the case of RR network of
ER networks. We assume that the initial attack on each
network is 1� p, and each partially dependent pair has
the same q in both directions. The n equations of Eq. (15)
are exactly the same due to symmetries, and hence P1
can be derived analytically,

P1 ¼
p

2m 1� e�kP1

 �

1� qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ2 þ 4qP1

q� �m

: ð28Þ

Three different behaviors of RR network of ER networks
in the different regimes of q can be seen: (i) For q < qc , the
percolation is a continuous second order which is charac-
terized by a critical threshold pII

c . (ii) The range of
qc < q < qmax is characterized by an abrupt first order
phase transition with a critical threshold pI

c . (iii) For
q > qmax no transition exists due to the instant collapse of
the system. Furthermore, we obtain the critical threshold
for the second order phase transition, pII

c as

pII
c ¼

1
�kð1� qÞm

: ð29Þ
4.5. NON of RR networks

For a NON composed by n RR networks with the same
degree k, where each network depends on exactly m other
networks (RR of RR networks), the size of the giant compo-
nent [63] for all networks follows,

1� 1� P1
pð1� q� qP1Þ

� �1
k

¼ p 1� 1� P1
pð1� q� qP1Þ

� �k�1
k

( )
ð1� qþ qP1Þ

m
: ð30Þ
Here again when m ¼ 0 or q ¼ 0 Eq. (30) reduce to the
single network result.

Again, as in the case of the loop-like structure, it is sur-
prising that both the critical threshold and the giant com-
ponent do not depend on the number of networks n, in
contrast to tree-like NON, but only on the coupling q and
on both degrees k (intra-links) and m (inter-links). Numer-
ical solutions of Eq. (28) are shown in Fig. 10. In the special
case of m ¼ 0, Eq. (28) coincide with the known results for
a single ER network, Eqs. (11) and (12) separately. It can be
shown that when q < qc we have ‘‘weak coupling’’ repre-
sented by a second-order phase transition and when
qc < q < qmax we have ‘‘strong coupling’’ and a first-order
phase transition. When q > qmax the system become unsta-
ble due to the ‘‘very strong coupling’’ between the net-
works. In the last case, removal of a single node in one
network may lead to the collapse of the NON. These rich
generalizations show that the percolation on a single net-
work studied for more than 50 years is a limited case of
the more general case of network of networks.

5. Vulnerability of interdependent spatially embedded
networks

Current models focus on interdependent networks
where space restrictions are not considered. Indeed, in
some complex systems the spatial location of the nodes
and the actual length of link are not relevant or not even
defined, such as in proteins interaction networks
[9,66,67] and the World Wide Web [5,68]. However, in
many real-world systems, such as power grid networks,
ad hoc communication networks and computer networks,
nodes and links are located in Euclidian two-dimensional
space [69]. Based on universality principles, the dimension
of a network is a fundamental quantity to characterize its
structure and basic physical properties [34,22]. Indeed,
all percolation models whose links have a characteristic
length, embedded in space of same dimension belong to
the same universality class [34]. An example of a spatially
embedded network system is power grid networks where
the links have a characteristic length since their lengths
follow an exponential distribution [22]. Due to universality
considerations, any 2d network with links having a charac-
teristics length scale, belong to the same universality class
as regular lattices. Thus, to obtain the main features of an
arbitrary system of interdependent embedded networks
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Fig. 10. The fraction of nodes in the giant component P1 as a function of p for three different examples of interdependent networks of networks. (a) For a
tree-like fully (q ¼ 1) interdependent NON is shown P1 as a function of p for k ¼ 5 and several values of n. The results obtained using Eq. (22). Note that
increasing n from n ¼ 2 yields a first order transition. (b) For a loop-like NON, P1 as a function of p for k ¼ 6 and two values of q. The results obtained using
Eq. (27). Note that increasing q yields a first order transition. (c) For an RR network of ER networks, P1 as a function of p, for two different values of m when
q ¼ 0:5. The results are obtained using Eq. (28), and the number of networks, n, can be any number with the condition that any network in the NON
connects exactly to m other networks. Note that changing m from 2 to m > 2 changes the transition from second order to first order (for q ¼ 0:5). Simulation
results are in excellent agreement with theory. After Gao et al. [49].
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in two dimensional space, the system has been modeled as
two-dimensional lattices. Typically, real spatial networks
in two dimensional space are characterized by lower aver-
age degree than a square lattice [69]. Thus, the case of cou-
pled lattice is not only a representative example for all its
universality class but may serve as a lower bound case,
while real coupled spatial networks are even more
vulnerable.

Here, we review recent analytical and numerical results
recently presented by Bashan et al. on the stability of sys-
tems of two interdependent spatially embedded networks,
modeled as two interdependent lattices [70]. It is found
that in such systems qc ¼ 0, i.e., any coupling q > 0 leads
to an abrupt first-order transition. It is shown that the ori-
gin for this extreme vulnerability of spatially embedded
networks lies in the critical behavior of percolation of a
single lattice, which is characterized by order critical expo-
nent b < 1 [34,71]. This is in contrast to random networks
for which b ¼ 1, leading to qc > 0 for interdependent ran-
dom networks. Here the dependency links are between lat-
tices’ nodes located in different random spatial positions
(Fig. 11(a)) or between lattice nodes and nodes of random
networks where the space does not play a role at all
(Fig. 11(b)). In the case of dependency links between lattice
nodes with exactly the same position, the transition is
always continuous, as for percolation in a single lattice
[72]. Note that the fully interdependent limit of q ¼ 1 of
coupled lattices was studied by Li et al. [73].

The theoretical and numerical approaches predict [70]
that a real-world system of interdependent spatially
embedded networks which are characterized by b < 1 will,
for any q > 0, abruptly disintegrate. Since for percolation of
lattice networks it is known that for any dimension
d < 6; b < 1 [34], we expect that also interdependent sys-
tems embedded in d ¼ 3 (or any d < 6) will collapse
abruptly for any finite fraction of dependency q. Indeed,
Dobson et al. [74] analyze the statistics of many real world
outages events and show that they are commonly resulted
by cascading failure. Our results show that an important
possible mechanism in these events is the interdependen-
cies between nodes in spatial networks.

Consider a system of two interdependent networks,
i ¼ 1 and i ¼ 2, where a fraction 1� pi of nodes of each
network is initially randomly removed. We assume that
only the nodes which belong to the giant component of
the remaining networks which constitute a fraction
P1;iðpiÞ of the original network remain functional. Each
node that has been removed or disconnected from the



(c) (d)

(a) (b)

Fig. 11. A system of interdependent networks is characterized by the structure (dimension) of the single networks as well as by the coupling between the
networks. In random networks with no space restrictions, such as ER and RR, the connectivity links (blue lines) do not have a defined length. In contrast, in
spatially embedded networks nodes are connected only to nodes in their geometrical neighborhood creating a two-dimensional network, modeled here as a
square lattice. The (red) arrows represent directed dependency relations between nodes in different networks, which can be of different types: (a) coupled
lattices (b) coupled lattice-random network (c) coupled random networks (d) real-world spatial network (European power grid) coupled with random
network. Models (b) and (d) belong to the same universality class. After Bashan et al. [70]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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giant component causes its dependent node in the other
network to also fail. This leads to further disconnections
in the other network and to cascading failures. The size
of the networks’ giant components at the end of the cas-
cade is given by P1;iðxiÞ, where xi are the solutions of the
self consistent equations [48]

x1 ¼ p1q1P1;2ðx2Þ þ p1ð1� q1Þ; ð31Þ
x2 ¼ p2q2P1;1ðx1Þ þ p2ð1� q2Þ; ð32Þ

where qi is the fraction of nodes in network i which
depends on nodes in the other network. Here we assume
no restrictions on the selection of the directed dependency
links. The results for the case of ‘‘no-feedback-condition’’,
where the dependency links are bidirectional [48], are
qualitatively the same. The function P1;iðxÞ can be obtained
either analytically or numerically from the percolation
behavior of a single network.

For simplicity, we focus on a symmetric case, where both
networks have the same degree distribution PðkÞ and same
topology, and where p1 ¼ p2 � p and q1 ¼ q2 � q. Still, the
results are valid for any system of interdependent spatially
embedded networks (like planar graph) which belong to the
same universality class. In particular, in order to study the
role of spatial embedding, the percolation transition in
the case of a pair of interdependent lattices is compared
(Fig. 11(a)) to the case of a pair of interdependent
random-regular (RR) networks (Fig. 11(c)). The RR
networks have the same degree distribution, PðkÞ ¼ dk;4, as
for the lattices with the only difference that the lattice-net-
works are embedded in space, in contrast to RR networks.

In the symmetric case, Eqs. (31) and (32) can be reduced
to a single equation

x ¼ pqP1ðxÞ þ pð1� qÞ; ð33Þ

where the size of the giant component at steady state is
P1ðxÞ. For any values of p and q, the solution of Eq. (33)
can be graphically presented as the intersection between
the curve y ¼ pqP1ðxÞ þ pð1� qÞ and the straight line
y ¼ x representing the right-hand-side and the left-hand-
side of Eq. (33) respectively. The form of P1ðxÞ for conven-
tional percolation is obtained from numerical simulations
of a single lattice and analytically for a single RR network
[75,76]. From the solution of Eq. (33) we obtain P1ðpÞ as
a function of p for several values of q. This P1ðpÞ is the
new percolation behavior for a system of interdependent
networks, shown in Fig. 13(a), for the case of coupled lat-
tices and in Fig. 13(b) for the case of coupled RR networks.
In the case of interdependent lattices, only for q ¼ 0, no
coupling between the networks (the single network limit),
the transition is the conventional second-order percolation
transition, while for any q > 0 the collapse is abrupt in the
form of first-order transition. In marked contrast, in the
case of interdependent RR networks, for q > qc ffi 0:43 the
transition is abrupt, while for q < qc the transition is
continuous.



Fig. 12. Schematic solution of the critical point of (a) coupled lattices and (b) coupled random-regular (RR) networks. The left-hand-side and right-hand-
side of Eq. (33) are plotted as a straight (red) line and a (blue) curve respectively. The tangential touching point, x	 , marked with a (black) circle, represents
the new percolation threshold in the system of interdependent networks. In the case of coupled lattices (panel a), due to the infinite slope of the curve at
pc ; x	 is always larger than pc and, thus, there is always (for any q > 0) a discontinuous jump in the size of the giant component as p decreases. In contrast,
in coupled random networks (panel b) the slope of the curves is finite for any value of x. Therefore, there exist q < qc for which x	 is equal to pc , leading to a
continuous behavior in the network’s size. After Bashan et al. [70]. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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A discontinuity of P1ðpÞ is a result of a discontinuity of
xðpÞ, represented graphically as the tangential touching
point of the curve and the straight line (see schematic rep-
resentation in Fig. 12). At this point, p � pH is the new per-
colation threshold in the case of interdependent networks,
and x ¼ xH yields the size of the giant component at the
transition, PH

1 � P1ðxHÞ, which abruptly jumps to zero as
p slightly decreases. The condition for a first-order transi-
tion at p ¼ pH, for a given q, is thus given by solving Eq.
(33) together with its tangential condition,
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Fig. 13. Percolation transition of interdependent lattices compared to interdepen
after random failure of a fraction 1� p of the nodes of (a) two interdependen
random-regular (RR) networks. All networks are of size 16� 106 nodes and the s
between the RR networks changes from q ¼ 0 to q ¼ 0:8 with step 0.1 (from le
represent simulation results. In the case of interdependent lattices, only for q
second-order percolation, while for any q > 0 the collapse is abrupt in the f
interdependent RR networks, where only for q > qc ffi 0:43 the transition is abrup
a first-order percolation transition in coupled networks is the sharp divergence o
coupled lattices for any q > 0 and for (d) coupled RR networks for q > qc . Model
After Bashan et al. [70].
1 ¼ pHqP01ðxHÞ: ð34Þ

The size of the giant component at the transition PH

1
depends on the coupling strength q such that reducing q
leads to smaller value of xH and thus smaller discontinuity
in the size of the giant component. In general, P1ðxÞ of a
single network has a critical threshold at x ¼ pc such that
P1ðx 6 pcÞ ¼ 0 while P1ðx > pcÞ > 0 and monotonically
increases with x [34]. As long as xH > pc , the size of the
discontinuity is larger then zero. However, for a certain
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ame degree distribution PðkÞ ¼ dk;4. The coupling between the lattices and
ft to right). The solid lines are the solutions of Eq. (33) and the symbols
¼ 0 (no coupling, i.e., a single lattice) the transition is the conventional
orm of first-order transition. This is in marked contrast to the case of
t, while for q < qc the transition is continuous. A characteristic behavior in
f the number of iterations (NOI) when p approaches pH

c [56] as seen for (c)
s of coupled lattices with PBC have the same behavior as models without.
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critical coupling q � qc; xH ! pc and the size of the jump
becomes zero. In this case the percolation transition
becomes continuous.

Therefore, the critical dependency qc below which the
discontinuous transition becomes continuous, must satisfy
Eqs. (33) and (34) for x! pc given by

pc ¼ pH

c ð1� qcÞ; ð35Þ

1 ¼ pH

c qcP01ðpcÞ: ð36Þ

A dramatic different behavior between random and
spatial coupled networks is derived from Eq. (36). This dif-
ference is a consequence of the critical behavior of percola-
tion in a single network. In the case of a single random
network P01ðxÞ is finite for any value of x. This allows an
exact solution of Eq. (36), yielding a finite non-zero value
for qc. However, for the case of a single lattice network
the derivative of P1ðxÞ diverges at the critical point,
P01ðpcÞ ¼ 1, yielding qc ¼ 0. Therefore, from Eq. (36) fol-
lows that any coupling q > 0 between lattices leads to an
abrupt first order transition, as indeed suggested by simu-
lations reported in Fig. 13.

The behavior of the percolation order parameter of a
single network near the critical point is defined by the crit-
ical exponent b, where P1ðx! pcÞ ¼ Aðx� pcÞ

b. Since for
single 2d lattice b ¼ 5=36 < 1, it follows that P01ðxÞ
diverges for x! pc for all networks embedded in two
dimensional space [34,71]. In contrast, for random net-
works, such as Erdös–Rényi (ER) and Random-Regular
(RR), b ¼ 1 which yields a finite value of P01ðpcÞ [34,71]
and therefore a finite value for qc . The coupled embedded
networks case has been studied by Bashan et al. [70], and
was generalized by Shekhtman et al. [65] to percolation
of network of networks.
6. Summary

In summary, this paper presents a review of the
recently-introduced mathematical framework of for per-
colation of a Network of Networks (NON). In interacting
networks, when a node in one network fails it usually
causes dependent nodes in other networks to fail which,
in turn, may cause further damage in the first network
and result in a cascade of failures with catastrophic con-
sequences. Our analytical framework enables us to follow
the dynamic process of the cascading failures step-by-
step and to derive steady state solutions. Interdependent
networks appear in all aspects of life, nature, and tech-
nology. Examples include (i) transportation systems such
as railway networks, airline networks, and other trans-
portation systems [61,77]; (ii) the human body as stud-
ied by physiology, including such examples of
interdependent NON systems as the cardiovascular sys-
tem, the respiratory system, the brain neuron system,
and the nervous system [78]; (iii) protein function as
studied in biology, treating protein interaction—the many
proteins involved in numerous functions—as a system of
interacting networks; (iv) the interdependent networks
of banks, insurance companies, and business firms as
studied by economics; (v) species interactions and the
robustness of interaction networks to species loss as
studied in ecology, in which is essential to understand
the effects of species decline and extinction [79]; and
(vi) the topology of statistical relationships between dis-
tinct climatologically variables across the world as stud-
ied by climatology [80].

Thus far only a few real-world interdependent sys-
tems have been thoroughly analyzed [61,77]. We expect
our work to provide insights leading further analysis of
real data on interdependent networks. The benchmark
models presented here can be used to study the struc-
tural, functional, and robustness properties of interde-
pendent networks. Because in real-world NONs
individual networks are not randomly connected and
their interdependent nodes are not selected at random,
it is crucial that we understand the many types of cor-
relation that exist in real-world systems and that we
further develop the theoretical tools to take them into
account. Further studies of interdependent networks
should focus on (i) an analysis of real data from many
different interdependent systems and (ii) the develop-
ment of mathematical tools for studying real-world
interdependent systems. Many real networks are
embedded in space, and the spatial constraints strongly
affect their properties [22,69,73]. There is a need to
understand how these spatial constraints influence the
robustness properties of interdependent networks [77].
Other properties that influence the robustness of single
networks, such as the dynamic nature of the configura-
tion in which links or nodes appear and disappear and
the directed nature of some links, as well as problems
associated with degree–degree correlations and cluster-
ing, should be also addressed in future studies of cou-
pled network systems. Additional critical issues are the
improvement of the robustness of interdependent infra-
structures, self healing approaches and efficient mitiga-
tion of cascading failures. The reviewed studies thus
far have shown that there are three methods of achiev-
ing the goal of improving robustness (i) by increasing
the fraction of autonomous nodes [47], (ii) by designing
dependency links such that they connect the nodes with
similar degrees [81,61], and (iii) by protecting the high-
degree nodes against attack [35]. Achieving the above
mentioned goals will provide greater safety and stability
in today’s socio-techno world.

Networks dominate every aspect of present-day living.
The world has become a global village that is steadily
shrinking as the ways that human beings interact and con-
nect multiply. Understanding these connections in terms
of interdependent networks of networks will enable us to
better design, organize, and maintain the future of our
socio-techno-economic world.
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