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Abstract

We investigate if known extrinsic and intrinsic factors fully account for the complex fea-

tures observed in recordings of human activity as measured from forearm motion in subjects

undergoing their regular daily routine. We demonstrate that the apparently random forearm

motion possesses dynamic patterns characterized by robust scale-invariant and nonlinear features.

These patterns remain stable from one subject to another and are una9ected by changes in the

average activity level that occur within individual subjects throughout the day and on di9erent

days of the week, since they persist during daily routine and when the same subjects undergo

time-isolation laboratory experiments designed to account for the circadian phase and to control

the known extrinsic factors. Further, by modeling the scheduled events imposed throughout the

laboratory protocols, we demonstrate that they cannot account for the observed scaling patterns in

activity "uctuations. We attribute these patterns to a previously unrecognized intrinsic nonlinear

multi-scale control mechanism of human activity that is independent of known extrinsic factors

such as random and scheduled events, as well as the known intrinsic factors which possess a

single characteristic time scale such as circadian and ultradian rhythms.
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1. Introduction

Control of human activity is complex, being in"uenced by many factors both

extrinsic (work, recreation, reactions to unforeseen random events) and intrinsic (the

circadian pacemaker that in"uences our sleep/wake cycle [1,2] and ultradian oscillators

with shorter time scales [3,4]). The extrinsic factors may account for the apparently

random "uctuations in human motion observed over short-time scales while the intrinsic

rhythms may account for the underlying regularity in average activity level over longer

periods of up to 24 h. Further, human activity correlates with important physiological

functions including whole body oxygen consumption and heart rate [5–8].

2. Methods

Actiwatch devices are traditionally used to demarcate sleep versus wakefulness based

on average activity levels, or to observe the mean pattern of activity as it changes

across the day and night according to disease state (Fig. 1) [9–12]. The subject wears

a wristwatch-sized Actiwatch recorder (Mini-Mitter Co., OR, USA) that unobtrusively

measures changes in forearm acceleration in any plane (sensitive to 0:01g, where g

is the acceleration due to gravity) [12]. Each data point recorded in the device’s

internal memory represents the value of changes in acceleration sampled at 32 Hz

and integrated over a 15-s epoch length. Recordings are made continuously for di9er-

ent experimental protocols over several weeks, yielding approximately 105 data points

for each subject. Inhomogeneity of recording sensitivity across the range of activities

is accounted for in the analyses.

Traditionally activity "uctuations are considered as random noise and have been

ignored. We hypothesize that there are systematic patterns in the activity "uctua-

tions that may be independent of known extrinsic and intrinsic factors. To test our

hypotheses, we evaluate the structure of human activity during wakefulness, using: (i)

probability distribution analysis; (ii) power spectrum analysis, and (iii) fractal scaling

and nonlinear analysis. To elucidate the presence of an intrinsic activity control center

independent of known circadian, ultradian, scheduled and random factors, we apply 3

complementary protocols.

• Daily routine protocol: We record activity data throughout two consecutive weeks in

16 healthy ambulatory domiciliary subjects (8 males, 8 females, 19–44 years, mean

27 years) performing their routine daily activities. The only imposed constraints are

that subjects go to bed and arise at the same time each day (8 h sleep opportunity)

and that they are not permitted to have daytime naps (Fig. 1).

• Constant routine protocol: To assess intrinsic activity controllers (i.e., circadian

or other neural centers) independent of scheduled and random external in"uences,

activity recordings are made in the laboratory throughout 38 h of constant posture

(semi-recumbent), wakefulness, environment (21◦C, dim light [¡ 8 lux]), dietary in-

take and scheduled events [13,14]. This protocol is performed in a subset of subjects

(7 males, 4 females) that participated in the daily routine protocol. These highly con-

trolled and constant experimental conditions result in reduced average and variance

of activity levels.
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Fig. 1. Independent contributors to the complex dynamics of human activity, depicted at the top of the

Jgure, include: reaction to extrinsic random events, scheduled activities and, intrinsic factors, notably

the endogenous circadian pacemaker which in"uences the sleep/wake cycle. Our Jndings of scale-invariant

activity patterns (Figs. 2–7) indicate a heretofore-unidentiJed intrinsic multi-scale control of human activity

, which is independent of other extrinsic and intrinsic factors such as , [ , and . The second panel

illustrates an actual one-week recording of human activity [12] during the daily routine protocol. Data

structure highlights a 24-h sleep/wake periodic change in the mean activity—lowest during sleep (Jlled

bars). The third panel, expanding a 16-h section of wakefulness, also shows patches of high and low

average activity levels with apparent erratic "uctuations at various time scales. The bottom left panel is

an activity recording from the same subject during the constant routine protocol with much lower average

activity values compared to daily routine. The clear 2-h cycle is a result of scheduled laboratory events.

The bottom right panel shows activity levels in the same subject during the forced desynchrony protocol,

characterized by a 28-h sleep/wake cycle (as opposed to the 24-h rhythm in activity data during the daily

routine).

• Forced desynchrony protocol: To test for the presence of heretofore unidentiJed

intrinsic activity control centers, independent of known activity regulators (circa-

dian pacemaker), while accounting for scheduled and random external in"uences, we

employ the validated Forced desynchrony (FD) protocol [2]. Six (4 male, 2 female)

of the 16 subjects that participated in the daily routine protocol completed the FD

limb of the study. For 8 days subjects remain in constant dim light (to avoid “reset-

ting” the body clock). Sleep periods are delayed by 4 h every day, such that subjects

live on recurring 28 h “days”, while all scheduled activities become desynchronized

from the endogenous circadian pacemaker. Thus, as measurements occur across all

phases of the circadian clock, the e9ect of intrinsic circadian in"uences can be re-

moved [2]. Average activity level and activity variance are also signiJcantly reduced

due to laboratory-imposed restrictions on the subjects activity (Fig. 1).
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3. Results and discussion

When the same subject is studied in di9erent protocols, we Jnd large di9erences in

the probability distributions (Fig. 2). For example, during wakefulness greater values

of activity occur most frequently during the daily routine, intermediate activity values

occur during the forced desynchrony, and the highest frequency of low activity values

is seen during the constant routine (Fig. 2a). Indeed, the largest activity values encoun-

tered during the constant routine protocol are approximately two orders of magnitude

less frequent than similar activity values encountered in the daily routine protocol. We

Jnd major di9erences between individuals in the distribution of activity values during

the daily routine protocol (Fig. 2b). Such di9erences are expected given the di9erent

daily schedules, environments, and reactions to random events.

To test if the individual probability density curves follow a common functional form,

we appropriately rescale the distributions of activity values on both axes to account for

di9erences in average activity level and standard deviation while preserving the nor-

malization to unit area. We divide the activity values by a constant, A0, and multiply

the probability density function by the same constant, where A0 is the activity value

before rescaling of each individual curve for which the cumulative probability (i.e.,

the area under the density function curve) is 60%. We Jnd a remarkable similarity

in the shapes of the probability distributions for each subject in all three protocols

(Fig. 2e), and for all individuals when in the same protocol (Fig. 2f–h). The existence

of a universal form of the probability distribution, independent of activity level in

all individuals and in all protocols (Fig. 3a), suggests that a common underlying mech-

anism may account for the overall distribution of activity.

This probability distribution when plotted on a log–log scale reveals di9erent char-

acteristics above and below a distinct crossover point (Fig. 3a). At scales above the

crossover activity level there is pronounced non-Gaussian tail (Fig. 3a). This tail on the

log–log plot represents a power-law form, indicating an intrinsic self-similar structure

for a range of activity values. Moreover, we Jnd that the observed shape of the rescaled

probability distribution remains unchanged when the data series are reanalyzed using

a variety of observation windows ranging from 15 s to 6 min (Fig. 3b). This stability

of the probability distribution over a range of time scales indicates that the underlying

dynamic mechanisms controlling the activity have similar statistical properties on dif-

ferent time scales. Statistical self-similarity is a deJning characteristic of fractal objects

[15–17] and is reminiscent of a wide class of physical systems with universal scaling

properties [15,18]. Our Jnding of a universal form of the probability distribution raises

the possibility of an intrinsic mechanism that in"uences activity values in a self-similar

“fractal” manner, that is unrelated to the individual’s daily and weekly schedules, re-

actions to the environment, the average level of activity, the phase of the circadian

pacemaker, and the time scale of observation.

We next perform power spectral analyses for all three protocols to determine whether

there exist any systematic intrinsic ultradian rhythms of activity with periods of less

than 24 h duration [3,19]. The data for each individual exhibit occasional peaks in the

daily routine protocol for periods ranging from 30 min to 4 h. However, we Jnd no

systematic ultradian rhythms within individuals from week to week, and no systematic
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Fig. 2. Common functional form for the probability distributions of activity values. (a) Probability distri-

butions of activity values during wakefulness for an individual subject during 14 consecutive days of daily

routine, 38 h of constant routine and 8 days of the forced desynchrony protocol. Probability distributions for

all subjects during (b) the daily routine protocol, (c) the constant routine, and (d) the forced desynchrony

protocol, indicate large di9erence between individuals. (e)–(h) Same probability distributions as in (a)–(d),

after appropriately rescaling both axes. Data points for all subjects and for all three protocols collapse onto

a single curve.
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Fig. 4. Group average power spectral densities for all three protocols. Curves are vertically o9set. Power

spectra are shown with decreasing frequency from left to right. Smooth behavior of the daily routine curve

suggests absence of periodic rhythms in the ultradian range. The spectral density peaks for the simulated

scheduled activity data representing controlled scheduled events during the protocol (bottom curve) match

the peaks observed in the original human activity data recorded during the forced desynchrony protocol.

Our analysis and simulation suggest that the observed peaks in the power spectrum are due to scheduled

laboratory events and cannot be attributed to endogenous ultradian rhythms.

ultradian rhythms in the group average for the daily routine protocol (Fig. 4). The

only systematic rhythms that are ostensibly in the ultradian range which emerge in the

group data are at 4 h during the forced desynchrony protocol (with harmonics at 2 h

and 80 min) and at 2 h during the constant routine protocol (with harmonics at 1 h and

30 min) (Figs. 1 and 4). These peaks are caused by the controlled scheduled activities

in the laboratory and are extrinsic to the body as they also occur in simulated scheduled

activity data that assumes speciJc activity values for each scheduled behavior imposed

throughout the laboratory protocols (Fig. 4). Thus, we Jnd no evidence of systematic

intrinsic ultradian rhythms in our data.
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Fig. 5. Long-range fractal correlations and nonlinearity in activity "uctuations. (a) DFA scaling of activity

"uctuation for a subject during wakefulness, demonstrating strong positive correlations on time scales from

seconds to hours. (b) DFA scaling of the magnitude series of activity increments for the same signals as

in (a). A scaling exponent �mag ≈ 0:8 of similar value is observed for all three protocols, consistent with

robust nonlinear dynamics.

To provide further insight into the dynamic control of activity, we next examine the

temporal organization in the "uctuations in activity values that is responsible for the

stability of the distribution form at di9erent time scales (Fig. 3b). We perform detrended

"uctuation analysis (DFA) which quantiJes correlations in the activity "uctuations

after accounting for nonstationarity in the data by subtracting underlying polynomial

trends [20–23]. The DFA method quantiJes the root mean square "uctuations, F(n),

of a signal at di9erent time scales n. Power-law functional form, F(n) ∼ n�, indicates

self-similarity (fractal scaling). The parameter �, called the scaling exponent, quantiJes

the correlation properties in the signal: if �=0:5, there is no correlation (random noise);

if �¡ 0:5, the signal is anticorrelated, where large activity values are more likely to

be followed by small activity values; if �¿ 0:5, there are positive correlations, where

large activity values are more likely to be followed by large activity values (and vice

versa for small activity values).

Fig. 5a shows that F(n) for a typical subject during wakefulness exhibits a

power-law form over time scales from ≈1 min to ≈4 h. We Jnd that the scaling

exponent � is virtually identical for records obtained during the Jrst week of daily

routine (�=0:92± 0:04, mean ± standard deviation among subjects), the second week

(�= 0:92 ± 0:06) of the daily routine, the constant routine protocol (�= 0:88 ± 0:05),

and the forced desynchrony protocol (� = 0:92 ± 0:03). The value of � ≈ 0:9 for all

protocols and all individuals indicates that activity "uctuations are characterized by

strong long-range positive correlations, and thus are not dominated by random factors.

Furthermore, we Jnd that this scaling behavior is not caused by the scheduled activi-

ties because simulated scheduled activity data that are generated by assigning a speciJc
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Fig. 6. Stability of scaling and nonlinear features: (a) Scaling exponents � and �mag (left scale), and average

activity levels (right scale) for all 16 subjects obtained from a 14-day daily routine protocol. Although the

average activity level between subjects changes considerably (from 0:2 to 0:5), both scaling exponents are

consistent for all subjects, exhibiting a group average of �= 0:92± 0:05 and �mag = 0:77± 0:05. (b) Group

average scaling exponents � and �mag calculated for di9erent days of the week. While the average activity

level progressively increases throughout the week (with a peak on Saturday and a minimum on Sunday), the

group average scaling exponents � and �mag remain practically constant, consistent with a robust underlying

mechanism of control characterized by fractal and nonlinear features which do not change with activity level.

activity value for each scheduled event throughout the laboratory protocols yields an

exponent of �=1:5 (Fig. 5a), which represents random-walk type behavior [24]. These

results suggest that the activity "uctuations are not a consequence of random events

(in which case � would be 0.5) or scheduled events, but rather relate to an underlying

mechanism of activity control with stable fractal-like features over a wide range of

time scales from minutes to hours. Since mean activity levels and the amplitude of

the "uctuations are greatly reduced in the laboratory during the constant routine and

forced desynchrony protocols (Fig. 1), we obtain smaller values of F(n) (downward

shift of the lines in Fig. 5a). However, there is no change in the scaling exponent �.

Similarly, the scaling exponents for the daily routine protocol are independent of the

average activity levels of the di9erent subjects (Fig. 6a), the mean activity level on

di9erent days of the week (Fig. 6b), and of the circadian phase, suggesting that this

scaling pattern of activity "uctuations appears to be an intrinsic feature.

To test for the presence of nonlinear properties of the data, we analyze the “magni-

tude series” formed by taking the absolute values of the increments between consec-

utive activity values [25,26]. Again, from detrended "uctuation analysis of this series,

we Jnd practically identical scaling exponents, �mag, for all three protocols, despite

large di9erences in mean activity levels between protocols (Fig. 5b). Moreover, all

individuals have very similar values of the scaling exponent �mag (Fig. 6a), which

are not systematically changed by the protocol. For the group, during the Jrst week
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Fig. 7. Comparison of left and right wrist activity. In Jve additional subjects, we continuously measure

both left and right wrist activity levels simultaneously for 1 week. (a) Distributions of left and right wrist

activity for a typical subject. The subject is right-handed, and the activity level and variance of the right

wrist is larger than that of the left wrist. As a result, compared to the left wrist, the right wrist has a smaller

probability at small activity level, and a larger probability at large activity level. After the same rescaling

as in Fig. 2 (e)–(h), the distributions of the left wrist activity and the right wrist activity collapse onto

the same curve. The functional form of this curve is the same as obtained in Fig. 2(e)–(h) and Fig. 3.

(b) DFA results of left and right wrist activity "uctuations reveal practically identical power-law

correlations—the same value of �. The smaller values of F(n) (vertical shift) for the left wrist are due

to the smaller average activity level and variance of the left hand.

of daily routine, we Jnd �mag = 0:78 ± 0:06 (mean ± standard deviation among sub-

jects), during the second week �mag = 0:76± 0:05, during the constant routine protocol

�mag =0:82±0:05, and during the forced desynchrony protocol �mag =0:80±0:04. Since

�mag ≈ 0:8(¿ 0:5), there are positive long-range correlations in the magnitude series of

activity increments, indicating the existence of nonlinear properties related to Fourier

phase interactions (Fig. 5b) [26,27]. To conJrm that the observed positive correlations

in the magnitude series indeed represent nonlinear features in the activity data, we

do the following test: we generate a surrogate time series by performing a Fourier

transform on the activity recording from the same subject during daily routine as in

Fig. 5a, preserving the Fourier amplitudes but randomizing the phases, and then per-

forming an inverse Fourier transform. This procedure eliminates nonlinearities, preserv-

ing only the linear features of the original activity recording such as the power spectrum

and correlations. Thus, the new surrogate signal has the same scaling behavior with

� = 0:93 (Fig. 5a) as the original activity recording; however, it exhibits uncorrelated

behavior for the magnitude series (�mag = 0:5) (Fig. 5b). Our results show that the

activity data contains important phase correlations which are canceled in the surrogate

signal by the randomization of the Fourier phases, and that these correlations do not

exist in the simulated scheduled activity. Further, our tests indicate that these nonlinear

features are encoded in Fourier phase, suggesting an intrinsic nonlinear mechanism

[27]. The similar value of �mag for all three protocols and all individuals, which is dif-

ferent from �mag = 0:5 obtained for the simulated scheduled activity and for the phase

randomized data, conJrms that the intrinsic dynamics possess nonlinear features that
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tuations are not an artifact of the device. (a) Data recorded from an Actiwatch placed on a disk rotating

with constant angular velocity. (b) DFA correlation analysis of the "uctuations in (a) shows random noise

behavior, in contrast to the strong positive correlations in activity "uctuations (Figs. 5 and 7).

are independent of the daily and weekly schedules, reaction to the environment, the

average level of activity, and the phase of the circadian pacemaker.

To determine whether or not there is any alteration of the intrinsic patterns for

dominant and non-dominant (left and right) hands [28], we record 1 week of activity

data of the left and right hands simultaneously for Jve additional subjects in the daily

protocol. For all subjects, we Jnd that the form of activity distribution (Fig. 7a) and

the power-law correlations (Fig. 7b) are the same for dominant (more active) and

non-dominant hands, conJrming that the observed intrinsic patterns are independent of

activity level.

Finally, to ensure that the power-law correlations are not an artifact produced by the

instrument, we obtain “test” activity data by attaching an Actiwatch to a 15 cm radius

disk, turning at constant angular velocity of 45 rpm (Fig. 8a). The activity values of

the Actiwatch "uctuate only slightly, and analysis of these random "uctuations reveals

scaling exponents � ≈ 0:5 and �mag ≈ 0:5 (Fig. 8b), which indicate random linear

behavior. Thus, the stable values of � and �mag observed in our subjects throughout the

varied protocols do not depend on the recording device, but instead these exponents are

inherent characteristics of the subjects, and that both hands have the same underlying

dynamics of activity regulation.

In summary, the Jndings reported here o9er insights into the mechanisms of human

wrist activity control. Prior to our work, it has been a general belief, though never
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tested, that "uctuations in activity during wakefulness are somewhat random, in"u-

enced mainly by extrinsic factors such as reactions to unforeseen random events. Our

Jndings of a stable form for the probability distribution, long-range power-law corre-

lations and nonlinar Fourier-phase features on time scales from seconds to hours, and

the consistency of our results among individuals and for di9erent protocols, suggest

that there exist previously unrecognized complex dynamic patterns of human activity

that are unrelated to extrinsic factors or to the average level of activity. We also show

these scale-invariant patterns to be independent of known intrinsic factors related to

the circadian and to any ultradian rhythms. Notably, (i) these patterns are unchanged

when obtained at di9erent phases of the circadian pacemaker; (ii) we do not observe

systematic intrinsic ultradian rhythms in activity among subjects in the daily routine

experiment; (iii) imposing strong extrinsic ultradian rhythms at 4 and 2 h in the lab-

oratory protocols did not change the fractal scaling exponents � or �mag or the form

of the probability distribution; and (iv) we Jnd consistent results over a wide range

of time scales. Together, these Jndings strongly suggest that our results are not a

re"ection of the basic rest activity cycles or ultradian rhythms. We attribute these

novel scale-invariant patterns to a robust intrinsic multi-scale mechanism of regulation

(Fig. 1). Further, our Jndings suggest that activity control may be based on a multiple-

component nonlinear feedback mechanism encompassing coupled neuronal nodes lo-

cated both in the central and peripheral nervous systems, each acting in a speciJc range

of time scales [29]. This insight provides key elements and guidance for future studies

focused on modeling locomotor regulation [30,31].
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