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Absence of a diffusion anomaly of water in the direction perpendicular
to hydrophobic nanoconfining walls
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We perform molecular dynamics simulations to investigate the diffusive motion of TIP5P (the transferable
intermolecular potential with five points) water in the direction perpendicular to the two hydrophobic confining
walls. To calculate the diffusion constant, we use the concept of the characteristic residence time which is
calculated from the exponential decay of the residence time probability density function. We find that a
diffusion anomaly, increase of diffusion upon compression, is absent in the direction perpendicular to the
confining walls down to the lowest temperature we simulate, 220 K, whereas there is a diffusion anomaly,
similar to that in bulk water, in the direction parallel to the walls. The absence of a diffusion anomaly in the
direction perpendicular to the walls may arise mainly due to nanoconfinement, rather than due to the hydro-
phobic property of the confining walls. In addition, we find that the temperature dependence of the diffusion
constant along the constant density path in the perpendicular direction shows a Vogel-Fulcher-Tammann form.
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In addition to the thermodynamic anomalies of water
[1,2], there are the salient dynamic anomalies. For example,
in contrast to simple liquids, where the diffusion constant D
decreases upon compression, for water at low temperature D
first increases upon compression until reaching a maximum
and then decreases upon further increase of pressure [3-5].

Confined water shows many structural and dynamic prop-
erties different from bulk water due to the geometry of con-
finement and the interaction with the confining walls [6—19].
Studies of water confined between two hydrophobic plates
suggest that the diffusion constant D, along the direction
parallel to the plates displays a diffusion anomaly, which is
the existence of a maximum of Dy as a function of a density
at constant temperature, similar to bulk water [16]. More-
over, the temperature below which the anomalous diffusive
behavior occurs is shifted to lower temperature by about
40 K compared to bulk water [16].

Dynamics in the direction perpendicular to the confining
plates is modified by the small distance between plates (L,
~ 1 nm). Studies have been carried out to investigate the
diffusive motion in the confining direction for many confined
systems [20-23]. Liu et al. showed that a different treatment
for the diffusion constant is needed in the confining direction
and used a “dual simulation method” to calculate the more
precise diffusion constant at a liquid-vapor interface [20].
Previous studies pointed out two different time regimes
(100 ps and 1 ns) of the mean square displacements (MSD)
for the complete description of diffusion in confined water
and showed a nonlinear MSD due to both spatial inhomoge-
neity and confinement [21]. The diffusion constant D | in the
direction perpendicular to the walls is difficult to calculate
precisely in nanoconfined water due to the finite and very
small space available for water molecules. Before reaching
the diffusive regime at which MSD is linearly proportional to
time, MSD already enters the plateau regime due to displace-
ment bounded by a finite nanosize space. Hence D, cannot
be extracted from the MSD. The Green-Kubo relation for D |
is also not valid for the confined system, as mentioned in
Ref. [20].
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Here we propose an alternative approach to calculate D |
and ask whether the diffusion anomaly of water, which has
been shown to exist in the parallel direction [16] and in bulk
dynamics [1], also exists in the direction perpendicular to the
hydrophobic confining plates.

We perform molecular dynamics (MD) simulations of
Ny=512 TIP5P (the transferable intermolecular potential
with five points) [24] water molecules confined between two
infinite parallel smooth plates, separated by L,=1.1 nm,
which are able to contain 2-3 layers of water molecules. The
plates are located at the positions z= *=0.55 nm. We model
the water-wall interaction by a 9-3 Lennard-Jones (LJ) po-
tential which is commonly used to represent the effective
interaction of water molecules with the confining plates
[25,26]. We choose the parameters for the confining potential
to have the hydrophobic property, as in Ref. [16]. We per-
form MD simulations (see Ref. [16] for details) for seven
temperatures, 7=220, 230, 240, 250, 260, 280, and 300 K,
and for eight densities, p=0.80, 0.88, 0.95, 1.02, 1.10, 1.17,
1.25, and 1.32 g/cm?. These densities are calculated by con-
sidering the accessible space between the walls, as explained
in Ref. [16]. Periodic boundary conditions are used in the x
and y directions.

To calculate D, we first divide the system into three
residence regions along z direction such that there are two
symmetric adjacent regions to the surface and one middle
region (see Fig. 1). The width of each region is 0.14 nm, and
the separation between two adjacent regions is R,=0.28 nm,
which is the same as the average distance between two water
molecules. Then, we calculate the residence time PDF P(7y)
of water molecules in the given residence region. The resi-
dence time 73 is defined as the time over which water mol-
ecules stay in one region before leaving it.

In Fig. 2, we show that P(7g) of the hydrophobic confined
water decays exponentially for all temperatures investigated
[27]. We calculate the characteristic residence time T;h by
finding the inverse slope of a straight line fit to P(7g) on the
semilog plot
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FIG. 1. (Color online) Schematic description of the motion of
water molecules in confined space with three defined residence re-
gions. Two confining walls are located at z= *=0.55 nm. The red
circle represents a water molecule. We define the size of one resi-
dence region as 0.14 nm and the separation between two regions as
0.28 nm. T;h denotes the characteristic residence time calculated
from the residence time distribution. On average, water molecules
diffuse the distance of the separation between regions, R,
=0.28 nm, in the z direction perpendicular to the confining walls
during a time 7.

P(rg) ~ exp<— %) (1)

R

On average, during the time T;h water molecules diffuse the
same distance as the separation of two of the defined regions
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FIG. 2. (Color online) Test of exponential decay of residence
time PDF P(1g) ~exp(—7g/ T;h) for all temperatures and densities
investigated. (a) A semilog plot of P(7) of TIP5P water molecules
at different temperatures and fixed density p=0.80 g/cm?. (b) P(7g)
for different residence regions (see Fig. 1) at p=0.80 g/cm® and
T=250 and 300 K.
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shown in Fig. 1. Using the continuous time random walk
formalism and assuming the exponential distribution of wait-
ing times in the long time limit and a Gaussian distribution
of step sizes, one recovers the normal Fickian diffusion and
the space-time distribution of the diffusive particle is Gauss-
ian. In other words, we can use the first-passage time method
to obtain the exponential residence time distribution [28].
When we consider one outer residence region (I or IIT), the
motion of water molecules in the region can be described as
a random walk of N+1 sites with one absorbing boundary at
site 0 and one reflecting boundary at site N. The coupled rate
equations with rates toward site 0, 7;, and rates toward site
N, R;, are po(1)=T,p,(t) (at absorbing boundary), p,(z)
=Top, ()= (T1+R)pi(t),  plO)=Ti1pisi )+ Ri1piy () —(T;
+R)p(1) (for 1 <i<N), py(t)=Ry_1pn-1(t)=Typy(t) (at re-
flecting boundary). In a matrix representation, the above set
can be described as M(1)=BM(r). Here M is a survival prob-
ability vector and B is a matrix whose elements are 7; and R;.
7P is related to matrix B, 75(n)=—=N_ B~'(m,n), where
B Y(m,n) is (m,n) element of B~! and n,m are the initial and
final sites, respectively (see Ref. [28] for the detailed
description).  Therefore,  assuming  continuous-time
Markov process, P(7gz) shows an exponential behavior
[~exp(—re/ )]

Since water molecules, on average, diffuse the distance
equal to the separation between two regions in the time in-
terval 7', we can write down the diffusion constant D, in
the direction perpendicular to the walls

_(RY
A7)

D, (2)

where (R.) denotes the separation between two residence re-
gions, and <T;h> is the characteristic residence time averaged
over an ensemble. To obtain the average value of D |, we use
the characteristic residence times averaged over three differ-
ent residence regions. As shown in Fig. 2(b), P(7z) has the
same exponentially decaying behavior in different residence
regions for all temperatures and densities investigated.

Since the calculation of D is possible from the Einstein
relation [29], we investigate the validity of Eq. (2) by calcu-
lating Dy using both the Einstein relation and the character-
istic residence time. In Fig. 3, we show D, as a function of
density for 7=240 K calculated from both methods for a
comparison. We find that the method using the characteristic
residence time gives slightly larger value of D) than using
MSD, as shown in Fig. 3. Both methods for D in our simu-
lations exhibit a diffusion anomaly with a maximum at p
=1.02 g/cm? as a function of density, the same as in Ref.
[16]. Therefore, we can say that Eq. (2) gives the correct
value of D and can be used for the calculation of D, to
investigate the existence of a diffusion anomaly in the per-
pendicular direction.

In Fig. 4, we show D, as a function of density for all
temperatures studied. D | decreases as the density increases.
Contrary to the diffusion anomaly found in the parallel di-
rection (similar to bulk water), as shown in Fig. 3, our results
show a diffusion anomaly in the perpendicular direction does
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FIG. 3. (Color online) Diffusion anomaly as a function of den-
sity for the diffusion constant D) in the direction parallel to the
confining walls. Dy is calculated by using both the mean square
displacement (MSD) predicted by the Einstein relation and the
charateristic residence time (RT) at T=240 K. Both calculations
exhibit a diffusion anomaly in D as a function of density with a
maximum at p=1.02 g/cm?.

not exist down to the lowest temperature we simulated. As a
result, we conclude that a diffusion anomaly of water is ab-
sent in the confining direction down to very low tempera-
tures in nanoconfinement. From the fact that a diffusion
anomaly exists in the parallel direction but not in the perpen-
dicular direction, the main contribution to the absence of a
diffusion anomaly in the perpendicular direction might be the
nanoconfinement rather than the hydrophobic property of the
confining walls.

Next we study D, as a function of temperature along a
constant density path. In Fig. 5, we find the temperature de-
pendence of D, can be fit with a Vogel-Fulcher-Tammann
(VFT) form for all the densities studied,
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FIG. 4. (Color online) Diffusion constant in the perpendicular
direction D, as a function of density along constant temperature
paths. We find D, decreases as density increases over the entire
temperature range investigated, suggesting that there is no diffusion
anomaly along the perpendicular direction, even at the lowest tem-
perature 7=220 K simulated. By contrast, for D, there is a diffu-
sion anomaly for 7<<250 K (see Fig. 3 for T=240 K).
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FIG. 5. (Color online) Test of the Vogel-Fulcher-Tammann
(VFT) form for D | . Shown is a semilog plot of D, as a function of
1/(T-T,) along seven constant density paths, using the same pa-
rameter value 7=160 K.

4 ) (3)

D, =D" ex (—
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Here D(i, A, and T, are fitting parameters, and we use 160 K
as the value of the parameter 7. It has been experimentally
observed that there is a fragile-to-strong transition near 7'
=220 K in both supercooled water confined in micellar tem-
plated mesoporous silica matrices MCM-41 [30] and DNA
and protein hydration water [31], which is shown to be con-
nected to a liquid-liquid phase transition scenario [32-37]. In
computer simulations of TIPSP hydration water at atmo-
spheric presseure, this non-Arrhenius to Arrhenius crossover
occurs at T=250 K, the temperature at which the isobaric
specific heat has a maximum [35,36]. In contrast to simula-
tion results of TIPSP bulk water, we find that in the confining
direction the TIP5P water confined between two hydrophobic
plates does not show a non-Arrhenius to Arrhenius dynamic
crossover down to the lowest temperature we simulated, 7'
=220 K, suggesting that if there is a crossover in the dynam-
ics it would occur at much lower temperature compared to
bulk water. This finding is consistent with the temperature
shift found for thermodynamic and dynamic properties of
water confined between hydrophobic surfaces [16,38].

In summary, we have performed MD simulations of
TIP5P water to calculate and investigate the self-diffusion
constant in the direction perpendicular to the hydrophobic
confining walls. We calculated the diffusion constant using a
form similar to the Einstein relation of self-diffusion, de-
scribed with the separation between two residence regions
and the characteristic residence time found from the expo-
nentially decaying residence time distribution. Our simula-
tion results show that a diffusion anomaly does not exist in
the direction perpendicular to the confining walls, contrary to
the diffusive dynamics of bulk water and the dynamics of
confined water in the parallel direction. As the density in-
creases at constant temperature, the diffusion constant con-
tinues to decrease without reaching a maximum over the
whole temperature range investigated. By comparing the
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perpendicular direction to the parallel direction, it is reason-
able to conclude that this absence of a diffusion anomaly
may arise due to nanoconfinement rather than the hydropho-
bic property of the confining walls. Since bulk water displays
a diffusion anomaly, one expects that if L,>1 nm, the diffu-
sion anomaly in the perpendicular direction will be restored.
We are planning to carry out in the future an investigation of
an approach to the bulk limit. In addition, we find that the
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temperature dependence of the diffusion constant along the
constant density path in the perpendicular direction shows a
VFT form.
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