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Detrended fluctuation analysis ~DFA! is a scaling analysis method used to estimate long-range power-law
correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling
results obtained from the DFA method become difficult to analyze. We systematically study the effects of three
types of trends — linear, periodic, and power-law trends, and offer examples where these trends are likely to
occur in real data. We compare the difference between the scaling results for artificially generated correlated
noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the
scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the
‘‘apparent’’ scaling of the trend. We study how the characteristics of these crossovers depend on ~i! the slope
of the linear trend; ~ii! the amplitude and period of the periodic trend; ~iii! the amplitude and power of the
power-law trend, and ~iv! the length as well as the correlation properties of the noise. Surprisingly, we find that
the crossovers in the scaling of noisy signals with trends also follow scaling laws—i.e., long-range power-law
dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of
noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the
noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not
followed, this is an indication that the noise and the superposed trend are not independent, so that removing the
trend could lead to changes in the correlation properties of the noise. In addition, we show how to use DFA
appropriately to minimize the effects of trends, how to recognize if a crossover indicates indeed a transition
from one type to a different type of underlying correlation, or if the crossover is due to a trend without any
transition in the dynamical properties of the noise.
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I. INTRODUCTION

Many physical and biological systems exhibit complex
behavior characterized by long-range power-law correla-
tions. Traditional approaches such as the power-spectrum
and correlation analysis are not suited to accurately quantify
long-range correlations in nonstationary signals—e.g., sig-
nals exhibiting fluctuations along polynomial trends. De-
trended fluctuation analysis ~DFA! @1–4# is a scaling analy-
sis method providing a simple quantitative parameter—the
scaling exponent a—to represent the correlation properties
of a signal. The advantages of DFA over many methods are
that it permits the detection of long-range correlations em-
bedded in seemingly nonstationary time series, and also
avoids the spurious detection of apparent long-range correla-
tions that are an artifact of nonstationarity. In the past few
years, more than 100 publications have utilized the DFA as
the method of correlation analysis, and have uncovered long-
range power-law correlations in many research fields such as
cardiac dynamics @5–23#, bioinformatics @1,2,24–34,68#,
economics @35–47#, meteorology @48–50#, material science
@51#, ethology @52#, etc. Furthermore, the DFA method may
help identify different states of the same system according to
its different scaling behaviors, e.g., the scaling exponent a
for heart interbeat intervals is different for healthy and sick
individuals @14,16,17,53#.

The correct interpretation of the scaling results obtained
by the DFA method is crucial for understanding the intrinsic
dynamics of the systems under study. In fact, for all systems

where the DFA method was applied, there are many issues
that remain unexplained. One of the common challenges is
that the correlation exponent is not always a constant ~inde-
pendent of scale! and crossovers often exist—i.e., a change
of the scaling exponent a for different range of scales
@5,16,35#. A crossover usually can arise from a change in the
correlation properties of the signal at different time or space
scales, or can often arise from trends in the data. In this paper
we systematically study how different types of trends affect
the apparent scaling behavior of long-range correlated sig-
nals. The existence of trends in times series generated by
physical or biological systems is so common that it is almost
unavoidable. For example, the number of particles emitted
by a radiation source in a unit time has a trend of decreasing
because the source becomes weaker @54,55#; the density of
air due to gravity has a trend at a different altitude; the air
temperature in different geographic locations, rainfall and
the water flow of rivers have a periodic trend due to seasonal
changes @49,50,56–59#; the occurrence rate of earthquakes in
certain areas has a trend in different time periods @60#. An
immediate problem facing researchers applying a scaling
analysis to a time series is whether trends in data arise from
external conditions, having little to do with the intrinsic dy-
namics of the system generating noisy fluctuating data. In
this case, a possible approach is to first recognize and filter
out the trends before we attempt to quantify correlations in
the noise. Alternatively, trends may arise from the intrinsic
dynamics of the system rather than being an epiphenomenon
of external conditions, and thus they may be correlated with
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the noisy fluctuations generated by the system. In this case,
careful consideration should be given if trends should be
filtered out when estimating correlations in the noise, since
such ‘‘intrinsic’’ trends may be related to the local properties
of the noisy fluctuations.

Here we study the origin and the properties of crossovers
in the scaling behavior of noisy signals, by applying the DFA
method first on correlated noise and then on noise with
trends, and comparing the difference in the scaling results.
To this end, we generate an artificial time series—
anticorrelated, white, and correlated noise with standard de-
viation equal to one—using the modified Fourier filtering
method introduced by Makse et al. @63#. We consider the
case when the trend is independent of the local properties of
the noise ~external trend!. We find that the scaling behavior
of noise with a trend is a superposition of the scaling of the
noise and the apparent scaling of the trend, and we derive
analytical relations based on the DFA, which we call the
‘‘superposition rule.’’ We show how this superposition rule
can be used to determine if the trends are independent of the
noisy fluctuation in real data, and if filtering these trends out
will not affect the scaling properties of the data.

The outline of this paper is as follows. In Sec. II we
review the algorithm of the DFA method, and in Appendix A
we compare the performance of the DFA with the classical
scaling analysis—Hurst’s analysis (R/S analysis!—and
show that the DFA is a superior method to quantify the scal-
ing behavior of noisy signals. In Sec. III we consider the
effect of a linear trend and we present an analytic derivation
of the apparent scaling behavior of a linear trend in Appen-
dix C. In Sec. IV we study a periodic trend, and in Sec. V we
study the effect of a power-law trend. We systematically
study all resulting crossovers, their conditions of existence,
and their typical characteristics associated with the different
types of trends. In addition, we also show how to use DFA
appropriately to minimize or even eliminate the effects of
those trends in cases that trends are not choices of the study,
that is, trends do not reflect the dynamics of the system but
are caused by some ‘‘irrelevant’’ background. Finally, Sec.
VI contains a summary.

II. DFA

To illustrate the DFA method, we consider a noisy time
series, u(i) (i51, . . . ,Nmax). We integrate the time series
u(i),

y~ j !5(
i51

j

@u~ i !2^u&# , ~1!

where

^u&5

1

Nmax
(
j51

Nmax

u~ i !, ~2!

and is divided into boxes of equal size n. In each box, we fit
the integrated time series by using a polynomial function,
y f it(i), which is called the local trend. For order-l DFA
~DFA-1 if l51, DFA-2 if l52, etc.!, the l-order polynomial

function should be applied for the fitting. We detrend the
integrated time series y(i) by subtracting the local trend
y f it(i) in each box, and we calculate the detrended fluctua-
tion function

Y ~ i !5y~ i !2y f it~ i !. ~3!

For a given box size n, we calculate the root mean square
~rms! fluctuation

F~n !5A 1

Nmax
(
i51

Nmax

@Y ~ i !#2. ~4!

The above computation is repeated for box sizes n ~different
scales! to provide a relationship between F(n) and n. A
power-law relation between F(n) and the box size n indi-
cates the presence of scaling: F(n);na. The parameter a ,
called the scaling exponent or correlation exponent, repre-
sents the correlation properties of the signal: if a50.5, there
is no correlation and the signal is an uncorrelated signal
~white noise!; if a,0.5, the signal is anticorrelated; if a
.0.5, there are positive correlations in the signal.

III. NOISE WITH LINEAR TRENDS

First we consider the simplest case: correlated noise with
a linear trend. A linear trend

u~ i !5ALi ~5!

is characterized by only one variable — the slope of the
trend AL . For convenience, we denote the rms fluctuation
function for noise without trends by Fh(n), linear trends by
FL(n), and noise with a linear trend by FhL(n).

A. DFA-1 on noise with a linear trend

Using the algorithm of Makse et al. @63#, we generate a
correlated noise with a standard deviation one, with a given
correlation property characterized by a given scaling expo-
nent a . We apply DFA-1 to quantify the correlation proper-
ties of the noise and find that only in a certain good fit region
can the rms fluctuation function Fh(n) be approximated by a
power-law function ~see Appendix A!

Fh~n !5b0na, ~6!

where b0 is a parameter independent of the scale n. We find
that the good fit region depends on the correlation exponent
a ~see Appendix A!. We also derive analytically the rms
fluctuation function for a linear trend only for DFA-1 and
find that ~see Appendix C!

FL~n !5k0ALnaL, ~7!

where k0 is a constant independent of the length of trend
Nmax , of the box size n, and of the slope of the trend AL .
We obtain aL52.

Next we apply the DFA-1 method to the superposition of
a linear trend with correlated noise and we compare the rms
fluctuation function FhL(n) with Fh(n) ~see Fig. 1!. We
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observe a crossover in FhL(n) at scale n5n3 . For n
,n3 , the behavior of FhL(n) is very close to the behavior
of Fh(n), while for n.n3 , the behavior of FhL(n) is very
close to the behavior of FL(n). A similar crossover behavior
is also observed in the scaling of the well-studied biased
random walk @61,62#. It is known that the crossover in the
biased random walk is due to the competition of the unbiased
random walk and the bias ~see Fig. 5.3 of @62#!. We illustrate
this observation in Fig. 2, where the detrended fluctuation
functions @Eq. ~3!# of the correlated noise, Y h(i), and of the
noise with a linear trend, Y hL(i), are shown. For the box size
n,n3 as shown in Figs. 2~a! and 2~b!, Y hL(i)'Y h(i). For
n.n3 as shown in Figs. 2~c! and 2~d!, Y hL(i) has a distin-
guishable quadratic background significantly different from
Y h(i). This quadratic background is due to the integration of
the linear trend within the DFA procedure and represents the
detrended fluctuation function Y L of the linear trend. These
relations between the detrended fluctuation functions Y (i) at
different time scales n explain the crossover in the scaling
behavior of FhL(n): from very close to Fh(n) to very close
to FL(n) ~observed in Fig. 1!.

The experimental results presented in Figs. 1 and 2 sug-
gest that the rms fluctuation function for a signal which is a
superposition of a correlated noise and a linear trend can be
expressed as

@FhL~n !#2
5@FL~n !#2

1@Fh~n !#2. ~8!

We provide an analytic derivation of this relation in Appen-
dix B, where we show that Eq. ~8! holds for the superposi-
tion of any two independent signals—in this particular case

noise and a linear trend. We call this relation the ‘‘superpo-
sition rule.’’ This rule helps us understand how the compe-
tition between the contribution of the noise and the trend to
the rms fluctuation function FhL(n) at different scales n
leads to appearance of crossovers @61#.

Next, we ask how the crossover scale n3 depends on ~i!
the slope of the linear trend AL , ~ii! the scaling exponent a
of the noise, and ~iii! the length of the signal Nmax . Surpris-
ingly, we find that for noise with any given correlation ex-
ponent a the crossover scale n3 itself follows a power-law
scaling relation over several decades: n3;(AL)u ~see Fig.
3!. We find that in this scaling relation, the crossover expo-
nent u is negative and its value depends on the correlation
exponent a of the noise—the magnitude of u decreases
when a increases. We present the values of the ‘‘crossover
exponent’’ u for different correlation exponents a in Table I.

To understand how the crossover scale depends on the
correlation exponent a of the noise we employ the superpo-
sition rule @Eq. ~8!# and estimate n3 as the intercept between
Fh(n) and FL(n). From Eqs. ~6! and ~7!, we obtain the
following dependence of n3 on a:

n35S AL

k0

b0
D 1/(a2aL)

5S AL

k0

b0
D 1/(a22)

. ~9!

This analytical calculation for the crossover exponent
21/(aL2a) is in a good agreement with the observed val-
ues of u obtained from our simulations ~see Fig. 3 and
Table I!.
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FIG. 1. Crossover behavior of the root-mean-square fluctuation
function FhL(n) for noise ~of length Nmax5217 and correlation ex-
ponent a50.1) with superposed linear trends of slope AL

52216,2212,228. For comparison, we show Fh(n) for the noise
~thick solid line! and FL(n) for the linear trends ~dot-dashed line!

@Eq. ~7!#. The results show a crossover at a scale n3 for FhL(n).
For n,n3 , the noise dominates and FhL(n)'Fh(n). For n
.n3 , the linear trend dominates and FhL(n)'FL(n). Note that
the crossover scale n3 increases when the slope AL of the trend
decreases.
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FIG. 2. Comparison of the detrended fluctuation function for
noise Y h(i) and for noise with linear trend Y hL(i) at different
scales. ~a! and ~c! are Y h for noise with a50.1; ~b! and ~d! are Y hL

for the same noise with a linear trend with slope AL52212 ~the
crossover scale n35320, see Fig. 1!. ~a! and ~b! For scales n
,n3 the effect of the trend is not pronounced and Y h'Y hL ~i.e.,
Y h @Y L). ~c! and ~d! For scales n.n3 , the linear trend is domi-
nant and Y h!Y hL .
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Finally, since the FL(n) does not depend on Nmax as we
show in Eq. ~7! and in Appendix C, we find that n3 does not
depend on Nmax . This is a special case for linear trends and
does not always hold for higher-order polynomial trends ~see
Appendix D!.

B. DFA-2 on noise with a linear trend

Application of the DFA-2 method to noisy signals without
any polynomial trends leads to scaling results identical to the
scaling obtained from the DFA-1 method, with the exception
of some vertical shift to lower values for the rms fluctuation
function Fh(n) ~see Appendix A!. However, for signals
which are a superposition of correlated noise and a linear
trend, in contrast to the DFA-1 results presented in Fig. 1,
FhL(n) obtained from DFA exhibits no crossovers, and is
exactly equal to the rms fluctuation function Fh(n) obtained

from DFA-2 for correlated noise without trend ~see Fig. 4!.
These results indicate that a linear trend has no effect on the
scaling obtained from DFA-2. The reason for this is that by
design the DFA-2 method filters out linear trends, i.e.,
Y L(i)50 @Eq. ~3!# and thus FhL(n)5Fh(n) due to the su-
perposition rule @Eq. ~8!#. For the same reason, polynomial
trends of order lower than l superposed on correlated noise
will have no effect on the scaling properties of the noise
when DFA-l is applied. Therefore, our results confirm that
the DFA method is a reliable tool to accurately quantify
correlations in noisy signals embedded in polynomial trends.
Moreover, the reported scaling and crossover features of
F(n) can be used to determine the order of polynomial
trends present in the data.

IV. NOISE WITH SINUSOIDAL TREND

In this section we study the effect of sinusoidal trends on
the scaling properties of noisy signals. For a signal which is
a superposition of correlated noise and sinusoidal trend, we
find that based on the superposition rule ~Appendix B! the
DFA rms fluctuation function can be expressed as

@FhS~n !#2
5@Fh~n !#2

1@FS~n !#2, ~10!

where FhS(n) is the rms fluctuation function of noise with a
sinusoidal trend, and FS(n) is for the sinusoidal trend. First
we consider the application of DFA-1 to a sinusoidal trend.
Next we study the scaling behavior and the features of cross-
overs in FhS(n) for the superposition of a correlated noise
and a sinusoidal trend employing the superposition rule @Eq.
~10!#. At the end of this section we discuss the results ob-
tained from higher-order DFA.
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FIG. 3. The crossover n3 of Fh L(n) for noise with a linear
trend. We determine the crossover scale n3 based on the difference
D between logFh ~noise! and logFhL ~noise with a linear trend!. The
scale for which D50.05 is the estimated crossover scale n3 . For
any given correlation exponent a of the noise, the crossover scale
n3 exhibits a long-range power-law behavior n3;(AL)u, where the
crossover exponent u is a function of a @see Eq. ~9! and Table I#.

TABLE I. The crossover exponent u from the power-law rela-
tion between the crossover scale n3 and the slope of the linear trend
AL , n3;(AL)u, for different values of the correlation exponents a
of the noise ~Fig. 3!. The values of u obtained from our simulations
are in good agreement with the analytical prediction 21/(22a)
@Eq. ~9!#. Note that 21/(22a) are not always exactly equal to u
because Fh (n) in simulations is not a perfect simple power-law
function and the way we determine numerically n3 is just approxi-
mated.

a u 21/(22a)

0.1 -0.54 -0.53
0.3 -0.58 -0.59
0.5 -0.65 -0.67
0.7 -0.74 -0.77
0.9 -0.89 -0.91
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FIG. 4. Comparison of the rms fluctuation function Fh(n) for
noise with different types of correlations ~lines! and FhL(n) for the
same noise with a linear trend of slope AL52212 ~symbols! for
DFA-2. FhL(n)5Fh(n) because the integrated linear trend can be
perfectly filtered out in DFA-2, thus Y L(i)50 from Eq. ~3!. We
note that to estimate accurately the correlation exponents, one has
to choose an optimal range of scales n, where F(n) is fitted. For
details see Appendix A.
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A. DFA-1 on sinusoidal trend

Given a sinusoidal trend u(i)5ASsin(2pi/T) (i
51, . . . ,Nmax), where AS is the amplitude of the signal and T
is the period, we find that the rms fluctuation function FS(n)
does not depend on the length of the signal Nmax , and has
the same shape for different amplitudes and different periods
@Fig. 5#. We find a crossover at scale corresponding to the
period of the sinusoidal trend

n23'T , ~11!

and it does not depend on the amplitude AS . We call this
crossover n23 for convenience, as we will see later. For n
,n23 , the rms fluctuation FS(n) exhibits an apparent scal-
ing with the same exponent as FL(n) for the linear trend @see
Eq. ~7!#,

FS~n !5k1

AS

T
naS, ~12!

where k1 is a constant independent of the length Nmax , of the
period T, of the amplitude AS of the sinusoidal signal, and of
the box size n. As for the linear trend @Eq. ~7!#, we obtain
aS52 because at small scales ~box size n) the sinusoidal
function is dominated by a linear term. For n.n23 , due to
the periodic property of the sinusoidal trend, FS(n) is a con-
stant independent of the scale n,

FS~n !5

1

2A2p
AST . ~13!

The period T and the amplitude AS also affects the vertical
shift of FS(n) in both regions. We note that in Eqs. ~12! and
~13!, FS(n) is proportional to the amplitude AS , a behavior
which is also observed for the linear trend @Eq. ~7!#.

B. DFA-1 on noise with sinusoidal trend

In this section we study how the sinusoidal trend affects
the scaling behavior of noise with different types of correla-
tions. We apply the DFA-1 method to a signal which is a
superposition of correlated noise with a sinusoidal trend. We
observe that there are typically three crossovers in the rms
fluctuation Fh S(n) at characteristic scales denoted by n13 ,
n23 , and n33 ~Fig. 6!. These three crossovers divide FhS(n)
into four regions, as shown in Fig. 6~a! @the third crossover
cannot be seen in Fig. 6~b! because its scale n33 is greater
than the length of the signal#. We find that the first and third
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FIG. 5. Root-mean-square fluctuation function FS(n) for sinu-
soidal functions of length Nmax5217 with different amplitude AS

and period T. All curves exhibit a crossover at n23'T/2, with a
slope aS52 for n,n23 and a flat region for n.n23 . There are
some spurious singularities at n5 j(T/2) ( j is a positive integer!
shown by the spikes.

FIG. 6. Crossover behavior of the root-mean-square fluctuation
function FhS(n) ~circles! for correlated noise ~of length Nmax

5217) with a superposed sinusoidal function characterized by pe-
riod T5128 and amplitude AS52. The rms fluctuation function
Fh(n) for noise ~thick line! and FS(n) for the sinusoidal trend ~thin
line! are shown for comparison. ~a! FhS(n) for correlated noise
with a50.9. ~b! FhS(n) for anticorrelated noise with a50.9. There
are three crossovers in FhS(n), at scales n13 , n23 , and n33 @the
third crossover cannot be seen in ~b! because it occurs at scale
larger than the length of the signal#. For n,n13 and n.n33 the
noise dominates and FhS(n)'Fh(n) while for n13,n,n33 the
sinusoidal trend dominates and FhS(n)'FS(n). The crossovers at
n13 and n33 are due to the competition between the correlated
noise and the sinusoidal trend ~see Fig. 7!, while the crossover at
n23 relates only to the period T of the sinusoidal @Eq. ~11!#.
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crossovers at scales n13 and n33 , respectively ~see Fig. 6!,
result from the competition between the effects on FhS(n) of
the sinusoidal signal and the correlated noise. For n,n13

~region I! and n.n33 ~region IV!, we find that the noise has
the dominating effect @Fh(n).FS(n)#, so the behavior of
FhS(n) is very close to the behavior of Fh(n) @Eq. ~10!#. For
n13,n,n23 ~region II! and n23,n,n33 ~region III! the
sinusoidal trend dominates @FS(n).Fh(n)#, thus the behav-
ior of Fh S(n) is close to FS(n) ~see Figs. 6 and 7!.

To better understand why there are different regions in the
behavior of FhS(n), we consider the detrended fluctuation
function @Eq. ~3! and Appendix B# of the correlated noise
Y h(i), and of the noise with sinusoidal trend Y hS . In Fig. 7
we compare Y h(i) and Y hS(i) for anticorrelated and corre-
lated noise in the four different regions. For very small scales
n,n13 , the effect of the sinusoidal trend is not pronounced,
Y h S(i)'Y h(i), indicating that in this scale region the signal
can be considered as noise fluctuating around a constant

trend which is filtered out by the DFA-1 procedure @Figs.
7~a! and 7~b!#. Note that the behavior of Y hS @Fig. 7~b!# is
identical to the behavior of Y hL @Fig. 2~b!#, since both a
sinusoidal with a large period T and a linear trend with small
slope AL can be well approximated by a constant trend for
n,n13 . For small scales n13,n,n23 ~region II!, we find
that there is a dominant quadratic background for Y hS(i)
@Fig. 7~d!#. This quadratic background is due to the integra-
tion procedure in DFA-1, and is represented by the detrended
fluctuation function of the sinusoidal trend Y S(i). It is similar
to the quadratic background observed for linear trend Y hL(i)
@Fig. 2~d!#—i.e., for n13,n,n23 the sinusoidal trend be-
haves as a linear trend and Y S(i)'Y L(i). Thus in region II
the ‘‘linear trend’’ effect of the sinusoidal is dominant, Y S

.Y h , which leads to FhS(n)'FS(n). This explains also
why FhS(n) for n,n23 ~Fig. 6! exhibits crossover behavior
similar to the one of FhL(n) observed for noise with a linear
trend. For n23,n,n33 ~region III! the sinusoidal behavior
is strongly pronounced @Fig. 7~f!#, Y S(i)@Y h (i), and
Y hS(i)'Y S(i) changes periodically with period equal to the
period of the sinusoidal trend T. Since Y hS(i) is bounded
between a minimum and a maximum value, FhS(n) cannot
increase and exhibits a flat region ~Fig. 6!. At very large
scales, n.n33 , the noise effect is again dominant @Y S(i)
remains bounded, while Y h grows when increasing the scale#
which leads to FhS(n)'Fh(n) and a scaling behavior that
corresponds to the scaling of the correlated noise.

First we consider n13 . Surprisingly, we find that for
noise with any given correlation exponent a the crossover
scale n13 exhibits long-range power-law dependence of the
period T, n13;TuT1, and the amplitude AS , n13;(AS)uA1 of
the sinusoidal trend @see Figs. 8~a! and 8~b!#. We find that
the ‘‘crossover exponents’’ uT1 and uA1 have the same mag-
nitude but different sign—uT1 is positive while uA1 is nega-
tive. We also find that the magnitudes of uT1 and uA1 in-
crease for larger values of the correlation exponents a of the
noise. We present the values of uT1 and uA1 for the different
correlation exponents a in Table II. To understand the
power-law relations between n13 and T, between n13 and
AS , and also how the crossover scale n13 depends on the
correlation exponent a , we employ the superposition rule
@Eq. ~10!# and estimate n13 analytically as the first intercept
of Fh(n) and FS(n). From Eqs. ~12! and ~6!, we obtain the
following dependence of n13 on T, AS and a:

n135S b0

k1

T

AS
D 1/(22a)

~14!

From this analytical calculation we obtain the following re-
lation between the two crossover exponents uT1 and uA1 and
the correlation exponent a: uT152uA151/(22a), which is
in a good agreement with the observed values of uT1 , uA1
obtained from simulations @see Figs. 8~a! and 8~b! and Table
II#.

Next we consider n23 . Our analysis of the rms fluctua-
tion function FS(n) for the sinusoidal signal in Fig. 5 sug-
gests that the crossover scale FS(n) does not depend on the-
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FIG. 7. Comparison of the detrended fluctuation function for
noise Y h(i) and noise with sinusoidal trend Y hS(i) in four regions
as shown in Fig. 6. The same signals as in Fig. 6 are used. Panels
~a!–~f! correspond to Fig. 6~b! for anticorrelated noise with expo-
nent a50.1, and panels ~g! and ~h! correspond to Fig. 6~a! for
correlated noise with exponent a50.9. ~a! and ~b! For all scales
n,n13 , the effect of the trend is not pronounced and Y hS(i)
'Y h(i) leading to FhS(n)'Fh (n) @Fig. 6~a!#. ~c! and ~d! For
n23.n.n13 the trend is dominant, Y hS(i)@Y h(i) and FhS(n)
'FS(n). Since n23'T/2 @Eq. ~11!#, the scale n,T/2 and the sinu-
soidal behavior can be approximated as a linear trend. This explains
the quadratic background in Y hS(i) ~d! @see Figs. 2~c! and 2~d!#. ~e!

and ~f! For n23,n,n33 ~i.e., n@T/2), the sinusoidal trend again
dominates—Y hS(i) is periodic function with period T. ~g! and ~h!

For n.n33 , the effect of the noise is dominant and the scaling of
FhS follows the scaling of Fh @Fig. 6~a!#.
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amplitude AS of the sinusoidal. The behavior of the rms fluc-
tuation function FhS(n) for noise with a superposed sinu-
soidal trend in Figs. 6~a! and 6~b! indicates that n23 does not
depend on the correlation exponent a of the noise, since for
both correlated (a50.9) and anticorrelated (a50) noise (T

and AS are fixed!, the crossover scale n23 remains un-
changed. We find that n23 depends only on the period T of
the sinusoidal trend and exhibits a long-range power-law be-
havior n23;TuT2 with a crossover exponent uT2'1 @Fig.
8~c!# which is in agreement with the prediction of Eq. ~11!.
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FIG. 8. Dependence of the three crossovers in FhS(n) for noise with a sinusoidal trend ~Fig. 6! on the period T and amplitude AS of the
sinusoidal trend. ~a! Power-law relation between the first crossover scale n13 and the period T for fixed amplitude AS and varying correlation
exponent a: n13;TuT1, where uT1 is a positive crossover exponent @see Table II and Eq. ~14!#. ~b! Power-law relation between the first
crossover n13 and the amplitude of the sinusoidal trend AS for fixed period T and varying correlation exponent a: n13;AS

uA1 where uA1 is
a negative crossover exponent @Table II and Eq. ~14!#. ~c! The second crossover scale n23 depends only on the period T: n23;TuT2, where
uT2'1. ~d! Power-law relation between the third crossover n33 and T for fixed amplitude AS and varying a trend: n33;TuT3. ~e! Power-law
relation between the third crossover n33 and AS for fixed T and varying a: n33;(AS)uA3. We find that uA35uT3 @Table III and Eq. ~15!#.
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For the third crossover scale n33 , as for n13 we find a
power-law dependence on the period T, n33;TuT3, and on
the amplitude AS , n33;(AS)uA3, of the sinusoidal trend @see
Figs. 8~d! and 8~e!#. However, in contrast to the n13 case,
we find that the crossover exponents uTp3 and uA3 are equal
and positive with decreasing values for increasing correlation
exponents a . In Table III we present the values of these two
exponents for different correlation exponent a . To under-
stand how the scale n33 depends on T, AS , and the correla-
tion exponent a simultaneously, we again employ the super-
position rule @Eq. ~10!# and estimate n33 as the second
intercept n33

th of Fh(n) and FS(n). From Eqs. ~13! and ~6!,
we obtain the following dependence:

n335S 1

2A2pb0

AST D 1/a

. ~15!

From this analytical calculation we obtain uT35uA351/a
which is in good agreement with the values of uT3 and uA3
observed from simulations ~Table III!. Finally, our simula-
tions show that all three crossover scales n13 , n23 , and n33

do not depend on the length of the signal Nmax , since Fh(n)
and FS(n) do not depend on Nmax as shown in Eqs. ~6!, ~10!,
~12!, and ~13!.

C. Higher-order DFA on pure sinusoidal trend

In Sec. IV B we discussed how sinusoidal trends affect
the scaling behavior of correlated noise when the DFA-1

method is applied. Since DFA-1 removes only constant
trends in data, it is natural to ask how the observed scaling
results will change when we apply DFA of order l designed
to remove polynomial trends of order lower than l . In this
section we first consider the rms fluctuation FS for a sinu-
soidal signal and then we study the scaling and crossover
properties of FhS for correlated noise with a superposed
sinusoidal signal when higher-order DFA is used.

We find that the rms fluctuation function FS does not
depend on the length of the signal Nmax , and preserves a
similar shape when a different order-l DFA method is used
~Fig. 9!. In particular, FS exhibits a crossover at a scale n23

proportional to the period T of the sinusoidal: n23;TuT2

with uT2'1. The crossover scale shifts to larger values for
higher order l ~Figs. 5 and 9!. For the scale n,n23 FS
exhibits an apparent scaling: FS;naS with an effective ex-
ponent aS5l11. For DFA-1, we have l51 and recover
aS52 as shown in Eq. ~12!. For n.n23 , FS(n) is a con-
stant independent of the scale n and of the order l of the DFA
method in agreement with Eq. ~13!.

Next, we consider FhS(n) when DFA-l with a higher or-
der l is used. We find that for all orders l , FhS(n) does not
depend on the length of the signal Nmax and exhibits three
crossovers at small, intermediate, and large scales; similar
behavior is reported for DFA-1 in Fig. 6. Since both the
crossover at small scales n13 and the crossover at large scale
n33 result from the ‘‘competition’’ between the scaling of
the correlated noise and the effect of the sinusoidal trend
~Figs. 6 and 7!, by using the superposition rule @Eq. ~10!# we
can estimate n13 and n33 as the intercepts of Fh (n) and
FS(n) for the general case of DFA-l .

For n13 we find the following dependence on the period
T, amplitude AS , the correlation exponent a of the noise,
and the order l of the DFA-l method:

n13;~T/AS!1/(l112a). ~16!

For DFA-1, we have l51 and we recover Eq. ~14!. In addi-

TABLE II. The crossover exponents uT1 and uA1 characterizing
the power-law dependence of n13 on the period T and amplitude AS

obtained from simulations: n13;TuT1 and n13;(AS)uA1 for differ-
ent values of the correlation exponent a of noise @Figs. 8~a! and
8~b!#. The values of uT1 and uA1 are in good agreement with the
analytical predictions uT152uA151/(22a) @Eq. ~14!#.

a uT1 -uA1 1/(22a)

0.1 0.55 0.54 0.53
0.3 0.58 0.59 0.59
0.5 0.66 0.66 0.67
0.7 0.74 0.75 0.77
0.9 0.87 0.90 0.91

TABLE III. The crossover exponents uT3 and uA3 for the power-
law relations: n33;TuT3 and n33;(AS)uA3 for different values of
the correlation exponent a of noise @Figs. 8~c! and 8~d!#. The values
of up3 and ua3 obtained from simulations are in good agreement
with the analytical predictions uT35uA351/a @Eq. ~15!#.

a uT3 uA3 1/a

0.4 2.29 2.38 2.50
0.5 1.92 1.95 2.00
0.6 1.69 1.71 1.67
0.7 1.39 1.43 1.43
0.8 1.26 1.27 1.25
0.9 1.06 1.10 1.11
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tion, n13 is shifted to larger scales when higher-order DFA-
l is applied, due to the fact that the value of FS(n) decreases
when l increases (aS5l11, see Fig. 9!.

For the third crossover observed in FhS(n) at large scale
n33 we find for all orders l of the DFA-l the following
scaling relation:

n33;~TAS!1/a. ~17!

Since the scaling function Fh(n) for correlated noise shifts
vertically to lower values when higher-order DFA-l is used
~see the discussion in Appendix A and Sec. V B!, n33 ex-
hibits a slight shift to larger scales.

For the crossover n23 in FhS(n) at Fh S(n) at intermedi-
ate scales, we find n23;T . This relation is independent of
the order l of the DFA and is identical to the relation found
for FS(n) @Eq. ~11!#. n23 also exhibits a shift to larger scales
when higher-order DFA is used ~see Fig. 9!.

The features reported here of the crossovers in FhS(n)
can be used to identify low-frequency sinusoidal trends in
noisy data and to recognize their effects on the scaling prop-
erties of the data. This information may be useful when
quantifying correlation properties in data by means of a scal-
ing analysis.

V. NOISE WITH POWER-LAW TRENDS

In this section we study the effect of power-law trends on
the scaling properties of noisy signals. We consider the case
of correlated noise with a superposed power-law trend u(i)
5APil, when AP is a positive constant, i51, . . . ,Nmax , and
Nmax is the length of the signal. We find that when the
DFA-1 method is used, the rms fluctuation function FhP(n)
exhibits a crossover between two scaling regions ~Fig. 10!.

This behavior results from the fact that at different scales n,
either the correlated noise or the power-law trend is domi-
nant, and can be predicted by employing the superposition
rule

@FhP~n !#2
5@Fh~n !#2

1@FP~n !#2, ~18!

where Fh(n) and FP(n) are the rms fluctuation function of
noise and the power-law trend, respectively, and FhP(n) is
the rms fluctuation function for the superposition of the noise
and the power-law trend. Since the behavior of Fh(n) is
known @Eq. ~6! and Appendix A#, we can understand the
features of FhP(n) if we know how FP(n) depends on the
characteristics of the power-law trend. We note that the scal-
ing behavior of FhP(n) displayed in Fig. 10~a! is to some
extent similar to the behavior of the rms fluctuation function
FhL(n) for correlated noise with a linear trend ~Fig. 1!—e.g.,
the noise is dominant at small scales n, while the trend is
dominant at large scales. However, the behavior FP(n) is
more complex than that of FL(n) for the linear trend, since
the effective exponent al for FP(n) can depend on the
power l of the power-law trend. In particular, for negative
values of l , FP(n) can become dominated at small scales
@Fig. 10~b!# while Fh (n) dominates at large scales—a situ-
ation completely opposite of noise with a linear trend ~Fig. 1!
or with a power-law trend with positive values for the power
l . Moreover, FP(n) can exhibit crossover behavior at small
scales @Fig. 10~b!# for negative l which is not observed for
positive l . In addition, FP(n) depends on the order l of the
DFA method and the length Nmax of the signal. We discuss
the scaling features of the power-law trends in the following
three sections, V A–V C.
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A. Dependence of FP„n… on the power l

First we study how the rms fluctuation function FP(n) for
a power-law trend u(i)5APil depends on the power l . We
find that

FP~n !;APnal, ~19!

where al is the effective exponent for the power-law trend.
For positive l we observe no crossovers in FP(n) @Fig.
10~a!#. However, for negative l there is a crossover in FP(n)
at small scales n @Fig. 10~b!#, and we find that this crossover
becomes even more pronounced with decreasing l or in-
creasing the order l of the DFA method, and is also shifted to
larger scales @Fig. 11~a!#.

Next, we study how the effective exponent al for FP(n)
depends on the value of the power l for the power-law trend.

We examine the scaling of FP(n) and estimate al for 24
,l,4. In the cases when FP(n) exhibits a crossover, in
order to obtain al we fit the range of larger scales to the
right of the crossover. We find that for any order l of the
DFA-l method there are three regions with different relations
between al and l @Fig. 11~b!#. They are as follows:

~i! al'l11 for l.l20.5 ~region I!.
~ii! al'l11.5 for 21.5<l<l20.5 ~region II!.
~iii! al'0 for l,21.5 ~region III!.
Note that for integer values of the power l (l

50,1, . . . ,m21), i.e., polynomial trends of order m21, the
DFA-l method of order l.m21 (l is also an integer! leads
to FP(n)'0, since DFA-l is designed to remove polynomial
trends. Thus for integer values of the power l there is no
scaling and the effective exponent al is not defined if a
DFA-l method of order l.l is used ~Fig. 11!. However, it is
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FIG. 11. Scaling behavior of the rms fluctuation function FP(n) for power-law trends, u(i);il, where i51, . . . ,Nmax and Nmax5217 is
the length of the signal. ~a! For l,0, FP(n) exhibits crossover at small scales which is more pronounced with increasing the order l of
DFA-l and decreasing the value of l . Such crossover is not observed for l.0 when FP(n);nal for all scales n @see Fig. 10~a!#. ~b!

Dependence of the effective exponent al on the power l for different order l51,2,3 of the DFA method. Three regions are observed,
depending on the order l of the DFA: region I (l.l20.5), where al'l11; region II (21.5,l,l20.5), where al5l11.5; region III
(l,21.5), where al'0. We note that for integer values of the power l50,1, . . . ,l21, where l is the order of DFA we used, there is no
scaling for FP(n) and al is not defined, as indicated by the arrows. ~c! Asymptotic behavior near integer values of l . FP(n) is plotted for
l→1 when DFA-2 is used. Even for l2151026, we observe at large scales n a region with an effective exponent al'2.5. This region is
shifted to infinitely large scales when l51.
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of interest to examine the asymptotic behavior of the scaling
of FP(n) when the value of the power l is close to an inte-
ger. In particular, we consider how the scaling of FP(n) ob-
tained from the DFA-2 method changes when l→1 @Fig.
11~c!#. Surprisingly, we find that even though the values of
FP(n) are very small at large scales, there is a scaling for
FP(n) with a smooth convergence of the effective exponent
al→2.5 when l→1, according to the dependence al'l
11.5 established for region II @Fig. 11~b!#. At smaller scales
there is a flat region which is due to the fact that the fluctua-
tion function Y (i) @Eq. ~3!# is smaller than the precision of
the numerical simulation.

B. Dependence of FP„n… on the order l of DFA

Another factor that affects the rms fluctuation function of
the power-law trend FP(n) is the order l of the DFA method
used. We first take into account the following.

~1! For integer values of the power l , the power-law trend
u(i)5APil is a polynomial trend which can be perfectly
filtered out by the DFA method of order l.l , and as dis-
cussed in Secs. III B and V A @see Figs. 11~b! and 11~c!#,
there is no scaling for FP(n). Therefore, in this section we
consider only noninteger values of l .

~2! For a given value of the power l , the effective expo-
nent al can take different values depending on the order l of
the DFA method we use ~see Fig. 11!—e.g., for fixed l.l
20.5,al'l11. Therefore, in this section we consider only
the case when l,l20.5 ~regions II and III!.

Since higher-order DFA-l provides a better fit for the
data, the fluctuation function Y (i) @Eq. ~3!# decreases with
increasing order l . This leads to a vertical shift to smaller
values of the rms fluctuation function F(n) @Eq. ~4!#. Such a
vertical shift is observed for the rms fluctuation function
Fh(n) for correlated noise ~see Appendix A!, as well as for
the rms fluctuation function of power-law trend FP(n). Here
we ask how this vertical shift in Fh(n) and FP(n) depends
on the order l of the DFA method, and if this shift has dif-
ferent properties for Fh(n) compared to FP(n). This infor-
mation can help identify power-law trends in noisy data, and
can be used to differentiate crossovers separating scaling re-
gions with different types of correlations and crossovers that
are due to effects of power-law trends.

We consider correlated noise with a superposed power-
law trend, where the crossover in FhP(n) at large scales n
results from the dominant effect of the power-law trend—
FhP(n)'FP(n) @Eq. ~18! and Fig. 10~a!#. We choose the
power l,0.5, a range where for all orders l of the DFA
method the effective exponent al of FP(n) remains the
same, i.e., al5l11.5 @region II in Fig. 11~b!#. For a super-
position of an anticorrelated noise and power-law trend with
l50.4, we observe a crossover in the scaling behavior of
FhP(n), from a scaling region characterized by the correla-
tion exponent a50.1 of the noise, where FhP(n)'Fh (n),
to a region characterized by an effective exponent al51.9,
where FhP(n)'FP(n), for all orders l51,2,3 of the DFA-l
method @Fig. 12~a!#. We also find that the crossover of
FhP(n) shifts to larger scales when the order l of DFA-l
increases, and that there is a vertical shift of FhP(n) to lower

values. This vertical shift in FhP(n) at large scales, where
FhP(n)5FP(n), appears to be different in magnitude when
different order l of the DFA-l method is used @Fig. 12~a!#.
We also observe a less pronounced vertical shift at small
scales where FhP(n)'Fh(n).

Next, we ask how these vertical shifts depend on the order
l of DFA-l . We define the vertical shift D as the y intercept
of FP(n): D[FP(n51). We find that the vertical shift D in
FP(n) for the power-law trend follows a power law: D
;lt(l). We tested this relation for orders up to l510, and we
find that it holds for different values of the power l of the
power-law trend @Fig. 12~b!#. Using Eq. ~19! we can write
FP(n)/FP(n51)5nal, i.e., FP(n);FP(n51). Since FP(n
51)[D;lt(l) @Fig. 12~b!#, we find that

FP~n !;lt(l). ~20!

We also find that the exponent t is negative and is a decreas-
ing function of the power l @Fig. 12~c!#. Because the effec-
tive exponent al which characterizes FP(n) depends on the
power l @see Fig. 11~b!#, we can express the exponent t as a
function of al as we show in Fig. 12~d!. This representation
can help us compare the behavior of the vertical shift D in
FP(n) with the shift in Fh(n). For correlated noise with a
different correlation exponent a , we observe a similar
power-law relation between the vertical shift in Fh(n) and
the order l of DFA-l: D;lt(a), where t is also a negative
exponent that decreases with a . In Fig. 12~d! we compare
t(al) for FP(n) with t(a) for Fh(n), and find that for any
al5a , t(al),t(a). This difference between the vertical
shift for correlated noise and for a power-law trend can be
utilized to recognize effects of power-law trends on the scal-
ing properties of data.

C. Dependence of FP„n… on the signal length Nmax

Here we study how the rms fluctuation function FP(n)
depends on the length Nmax of the power-law signal u(i)
5APil (i51, . . . ,Nmax). We find that there is a vertical shift
in FP(n) with increasing Nmax @Fig. 13~a!#. We observe that
when doubling the length Nmax of the signal the vertical shift
in FP(n), which we define as FP

2Nmax/FP
Nmax , remains the

same, independent of the value of Nmax . This suggests a
power-law dependence of FP(n) on the length of the signal:

FP~n !;~Nmax!g, ~21!

where g is an effective scaling exponent.
Next, we ask if the vertical shift depends on the power l

of the power-law trend. When doubling the length Nmax of
the signal, we find that for l,l20.5, where l is the order of
the DFA method, the vertical shift is a constant independent
of l @Fig. 13~b!#. Since the value of the vertical shift when
doubling the length Nmax is 2g @from Eq. ~21!#, the results in
Fig. 13~b! show that g is independent of l when l,l20.5,
and that 2log2g'20.15, i.e. The effective exponent g'
20.5.
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For l.l20.5, when doubling the length Nmax of the sig-
nal, we find that the vertical shift 2g exhibits the following
dependence on l: 2log102

g
5log102

l2l, and thus the effec-
tive exponent g depends on l — g5l2l . For positive in-
teger values of l (l5l), we find that g50, and there is no
shift in FP(n), suggesting that FP(n) does not depend on the
length Nmax of the signal, when DFA of order l is used ~Fig.
13!. Finally, we note that depending on the effective expo-
nent g , i.e., on the order l of the DFA method and the value
of the power l , the vertical shift in the rms fluctuation func-
tion FP(n) for the power-law trend can be positive (l.l),
negative (l,l), or zero (l5l).

D. Combined effect on FP„n… of l , l , and Nmax

We have seen that by taking into account the effects of
the power l @Eq. ~19!#, the order l of DFA-l @Eq. ~20!#, and
the effect of the length of the signal Nmax @Eq. ~21!#, we
reach the following expression for the rms fluctuation func-
tion FP(n) for a power-law trend u(i)5APil:

FP~n !;APnallt(l)~Nmax!g(l). ~22!

For correlated noise, the rms fluctuation function Fh(n) de-
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FIG. 12. Effect of higher-order DFA-l on the rms fluctuation function FhP(n) for correlated noise with a superposed power-law trend.
~a! FhP(n) for anticorrelated noise with the correlation exponent a50.1 and a power-law u(i)5APil, where AP525/(Nmax)0.4, Nmax

5217, and l50.4. Results for different order l51,2,3 of the DFA method show ~i! a clear crossover from a region at small scales where the
noise dominates FhP(n)'Fh (n) to a region at larger scales where the power-law trend dominates FhP(n)'FP(n), and ~ii! a vertical shift
D in FhP with increasing l . ~b! Dependence of the vertical shift D in the rms fluctuation function FP(n) for a power-law trend on the order
l of DFA-l for different values of l: D;lt(l). We define the vertical shift D as the y intercept of FP(n): D[FP(n51). Note, that we
consider only noninteger values for l and that we consider the region l,l20.5. Thus, for all values of l the minimal order l that can be
used in the DFA method is l.l10.5, e.g., for l51.6 the minimal order of the DFA that can be used is l53 @for details see Fig. 11~b!#.
~c! Dependence of t on the power l @error bars indicate the regression error for the fits of D(l) in ~b!#. ~d! Comparison of t(al) for FP(n)
and t(a) for Fh(n). Faster decay of t(al) indicates larger vertical shifts for FP(n) compared to Fh(n) with increasing order l of the
DFA-l .
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pends on the box size n @Eq. ~6!# and on the order l of DFA-
l @Sec. V B and Fig. 12~a!, ~d!#, and does not depend on the
length of the signal Nmax . Thus we have the following ex-
pression for Fh(n):

Fh~n !;nalt(a). ~23!

To estimate the crossover scale n3 observed in the appar-
ent scaling of FhP(n) for a correlated noise superposed with
a power-law trend @Figs. 10~a!, 10~b!, and 12~a!#, we employ
the superposition rule @Eq. ~18!#. From Eqs. ~22! and ~23!,
we obtain n3 as the intercept between FP(n) and Fh(n),

n3;@Alt(l)2t(a)~Nmax!g#1/(a2al). ~24!

To test the validity of this result, we consider the case of
correlated noise with a linear trend. For the case of a linear
trend (l51) when DFA-1 (l51) is applied, we have al

52 @see Appendix C and Sec. V A, Fig. 11~b!#. Since in this
case l5l51.l20.5 we have g5l2l50 @see Sec.V C,
Fig. 13~b!#, and from Eq. ~24! we recover Eq. ~9!.

VI. CONCLUSION AND SUMMARY

In this paper we show that the DFA method performs
better than the standard R/S analysis to quantify the scaling
behavior of noisy signals for a wide range of correlations,
and we estimate the range of scales where the performance
of the DFA method is optimal. We consider different types
of trends superposed on correlated noise, and we study how
these trends affect the scaling behavior of the noise. We
demonstrate that there is a competition between a trend and a
noise, and that this competition can lead to crossovers in the

scaling. We investigate the features of these crossovers, their
dependence on the properties of the noise, and the super-
posed trend. Surprisingly, we find that crossovers which are
a result of trends can exhibit power-law dependences on the
parameters of the trends. We show that these crossover phe-
nomena can be explained by the superposition of the separate
results of the DFA method on the noise and on the trend,
assuming that the noise and the trend are not correlated, and
that the scaling properties of the noise and the apparent scal-
ing behavior of the trend are known. Our work may provide
some help to differentiate between different types of cross-
overs, e.g., crossovers that separate scaling regions with dif-
ferent correlation properties may differ from crossovers that
are an artifact of trends. The results we present here could be
useful for identifying the presence of trends and to accurately
interpret correlation properties of noisy data. Related work
on trends @64# and other forms of nonstationarity @65# will be
published separately.
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APPENDIX A: NOISE

The standard signals we generate in our study are uncor-
related, correlated, and anticorrelated noise. First we must
have a clear idea of the scaling behaviors of these standard
signals before we use them to study the effects from other
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trend Nmax . ~a! A vertical shift is observed in FP(n) for different values of Nmax—N1max and N2max . The figure shows that the vertical shift,
defined as FP

N1max(n)/FP
N2max(n), does not depend on Nmax but only on the ratio N1max /N2max , suggesting that FP(n);(Nmax)g. ~b!

Dependence of the vertical shift on the power l . For l,l20.5 (l is the order of DFA!, we find a flat ~constant! region characterized with
an effective exponent g520.5 and negative vertical shift. For l.l20.5, we find an exponential dependence of the vertical shift on l . In
this region, g5l2l , and the vertical shift can be negative ~if l,l) or positive ~if l.l). The slope of 2log10@FP

2Nmax(n)/FP
Nmax(n)# vs l

is 2log102 due to doubling the length of the signal Nmax . This slope changes to 2log10m when Nmax is increased m times while g remains
independent of Nmax . For l5l there is no vertical shift, as marked with 3 . Arrows indicate integer values of l,l , for which values the
DFA-l method filters out completely the power-law trend and FP50.

EFFECT OF TRENDS ON DETRENDED FLUCTUATION . . . PHYSICAL REVIEW E 64 011114

011114-13



aspects. We generate noises by using a modified Fourier fil-
tering method @63#. This method can efficiently generate
noise u(i) (i51,2,3, . . . ,Nmax), with the desired power-law
correlation function that asymptotically behaves as
^u( j5i

i1tu( j)u2&;t2a. By default, a generated noise has stan-
dard deviation s51. Then we can test DFA and R/S by
applying it on generated noises since we know the expected
scaling exponent a .

Before doing that, we want to briefly review the algorithm
of R/S analysis. For a signal u(i) (i51, . . . ,Nmax), it is di-
vided into boxes of equal size n. In each box, the cumulative
departure X i ~for the kth box, i5kn11, . . . ,kn1n) is cal-
culated

X i5 (
j5kn11

i

@u~ j !2^u&# , ~A1!

where ^u&5n21( i5kn11
(k11)n u(i) , and the rescaled range R/S is

defined by

R/S5S21F max
kn11<i<(k11)n

X i2 min
kn11<i<(k11)n

X iG , ~A2!

where S5An21( j51
n @u( j)2^u&#2 is the standard deviation

in each box. The average of rescaled range in all the boxes of
equal size n, is obtained and denoted by ^R/S&. Repeat the
above computation over different box size n to provide a
relationship between ^R/S& and n. According to Hurst’s ex-
perimental study @66#, a power-law relation between ^R/S&
and the box size n indicates the presence of scaling: ^R/S&
;na.

Figure 14 shows the results of R/S , DFA-1, and DFA-2
on the same generated noises. Loosely speaking, we can see
that F(n) ~for DFA! and R/S ~for R/S analysis! show a
power-law relation with n as expected: F(n);na and R/S
;na. In addition, there is no significant difference between
the results of different order DFA except for some vertical
shift of the curves and the little bend-down for small box size
n. The bend-down for a very small box of F(n) from higher-
order DFA is because there are more variables to fit those
few points.

Ideally, when analyzing a standard noise, F(n) ~DFA!

and R/S (R/S analysis! will be power-law functions with a
given power: a , no matter which region of F(n) and R/S is
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chosen. However, a careful study shows that the scaling ex-
ponent a depends on scale n. The estimated a is different for
the different regions of F(n) and R/S as illustrated by Figs.
14~a! and 14~b! and by Tables IV and V. It is very important
to know the best fitting region of the DFA and R/S analysis

in the study of real signals. Otherwise, an inaccurate value
for a will be obtained if an inappropriate region is selected.

In order to find the best region, we first determine the
dependence of the locally estimated a , a loc , on the scale n.
First, generate a standard noise with given scaling exponent

TABLE V. Estimation of the correlation exponent a for corre-
lated noise from DFA-1 in the three regions as shown in Fig. 14~b!.
a is the input value of the scaling exponent, a1 is the estimation
from region 1 (4,n<32), a2 from region 2 (32,n<3162), and
a3 from region 3 (3126,n<217).

a a1 a2 a3

0.1 0.28 0.15 0.08
0.3 0.40 0.31 0.22
0.5 0.55 0.50 0.35
0.7 0.72 0.69 0.55
0.9 0.91 0.91 0.69
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FIG. 15. The estimated a from the local fit ~a! R/S analysis, the length of signal Nmax5214. ~b! R/S analysis, Nmax5220. ~c! DFA-1,
Nmax5214. ~d! DFA-1, Nmax5220. a loc come from the average of 50 simulations. If a technique is working, then the data for the scaling
exponent a should be a weakly fluctuating horizontal line centered about a loc5a . Note that such a horizontal behavior does not hold for all
the scales. Generally, such an expected behavior begins from some scale nmin , holds for a range, and ends at a larger scale nmax . For DFA-1,
nmin is quite small a.0.5. For the R/S analysis, nmin is small only when a'0.7.

TABLE IV. Estimation of the correlation exponent a for corre-
lated noise from the R/S analysis in three regions as shown in Fig.
14~a!. a is the input value of the scaling exponent, a1 is the esti-
mation from region 1 (4,n<32), a2 from region 2 (32,n
<3162), and a3 from region 3 (3126,n<217). The same corre-
lated noise is used in Table V.

a a1 a2 a3

0.1 0.44 0.23 0.12
0.3 0.52 0.37 0.23
0.5 0.62 0.52 0.47
0.7 0.72 0.70 0.45
0.9 0.81 0.87 0.63
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a; then calculate F(n) ~or R/S), and obtain a loc(n) by local
fitting of F(n) ~or R/S). The same random simulation is
repeated 50 times for both the DFA and R/S analyses. The
resultant average a loc(n), respectively, is illustrated in Fig.
15 for the DFA-1 and R/S analyses.

If a scaling analysis method is working properly, then the
result a loc(n) from simulation with a would be a horizontal
line with a slight fluctuation centered about a loc(n)5a . Note
from Fig. 15 that such a horizontal behavior does not hold
for all the scales n but for a certain range from nmin to nmax .
In addition, at small scale, the R/S analysis gives a loc.a if
a,0.7 and a loc,a if a.0.7, which has been pointed out
by Mandelbrot @67#, while DFA gives a loc.a if a,1.0 and
a loc,a if a.1.0.

It is clear that the smaller the nmin and the larger the nmax ,
the better the method. We also perceive that the expected
horizontal behavior stops because the fluctuations become
larger due to the undersampling of F(n) or R/S when n gets
closer to the length of the signal Nmax . Furthermore, it can
be seen from Fig. 15 that nmax'

1
10 Nmax independent of a ~if

the best-fit region exists!, which is why one-tenth of the sig-
nal length can be considered as the maximum box size when
using a DFA or R/S analysis.

On the contrary, nmin does not depend on the Nmax since
a loc(n) at small n hardly changes as Nmax varies but it does
depend on a . Thus, we obtain nmin quantitatively as shown
in Fig. 16. For the R/S analysis, nmin is small only when
a'0.7. When a.0.7 and a,0.7, nmin becomes very large
and close to nmax , indicating that the best-fit region will
vanish and the R/S analysis does not work at all.

Compared to R/S , DFA works better since nmin is quite
small for correlated signals with a.0.5. However, for
a,0.5 nmin is still relatively large. We can improve this

situation by first integrating the correlated noise and then
applying the DFA to the integrated signal. The resultant ex-
ponent a8 for the integrated signal will be a085a11. We
find that nmin for the integrated signal becomes much smaller
as shown in Fig. 16 ~shaded area a.1). Therefore, for cor-
related noise with a,0.5, it is best to estimate first the scal-
ing exponent a8 of the integrated signal and then to obtain a
by a5a821.

APPENDIX B: SUPERPOSITION LAW FOR THE DFA

For two uncorrelated signals f (i) and g(i), their root-
mean-square ~rms! fluctuation functions are F f(n) and
Fg(n), respectively. We want to prove that for the signal
f (i)1g(i), its rms fluctuation function

F f 1g~n !5AF f~n !2
1Fg~n !2. ~B1!

Consider three signals in the same box first. The inte-
grated signals for f, g, and f 1g are y f(i), yg(i), and y f 1g(i)
and their corresponding trends are y f

f it , yg
f it , and y f 1g

f it (i
51,2, . . . ,n , n is the box size!. Since y f 1g(i)5y f(i)
1yg(i) and combines the definition of the detrended fluctua-
tion function Eq. ~3!, we have that for all boxes

Y f 1g~ i !5Y f~ i !1Y g~ i !, ~B2!

where Y f 1g is the detrended fluctuation function for the sig-
nal f 1g , Y f(i) is for the signal f, and Y g(i) for g. Further-
more, according to the definition of the rms fluctuation, we
can obtain

F f 1g~n !5A 1

Nmax
(
i51

Nmax

@Y f 1g~ i !#2

5A 1

Nmax
(
i51

Nmax

@Y f~ i !1Y g~ i !#2, ~B3!

where l is the number of boxes and k means the kth box. If
f and g are not correlated, neither are Y f(i) and Y g(i) and,
thus,

(
i51

Nmax

Y f~ i !Y g~ i !50. ~B4!

From Eq. ~B4! and Eq. ~B3! we have

F f 1g~n !5A 1

Nmax
(
i51

Nmax

@Y f~ i !2
1Y g~ i !2#

5A@F f~n !#2
1@Fg~n !#2. ~B5!

APPENDIX C: DFA-1 ON LINEAR TREND

Let us suppose a linear time series u(i)5ALi . The inte-
grated signal yL(i) is
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FIG. 16. The starting point of a good-fit region, nmin , for the
DFA-1 and R/S analyses. The results are obtained from 50 simula-
tions, in which the length of noise is Nmax5220. The condition for a
good fit is Da5ua loc2au,0.01. The data for a.1.0 shown in the
shading area are obtained by applying an analysis on the integra-
tions of noises with a,1.0. It is clear that the DFA-1 works better
than the R/S analysis because its nmin is always smaller than that of
the R/S analysis.
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yL~ i !5(
j51

i

AL j5AL

i2
1i

2
. ~C1!

Let as call Nmax the size of the series and n the size of the
box. The rms fluctuation FL(n) as a function of n and Nmax
is

FL~n !

5ALA 1

Nmax
(
k51

Nmax /n

(
i5(k21)n11

kn S i2
1i

2
2~ak1bki ! D 2

,

~C2!

where ak and bk are the parameters of a least-squares fit of
the kth box of size n. ak and bk can be determined analyti-
cally, thus giving

ak512
1

12 n2
1

1
2 n2k1

1
12 n2

1
2 k2n2, ~C3!

bk512
1
2 n1kn1

1
2 . ~C4!

With these values, FL(n) can be evaluated analytically,

FL~n !5AL
1

60 A~5n4
125n3

125n2
225n230! ~C5!

The dominating term inside the square root is 5n4 and then
one obtains

FL~n !'
A5

60
ALn2, ~C6!

leading directly to an exponent of 2 in the DFA. An impor-
tant consequence is that as F(n) does not depend on Nmax ,
for linear trends with the same slope, the DFA must give
exactly the same results for series of different sizes. This is
not true for other trends, where the exponent is 2, but the
factor multiplying n2 can depend on Nmax .

APPENDIX D: DFA-1 ON A QUADRATIC TREND

Let us suppose now a series of the type u(i)5AQi2. The
integrated time series y(i) is

y~ i !5AQ(
j51

i

j2
5AQ

2i3
13i2

1i

6
. ~D1!

As before, let us call Nmax and n the sizes of the series and
box, respectively. The rms fluctuation function FQ(n) mea-
suring the rms fluctuation is now defined as

FQ~n !5AQA 1

Nmax
(
k51

Nmax /n

(
i5(k21)n11

kn S 2i3
13i2

1i

6
2~ak1bki ! D 2

, ~D2!

where ak and bk are the parameters of a least-squares fit of the kth box of size n. As before, ak and bk can be determined
analytically, thus giving

ak5
1

15 n3
1n3k2

2
7

15 n3k1
17
30 n2k2

7
60 n2

1
1

20 n2
2
3 k3n3

2
1
2 n2k2

1
1

15 kn , ~D3!

bk5
3

10 n2
1n2k2

2n2k1kn2
2
5 n1

1
10 . ~D4!

Once ak and bk are known, F(n) can be evaluated, giving

FQ~n !5AQ

1

1260
A221~n4

15n3
15n2

25n26 !~32n2
26n2812210Nmax2140Nmax

2 !. ~D5!

As Nmax.n , the dominant term inside the square root is given by 140Nmax
2

321n4
5AQ2940n4Nmax

2 , and then one has
approximately

FQ~n !'AQ
1

1260 A2940n4Nmax
2

5AQ
1

90 A15Nmaxn2 ~D6!

leading directly to an exponent 2 in the DFA analysis. An interesting consequence derived from Eq. ~D6! is that FQ(n)
depends on the length of the signal Nmax , and the DFA line @ logFQ(n) vs logn# for the quadratic series u(i)5AQi2 of different
Nmax does not overlap ~as is the case for linear trends!.
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