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We study the coding potential of human DNA sequences, using the positional asymmetry
function (D

p
) and the positional information function (I

q
). Both D

p
and I

q
are based on the

positional dependence of single nucleotide frequencies. We investigate the accuracy of D
p
and

I
q

in distinguishing coding and non-coding DNA as a function of the parameters p and q,
respectively, and explore at which parameters p

opt
and q

opt
both D

p
and I

q
distinguish coding

and non-coding DNA most accurately. We compare our "ndings with classically used
parameter values and "nd that optimized coding potentials yield comparable accuracies as
classical frame-independent coding potentials trained on prior data. We "nd that p

opt
and q

optvary only slightly with the sequence length.
( 2000 Academic Press
1. Introduction

Many sequence projects have turned from map-
ping to large-scale sequencing, including organ-
isms from simple bacteria to complex vertebrates.
Biochemical techniques on their own may not be
adequate for annotating all genes in primary
DNA sequences, and so they are customarily
supported by computer-based predictions of
genes (Fleischmann et al., 1995; Nelson et al.,
1999). However, the reliable annotation of genes
by statistical means remains a di$cult problem in
molecular biology (Fickett, 1996; Searls, 1998) as
evidenced by the complete DNA sequences of
human chromosomes 21 and 22 (Hattori et al.,
2000; Dunham et al., 1999).

Genes of higher eukaryotes consist of coding
regions (exons) that are interrupted by non-
0022}5193/00/200525#13 $35.00/0
coding regions (introns). Exons and introns
possess distinctive statistical patterns that dis-
tinguish coding and non-coding DNA. Conven-
tional programs for gene-"nding integrate
heterogeneous types of biological information,
referred to as the search by content and the search
by signal. A third type of information refers to
database similarity searchers. Gene-search by
content is based on statistical general patterns of
coding DNA regions. Gene search by signal is
based on the detection of DNA binding sites and
on other signals in the surrounding of a gene. In
order to predict the most likely gene structure
from a primary sequence, gene search by content
is typically merged with the search by signal,
using probabilistic models of DNA, discriminant
analysis, or neural networks. Several statistical
( 2000 Academic Press
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models have been applied in programs to the task
of gene-identi"cation, such as GeneID (GuigoH et
al., 1992), GeneParser (Snyder & Stormo, 1993),
GENMARK (Borodovsky & McIninch, 1993),
GenLang (Dong & Searls, 1994), FGENEH
(Solovyev et al., 1994), GRAIL II (Xu et al., 1994),
MZEF (Zhang, 1997), GENSCAN (Burge
& Karlin, 1997), GeneGenerator (Kle!e et al.,
1998), and GLIMMER (Salzberg et al., 1998).
The advantages and disadvantages of these pro-
grams and the application in conjunction have
been evaluated (Gelfand, 1995; Fickett, 1996;
Burset & GuigoH , 1996; Claverie, 1997; Murakami
& Takagi, 1998).

One well-known statistical pattern of exons is
the existence of a reading frame and the unequal
use of coding nucleotide triplets (codons). The
reading frame induces a triplet periodicity in cod-
ing sequences, which is absent in non-coding
sequences. The non-uniform codon usage gives
rise to a di!erent relative frequency f (b Dl ) of
each nucleotide b"A, C, G, T, in a position
l3(1, 2, 3) of the reading frame. Possible reasons
for the non-uniformity of the codon usage are: (i)
the non-uniform amino acid composition of pro-
teins, (ii) the unequal number of codons encoding
di!erent amino acids, and (iii) the non-uniform
distribution of synonymous codons encoding the
same amino acid.

We study several coding potentials based on
f (b Dl ). The coding potential correlates with the
likelihood that a certain region in DNA is
protein-coding and builds the core of many
gene-"nding programs in order to "nd a rough
location of open reading frames (ORFs). Evalu-
ated coding potentials can be applied to DNA
sequences without prior training. Beyond the
statistical pattern f (b D l ) there exist further pat-
terns, such as relationships between coding se-
quences and adjacent intergenic DNA (Bernardi,
2000). The inclusion of further biological in-
formation can improve accuracy in gene-"nding
(GuigoH & Fickett, 1995; Burset & GuigoH , 1996;
Burge & Karlin, 1997).

We consider coding potentials which can be
directly derived from a query sequence. A num-
ber of methods have been developed to calcu-
late the coding potential based on f (b Dl ), such
as the prevalence for the occurrence of codons
of the form purine}any nucleotide}pyrimidine
(Shepherd, 1981), the non-uniform positional
nucleotide usage (Fickett, 1982; Staden, 1984), the
di!erent G#C content (Bibb et al., 1984), the detec-
tion of periodicities (Silverman & Linsker, 1986;
Michel, 1986), the higher concentration of G in the
"rst codon position (Trifonov, 1987), the posi-
tional dependence of entropy (Amalgor, 1985;
Grosse et al., unpublished data) or the correlation
between nucleotide pairs (Grosse et al., 2000a).

Many coding potentials are parameter-depen-
dent. A systematic analysis of this parameter
dependence has been left standing and this is the
focus of this paper. We generalize classical coding
potentials to the positional asymmetry function
D

p
and the positional information function I

q
,

and examine how accurately D
p
and I

q
can distin-

guish coding and non-coding DNA as a function
of p and q, respectively. We search for values
p
opt

and q
opt

for which both D
p

and I
q

yield the
maximum accuracy, and compare p

opt
and

q
opt

with classical parameters. At p
opt

and q
opt

, we
"nd that D

p
and I

q
yield a comparable accuracy

as traditional frame-independent coding poten-
tials, most of which are trained on prior data and
require a much higher number of input para-
meters. We base our studies on two standard
data sets: (i) the benchmark data set of Fickett
& Tung (1992) and (ii) the GenBank release 111.0
(Benson et al., 1999). We also examine the de-
pendence of the coding potentials studied here
with respect to the A#T content of coding and
non-coding DNA, since it has been shown that
the accuracy of coding potentials can be a!ected
by the A#T content (GuigoH & Fickett, 1995;
Burset & GuigoH , 1996).

2. Coding Potentials

Consider a moving window of length 3N base
pairs (bp) along a DNA sequence and decompose
the window into N non-overlapping triplets. De-
note the number of occurrences of base b at
a given triplet position l by N(b Dl ) and de"ne the
relative frequencies by f (b D l ) "N (b D l )/N. Let the
frame dependence matrix F be the 4]3
(base]position) element matrix in which each ele-
ment contains f (b Dl). Since for each l normalization
constrains each column of F to +4

b/1
f (bDl)"1,

only 9 out of 12 numbers are independent.
Separate the mean frequency f (b)"+3 f (b D l)/3
l/1
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from f (b Dl )"f (b)#d (b Dl ) as the elements of the
vector f. Keep the residuals d(b Dl ) as elements of
the matrix D, which represent deviations of posi-
tional base compositions from occurrences ex-
pected by chance. We visualize the notations in
the following sketch, in which the data are ob-
tained from the coding sequence of the human
beta-myosin heavy chain (HUMBMYH7) gene:
Coding sequences

dgggggggggggggggggegggggggggggggggggf
atg ggagattcggagatggcagtctttggggctgccgccccctacctgcgcaagtcagag . . . . . . ttgaatgaggag

hggggggggggigggggggggggj
Moving window of size 54 bp

gga gat tcg gag . . . . . . aag tca
hggggggggggiggggggggggj

N"18 triplets of the above window
We compute the 12 numbers N(bDl ) from the
above window and display the frequencies f (b Dl ),
f (b), and d(b D l ) (rounding o! to 0.01):

F"A
0.11 0.22 0.17

0.17 0.39 0.33

0.50 0.17 0.33

0.22 0.22 0.17 B ,

f"A
0.17

0.30

0.33

0.20 B ,

D"A
!0.06 0.05 0.01

!0.13 0.09 0.04

0.17 !0.16 !0.01

0.02 0.02 !0.04 B .

These matrices show, e.g. the excess (lack) of G in
the "rst (second) codon position and the high
G#C content in the third codon position. Next,
we brie#y discuss classical coding potentials. We
illustrate each concept by using the values of F, f,
and D above.

f Base composition asymmetry (Fickett, 1982).
The coding potential is calculated from a linear
weighted sum over the ratios of the maximal
and minimal values of f (b D l) as

A,

4
+
b/1
G=(b)

maxl3(1, 2,3) M f (b D l )N
min13(1, 2, 3) M f (b D l )N#1/N

#w(b) f (b)H . (1)
The weights=(b) and w(b) are calculated from
training sets of exons and introns. In order to
construct a training-independent coding po-
tential, we simplify eqn (1) and set all=(b),1
and w(b),0. If we substitute the values from
F, we obtain A"6.26.

f ;neven positional base frequencies (Staden,
1984). The coding potential is calculated from
the sum over the deviations d (bDl ) of the posi-
tional frequencies from the mean

D
1
,

4
+
b/1

3
+
l/1

Dd (b D l ) D. (2)

The introduction of the index &&1'' will become
clear in the context later on. Substituting the
values from D, we obtain D

1
"0.80. To con-

trast this outcome with non-coding DNA, we
make the simplifying assumption that each
base b shows no dependence on the position l,
such that f (b D1)"f (b D2)"f (b D3). Hence, all
d(b Dl )"0 due to the absence of any frame
dependence and D

1
"0.

f Positional asymmetry (Fickett & Tung, 1992).
The coding potential is computed from the sum
over the positional spread of f (b Dl ) from f (b):

D
2
,

4
+
b/1

3
+
l/1

d2 (b D l ) . (3)

This coding potential is closely related to the
one proposed by Staden (1984). We obtain
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D
2
"0.09 for D and D

2
"0 for non-coding

sequences.
f Fourier transform (Silverman & Linsker, 1986;

Michel, 1986). The square of the Fourier trans-
form (the power spectrum) is calculated for
each base b binary translated DNA sequences.
Assigning base bI at the nth sequence position
;
n
(bI , b)"db3 , b (where db3 b"1 if base bI "b, and

0 otherwise), the power spectrum is computed
as

P( f
m
),

4
+
b/1
K
+3N

n/1
;

n
(bI , b) e~i2nnfm

3N K
2
, (4)

where f
m
"m/3N with m"1,2, 3N/2. Com-

monly, m"N is used to calculate the coding
potential P(1

3
). The full spectrum can be used to

include e!ects of statistical noise (Tiwari et al.,
1997).

Interestingly, it has been observed (GuigoH ,
1999) that P(1

3
) and D

2
have the same coding

potential. Since +3N
n/1
;

n
(bI , b)"3N f (b), it can

be analytically shown that by using e~i2n@3 as
weights, P (1

3
) is up to a constant equal to

D
2

(Grosse, unpublished). Consequently, P (1
3
)

can be calculated from F.
f Positional information (Grosse et al., unpub-

lished data). For each position l, the positional
entropy H
1
( l ) can be calculated from f (b D l )

(Amalgor, 1985). However, the accuracy of
H

1
(l) is limited (Fickett & Tung, 1992). By

normalizing the entropy, we de"ne the posi-
tional information I

1
as the di!erence between

the entropy of the mean values H
1

[calculated
form f (b)] and the average SH

1
(l)T

l
as

I
1
,H

1
!

1
3

3
+
l/1

H
1
(l)

"!

4
+
b/1

f (b) log
2

f (b)

#

1
3

3
+
l/1

4
+
b/1

f (b Dl ) log
2
f (b Dl). (5)
Furthermore, if we introduce f ( l) as the rela-
tive frequency of the position l and use the joint
frequency f (b, l ) "f (b D l) f (l ), we can express
I
1

as the mutual information between positional
nucleotides (Grosse et al., unpublished data)

I
1
,H

1
!

3
+
l/1

f (l )H
1
(l)

"

4
+
b/1

3
+
l/1

f (b, l ) log
2 A

f (b, l )
f (b) f (l )B . (6)

I
1

provides an intuitive meaning to the coding
potential. Its outcome can be interpreted as the
average mutual information in base b about
the position l measured in units of bits. We
calculate I

1
"0.12 (bits) for F and I

1
"0 (bits)

for non-coding DNA, since f (b, l) factorizes to
f (b) f (l ).

f Average mutual information (Grosse et al.,
2000a, b). The mutual information I(k) as
a function of the base pair (bI , b) separated by
a distance k is used. Under the simplifying
assumption that the DNA sequence consists
of statistically independent codons (Herzel
& Grosse, 1995), the frequency f

k
(bI , b) of base

pairs bI and b in a distance k becomes a func-
tion of F
f
k
(bI , b)"

1
3 G

f (bI D1) f (b D1)#f (bI D2) f (b D2)#f (bI D3) f (b D3), k"3, 6, 9,2 ,

f (bI D1) f (b D2)#f (bI D2) f (b D3)#f (bI D3) f (b D1), k"4, 7, 10,2 ,

f (bI D1) f (b D3)#f (bI D2) f (b D1)#f (bI D3) f (b D2), k"5, 8, 11,2 .
If we transpose the subscripts bI and b, we have
f
k
(bI , b)"f

k`1
(b, bI ) for distances k"4, 7,

10,2 Hence, I(k) assumes only two values: the
in-frame (out-of-frame) mutual information
I
in

(I
out

) for k"3, 6, 9,2 (k"4, 5, 7, 8,2).
The average is used to de"ne the coding poten-
tial as

IM,
I
in
#2 I

out
3

. (7)

Equation (7) quanti"es the average mutual in-
formation shared by bI and b given the distance
k between bI and b is a multiple of 3. We
calculate IM"0.005 (bits) for F and IM"0 (bits)
for non-coding DNA.
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3. Accuracy of Positional Information

In this section, we illustrate the application of
coding potentials. We evaluate the positional in-
formation I

1
for the two di!erent data sets used

throughout this study and examine the statistical
dependence of coding potentials on di!erent
A#T content.

For each sequence from biologically known
sets of exons and introns, we compute I

1
and thus

obtain the I
1
-histograms for exons and introns.

The I
1
-histograms overlap due to the "nite se-

quence length. We evaluate the accuracy of
a coding potential as follows:

1. Let the true positives (negatives), ¹P (¹N),
denote the fraction of coding (non-coding)
sequences correctly predicted as coding
(non-coding).

2. One determines the threshold above which
a sequence is predicted as coding by impos-
ing equal relative errors on the prediction of
exons and introns, ¹P"¹N.

3. One quanti"es the accuracy (Fickett
& Tung, 1992) of a coding potential as
(¹P#¹N)/2, ranging from 1/2 (no discrim-
ination) to 1 (exact discrimination).

To compare the accuracy of I
1

with the accuracy
of other coding potentials, we analyse the stan-
dard data set of human DNA established by
Fickett & Tung (1992). Since I

1
does not require

prior training on organism-speci"c data, we com-
pute the accuracy of I

1
for both the training set

(A
training

) and the test set (A
test

). In order to test the
robustness of I

1
, we use an additional data set

B of all human sequences from GenBank release
TABL

¹he number of coding and non-co
data sets A

trainin

Data set Sequence class 54 b

A
training

Coding 20
Non-coding 125

A
test

Coding 22
Non-coding 122

B Coding 595
Non-coding 171
111.0 (Benson et al., 1999). We identify coding
DNA using the &&CDS'' key word in the GenBank
#at"le format. We obtain non-overlapping cod-
ing and non-coding sequences of length ¸ bp by
partitioning all human sequences in GenBank
111.0 longer than ¸ into sequences of length ¸,
starting at the 5@-end (cf. Table 1).

Figure 1 shows the I
1
-histograms for sets

A
training

, A
test

, and B. We "nd that both coding
and non-coding DNA have unimodal I

1
-histo-

grams with distinct maxima. We "nd that for
each data set the histograms are signi"cantly
di!erent for coding and non-coding DNA. In
each data set, I

1
-histograms for non-coding DNA

are centered at signi"cantly smaller values than
the I

1
-histograms of coding DNA. Figure 1 also

shows that the I
1
-histograms for sets A

training
,

A
test

, and B are similar. Hence, the accuracy of
I
1

is similar when evaluated on di!erent sets of
human DNA sequences. In Table 2, we show the
accuracy for I

1
, A, IM , D

1
, and D

2
for sets A

training
,

A
test

, and B. Table 2(a) shows the accuracy for
coding potentials for the data sets A

training
, A

test
,

and B for three di!erent sequence lengths. Table
2(b) shows the accuracy for eight frame-indepen-
dent coding potentials evaluated in Fickett
& Tung (1992) as being the most accurate for
A

test
. We "nd that D

2
, I

2
, and coding potentials

for p (q) adjacent to p"q"2 are as accurate as
the most e!ective classical measures after prior
training on A

training
. Fickett & Tung (1992) evalu-

ate the accuracy of the entropy H
1
( l) (Amalgor,

1985) for ¸"108 bp to be 63%. The inset in Fig.
1 shows the signi"cantly higher accuracy of I

1
of

76% (Grosse et al., unpublished data).
Figure 1 shows for coding sequences of

set B a small shift of the coding I -histogram
E 1
ding sequences in (1000s) in the

g
, A

test
, and B

p 108 bp 162 bp 1080 bp

.5 7.1 3.5 *

.1 58.1 36.5 *

.9 8.2 4.3 *

.1 57.0 35.6 *

.2 282.9 178.5 4.5

.7 81.1 51.1 16.0

1



FIG. 1. Histograms of I
1

for human exons (**) and in-
trons (==) of length 108 bp. The inset shows the cumulat-
ive histograms. While the values of I

1
vary from sequence to

sequence, the I
1
-histogram is almost the same for all three

data sets. The I
1
-histograms show an overlap of approxim-

ately 24% on A
training

and A
test

and of 25% on set B: test set
A (coding), ; test set A (non-coding), ; training set
A (coding), ; training set A (non-coding), ; set
B (coding), ; set B (non-coding), .
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towards non-coding, which leads to a slightly
smaller accuracy of 75%. We examine whether
the slight decrease in accuracy could be explained
by A#T content variations between sets A and
B. Figure 2 shows the A#T content of the sets
A and B in conjunction with the mean and vari-
ance of I

1
. A comparison of the top graphs shows

that set B contains slightly more sequences with
high A#T content than set A. The bottom
graphs show that the accuracy of I

1
increases for

sequences with low A#T content.
It is a general feature that many coding poten-

tials show a dependence on the A#T content
(GuigoH & Fickett, 1995). Although I

1
is a priori-

independent of the A#T content and shows no
systematic dependence when it is applied to com-
puter-generated Markov sequences (data not
shown), it does show a dependence for experi-
mental, coding DNA. Figure 2 shows that I

1
is

almost independent of the A#T content for non-
coding sequences, whereas it decays with increas-
ing A#T content for coding sequences. Hence,
we "nd that one possible explanation for the
decrease in accuracy is indeed the di!erence in
the individual A#T content of the A and B.
Another possible explanation for the slight de-
crease in accuracy could be due to newer anno-
tated contiguous sequences in GenBank, a num-
ber which stems from gene-"nding programs and
may still be putative.

By calculating the correlation coe$cient
C(X, >), we quantify the linear statistical de-
pendence of I

1
("X) on the A#T content

(">). Analogously, we calculate the uncertainty
coe$cient;(X, >) to quantify the nonlinear stat-
istical dependence of X on > (see Appendix A).
Table 3(a) shows C(X, >) and Table 3(b) shows
;(X, >) for X"I

1
, A, I1 , D

1
, and D

2
vs.

>"A#¹ applied to the data sets A
training

, A
test

,
and B. Table 3 shows that most coding potentials
have no distinct correlation on the A#T content
for introns, while it shows clear linear anti-cor-
relations and in general higher nonlinear correla-
tions of coding potentials on the A#T content
for exons than for introns. We "nd both C(X, >)
and ;(X, >) for most coding potentials higher
for set A and set B. One possible explanation is
the overall higher A#T content for set B than for
set A.

4. Optimization of Coding Potentials

In this section, we generalize the coding poten-
tials D

1
, D

2
to D

p
and I

1
to I

q
, and study the accu-

racy of D
p

and I
q

as a function of p and q,
respectively.

Consider D
1

and D
2

as two selected quantities
of the generalized coding potential D

p
, which we

de"ne as the positional asymmetry function

D
p
,

4
+
b/1

3
+
l/1

Dd(b Dl ) Dp. (8)

The parameter p can take on any real number.
D
p
recovers the coding potential of Staden (1984)

for p"1 and the coding potential of Fickett
& Tung (1992) for p"2.

We generalize I
1

as follows. Recall that I
1

can
be de"ned as the di!erence H

1
!SH

1
(l )T

l
. Ac-

cording to ReH nyi (1970), there exists a natural
extension of the ordinary Shannon entropy H

1
(Shannon, 1948) to the generalized entropies H

q
.

We de"ne the ReH nyi entropies of f (b) as (ReH nyi,
1970)

H
q
,

1
1!q

log
2 A

4
+ f q(b)B, (9)

b/1



TABLE 2
Comparison of classical coding potentials with D

p
and I

q
for p (q)"1, 2, 3, and 4

(a) Coding potentials using positional dependence of nucleotide frequencies

Coding Set A
training

Set A
test

Set B
measure

54 bp 108 bp 162 bp 54 bp 108 bp 162 bp 54 bp 108 bp 162 bp
(%) (%) (%) (%) (%) (%) (%) (%) (%)

A 68.9 75.9 79.6 68.3 75.1 79.3 66.9 74.2 79.3
D

1
69.9 76.6 80.9 69.4 76.3 79.8 68.0 75.1 79.4

D
2

70.2 76.8 80.8 70.0 76.6 80.1 68.0 75.5 80.5
D

3
69.8 76.7 80.4 69.9 76.7 80.3 68.1 75.3 80.3

D
4

69.5 76.4 80.1 69.5 76.3 80.0 67.9 75.1 80.0
IM 69.7 76.4 80.6 69.6 76.1 80.1 67.6 75.2 80.3
I
1

69.2 76.6 80.7 69.0 75.9 80.0 67.1 75.1 80.2
I
2

70.6 77.2 81.1 70.2 76.9 80.6 69.1 76.2 80.9
I
3

69.6 76.6 80.4 68.9 75.2 79.2 68.4 75.3 79.9
I
4

68.7 75.1 78.8 67.9 73.6 77.2 67.6 73.9 78.2

(b) Most accurate coding potentials (frame-independent)

Coding potential No. of input parameters Set A
test

54 bp (%) 108 bp (%) 162 bp (%)

Hexamer 4096 70.5 73.1 74.2
Positional symmetry 12 70.2 76.6 80.6
Dicodon usage 4096 70.2 72.9 73.9
Fourier 8 69.9 76.5 80.8
Hexamer-1 4096 69.9 72.6 73.8
Hexamer-2 4096 69.9 72.6 73.8
Run 6 66.6 70.3 71.3
Codon usage 64 65.2 68.0 69.5
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where the parameter q can take on any real
number. For large (small) q the entropies H

q
are

dominated by the most (least) f (b). For q"0,
simply the number of non-vanishing frequencies
f (b) is counted. Analogously, we de"ne H

q
for

f (b D l ) . We substitute H
q

for H
1

in eqn (5) and
de"ne the positional information function as

I
q
,H

q
!

1
3

3
+
l/1

H
q
( l )

"

log
2
(+4

b/1
f q(b))

1!q
!

1
3

3
+
l/1

log
2
(+4

b/1
f q(b D l ))

1!q
.

(10)

Equivalently, we can write the above expression
using f (l) as

I
q
,

1
1!q

3
+
l/1

f ( l ) log
2 A

+4
b/1

f q(b) f q( l )
+4

b/1
f q(b, l) B . (11)
For qP1, I
q
recovers the positional information

I
1
. The generalizations D

p
and I

q
are in the center

of this study. Let us consider the mechanism of
how a parameter change a!ects I

q
(the mecha-

nism for D
p
is similar). The parameter q accounts

for two essential features: (i) the di!erent charac-
teristic patterns in the frame dependence matrix
F (cf. Section 2) and (ii) the in general higher
values of I

q/1
for coding sequences than for non-

coding sequences (cf. Fig. 1). The role of q is that
it can change the relative weight that each ele-
ment in F contributes to I

q
. By varying q over its

parameter range, we can weight characteristics
such as the G#C content of isochores or G in the
"rst codon position. Therefore, we conduct a sys-
tematic analysis of I

q
(D

p
) and test whether there

is the possibility that the accuracy of I
q
(D

p
) could

be higher for parameter values that are di!erent
from the classical values q"1 (p"1, 2).



FIG. 2. Dependence of I
1

on the A#T content for exons
(**) and introns (==). We analyse log

2
I
1

for A
test

(a) and
B (b), because the I

1
-histograms show broad tails (cf. Fig. 1).

We compute the error bars by using subsets with 7000
coding and 7000 non-coding sequences. The top graphs
show the A#T-histograms of exons (introns) with mean
values 45% (52%) in set A

training
(data not shown), 43%

(51%) in set A
test

, and 47% (54%) in set B. The bottom
graphs show the dependence of log

2
I
1

on the A#T content
by binning the A#T values to 20 bins and displaying the
mean and standard deviation of log

2
I
1

per bin. The overlap
of the error bars indicates that the discrimination of exons
and introns is less accurate for high A#T content.
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To explore this possibility, we study the accu-
racy of D

p
and I

q
as a function of p (q) to deter-

mine the optimal parameter values p
opt

and
q
opt

for A
training

, A
test

, and B. In order to compare
the accuracy with benchmarked results, we
choose the sequence lengths ¸"54, 108, and 162
bp. Figure 3 (resp. Fig. 4) shows the accuracy for
D
p
(resp. I

q
) as a function of p (q)3[!10, 10] for

sequences of length 108 bp. We "nd that the
accuracy of both D

p
and I

q
shows a strong de-

pendence on p and q. Both D
p

and I
q
distinguish

coding and non-coding DNA with signi"cantly
higher accuracy for p, q'0 than for p, q(0. As
p increases beyond zero, the accuracy of
D
p

reaches its global maximum at about p"2
and then only slightly decreases for p3[2, 10].
The accuracy of I

q
shows a clear maximum at

about q"2 and decays signi"cantly as q in-
creases. This "nding is interesting as it states that
the positional asymmetry D

2
(Fickett & Tung,

1992) is the most accurate coding potential
among all D

p
.

In Table 2, we compare the accuracy of D
p
and

I
q
with the accuracy of other coding measures for

sequences of length 54 and 162 bp. Table 2(a)
shows that the accuracy by which D

2
and

I
2

identify unannotated DNA is as high as the
precision of those methods listed in Table 2(b)
which are trained on the DNA to be analysed.
Table 2(b) also shows the number of learned
input parameters required for the discrimination
(somewhat variable for Fourier and Run). Since
D
p

(I
q
) depend only on the 12 frequencies d(b D l )

( f (b D l)), generalized coding potentials can be
usefully studied for sequence lengths as short as
50 bp.

Finally, we examine for parameter values
p (q)3[0, 4] the statistical dependence of D

p
and I

q
on the A#T content. Table 3 shows for

D
p

and I
q

for p (q)"1, 2, 3, and 4 in Table 3(a)
linear and in Table 3(b) nonlinear statistical de-
pendences of D

p
and I

q
on the A#T content. We

"nd that the dependence of D
p

and I
q

on the
A#T content is similar to the dependence of
classical coding potentials on the A#T content.
D
p

shows no distinct correlations for non-
coding DNA but clear anti-correlations for
coding DNA. The statistical dependence of I

q
on the A#T content is more complex. Table 3
shows for I

q
less linear correlations to coding

DNA than D
p

to coding DNA but more
nonlinear correlations to non-coding DNA
than D

p
to non-coding DNA, when q and p are

increased.



TABLE 3
Dependence of classical coding potentials and D

p
and I

q
for p (q)"1, 2, 3, and 4 on the

A#¹ content. (a) shows linear and (b) shows nonlinear statistical dependences of coding potentials
on the A#¹ content for A

training
, A

test
, and B.

(a) Correlation coe$cient

Data set Sequence class A D
1

D
2

D
3

D
4

IM I
1

I
2

I
3

I
4

A
training

Coding !0.39 !0.31 !0.31 !0.31 !0.31 !0.35 !0.36 !0.20 !0.08 0.00
Non-coding 0.01 !0.02 !0.03 !0.03 !0.03 0.00 0.00 !0.04 !0.05 !0.06

A
test

Coding !0.42 !0.33 !0.35 !0.36 !0.35 !0.37 !0.38 !0.22 !0.07 !0.02
Non-coding !0.03 !0.05 !0.05 !0.05 !0.05 !0.04 !0.04 !0.05 !0.03 !0.02

B Coding !0.23 !0.20 !0.20 !0.20 !0.20 !0.21 !0.22 !0.14 !0.07 !0.03
Non-coding 0.03 !0.04 !0.04 !0.04 !0.04 !0.01 0.00 !0.13 !0.20 !0.23

(b) Uncertainty coe$cient

Data set Sequence class A D
1

D
2

D
3

D
4

IM I
1

I
2

I
3

I
4

A
training

Coding 0.06 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.03 0.03
Non-coding 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04

A
test

Coding 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.02 0.02
Non-coding 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04

B Coding 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.01 0.02 0.02
Non-coding 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04

We randomly choose for each class a subset of 7000 sequences of exons and introns of length 108 bp. We (a) rank the data
and calculate C(X, >), and we (b) distribute the data on an array covered by M"4]4 bins and calculate the ;(X, >)
rounding o! to D0.01D.

FIG. 3. Dependence of the accuracy of D
p

on the
parameter p3[!10, 10] for sets A

training
, A

test
, and B. The

inset shows the region p3[0, 4]. The accuracy of D
p

shows a strong dependence on the parameter p, dropping
to nearly 50% (no discrimination) when passing through
p"0. The accuracy of D

p
shows two maxima, one for

p(0 and one for p'0, and the accuracy of D
p

is
almost constant for p'p

opt
: training set A, ; test set A,

; set B, .

FIG. 4. Dependence of the accuracy of I
q
on the parameter

q for sets A
training

, A
test

, and B. The inset shows the region
q3[0, 4]. The accuracy of I

q
shows a clear maximum at

q
opt

and decays signi"cantly for q'q
opt

: training set A,
; test set A, ; set B, .
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FIG. 6. Accuracy of I
q
as a function of the parameter q for

di!erent sequence lengths for set B (cf. Fig. 5). The value
q
opt

(e) at which the accuracy of I
q

assumes its maximum
does not undergo large variations when varying the
sequence length. The } } } } shows the mean value
Sq

opt
T"1.7$0.2 of all optimal q

opt
: set B, ; set

B (108 bp), ; maxima, e.
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5. Length Dependence of Accuracy

We investigate the length dependence of the ac-
curacy of D

p
and I

q
, and examine the dependence

p
opt

(N) and q
opt

(N) on N. We partition all human
sequences of set B longer than 1080 bp into se-
quences of non-overlapping coding and non-cod-
ing sequences of length 1080 bp and study the
accuracy for sequence sizes ranging from 27 to
1080 bp. We allow only such sequence sizes
which are integer fractions of 1080 bp, so that for
each ¸ exactly the same number of nucleotides
are studied and no nucleotide is left over when
partitioning the sequences of 1080 bp into the
sequences of sizes ¸. We keep for each length the
overall number of triplets N within the set con-
stant. Figure 5 and 6 show that both p

opt
(N) and

q
opt

(N) are almost independent of N. As #uctu-
ations increase for small sequence lengths
(N)20), the accuracy does not abruptly change
with changing p (q) to values adjacent to
p
opt

(q
opt

).
We also "nd that the sharp peak of the accu-

racy of I
q
becomes less pronounced with increas-

ing N (cf. Fig. 6). As such, the use of q
opt

plays
a more important role when using small sequence
FIG. 5. Accuracy of D
p
as a function of the parameter p for

di!erent sequence lengths for set B (from bottom to top: 27,
30, 36, 45, 54, 60, 72, 90, 108, 120, 135, 180, 216, 270, 360, 540,
and 1080 bp). The accuracy of D

p
increases with increasing

sequence length. The value p
opt

(e) at which the accuracy of
D
p

assumes its maximum does not undergo large variations
when varying the sequence length. The broken line shows
the mean value Sp

opt
T"1.6$0.3 of all optimal p

opt
: set B,

; set B (108 bp), ; maxima, e.
sizes. This situation is relevant for human DNA
sequences, which have an average exon length of
150 bp (Deutsch & Long, 1999).

6. Conclusions

This study addressed the problem of possible new
parameters that distinguish coding and non-cod-
ing DNA more accurately. We generalized the
coding potentials D

1
and D

2
to the positional

asymmetry function, D
p
, and the coding potential

I
1

to the positional information function, I
q
. We

study the accuracy of D
p

and I
q
for p (q)3[!10,

10], and we search for those values p
opt

and
q
opt

for which the accuracy is maximal. By plot-
ting the accuracy as a function of p (q), we "nd
that both functions show a strong dependence on
p and q, respectively (cf. Figs 3 and 4).

We "nd that D
p
and I

q
can enhance the contri-

bution of strong characteristics*such as the
preference of G in the "rst codon position and the
high G#C content in the third codon posi-
tion*and can thus distinguish coding and
non-coding DNA signi"cantly more accurate for
p, q'0 than for p, q(0. It is an interesting
result that a &&quadratic weighting'' (i.e.,
p"q"2) of d(b Dl ) or f (b D l ) maximizes the accu-
racy of D and I . In this parameter region, D or
p q p
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I
q

are as accurate as frame-independent coding
potentials bench-marked in Fickett & Tung
(1992) as being the most accurate for sequence
lengths ¸"54, 108, and 162 bp. This "nding is
intriguing, since most conventional coding po-
tentials require training on organism-speci"c
data sets whereas both D

p
and I

q
do not. It also

indicates that there are di!erences in coding and
non-coding DNA which are related to generaliz-
ed entropies (distances) I

q
(D

p
) of q"2 (p"2).

We emphasize that we restrict ourselves in this
study to the analysis of coding potentials based
on the frame dependence of single nucleotides.
Beyond single nucleotides, one could also de"ne
generalized coding potentials based on di- and
trinucleotide frequencies. While coding poten-
tials like Hexamer exploit oligonucleotide
frequencies, Table 2 shows that D

2
and I

2
dis-

tinguish coding and non-coding DNA with
similar accuracy as Hexamer. Moreover, since
both p

opt
and q

opt
show only a slight dependence

on the sequence size N, there is no need for
"ne-tuning.

In order to gain some insight into the robust-
ness of generalized coding potentials, we apply
D
p

and I
q
to two di!erent data sets A and B, and

"nd that the accuracy di!ers only slightly (cf. Fig.
1). Since the data sets A and B show di!erent
variations in the A#T content, we also study the
linear and nonlinear statistical dependences of
coding potentials on the A#T content in sets
A and B. The conjunction of linear and nonlinear
analyses shows for most coding potentials no
distinct correlations on the A#T content for
non-coding DNA, while it shows clear linear
anti-correlations and in general higher nonlinear
correlations for coding DNA than for non-cod-
ing DNA. The applied combination of linear and
nonlinear analysis can be easily used to detect
statistical dependences of other coding poten-
tials. We stress that D

p
and I

q
have the advantage

that they can be applied without prior training,
and that they can be supplemented by the search
for biological signals such as start and stop
codons, splice sites, promoter segments and so
forth.

In conclusion, our study shows that di!erences
in the coding potential of coding and non-coding
DNA can be optimally extracted, and that this
generalized approach could provide a "rmer
grounding for the application of coding poten-
tials to recognize coding sequences in novel DNA
for which training sets are not yet available.

We thank Lev Levitin and Olaf Weiss for stimulat-
ing discussions, the referees for valuable comments,
and the Deutsche Forschungsgemeinschaft (DFG), the
Graduate Programme &&Dynamics and Evolution''
(DFG-GK 268), and the National Institutes of Health
for "nancial support.
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APPENDIX A

In the appendix, we discuss the calculation of
the correlation coe$cient, C(X, >), and the un-
certainty coe$cient, ;(X, >).

A.1. CALCULATION OF CORRELATION COEFFICIENT

We quantify linear statistical dependences by
calculating the correlation coe$cient C(X,>) of
two samples of measurement X and >. C(X, >)
ranges from !1 to 1, where (!) 1 corresponds to
perfect sample (anti-)correlation, and 0 is
the value for linearly independent samples.

For two data samples of size S, we calculate the
mean values xN "SxT

S
and yN "SyT

S
by

SxT
S
"+S

s/1
x
s
/S and SyT

S
"+S

s/1
y
s
/S, and the

covariance p2
XY

"S(x!xN ) (y!yN )T
S
. One de"nes

the correlation coe$cients C(X, >) as (e.g. Sachs,
1984)

C(X, >)"
p2
XY

p
XX

p
YY

.

We use rank numbers instead of measurements,
so that C(X,>) becomes independent of
monotonic scaling. We obtain rank numbers
through X@"Mr

i
(x)N, where r

i
(x) is the rank of

the i-th element of the original data sample per-
mutated according to r

i
(x)"d M j Dx

j
)x

i
,

1)j)SN.
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A.2. CALCULATION OF UNCERTAINTY COEFFICIENT

We use the uncertainty coe$cient ;(X, >) to
quantify nonlinear statistical dependences. We
calculate the entropy of a M-bin discretized
measurement by H(X)"!+M

m/1
p
m

log
2

p
m
.

One de"nes the uncertainty coe$cient ;(X, >)
as (e.g. Press et al., 1992)

;(X,>)"2
H(X)#H(>)!H(X,>)

H(X)#H(>)
.

;(X,>) is the mutual information of measure-
ment X about measurement > (Shannon, 1948)
normalized to the marginal entropies. We com-
pute the entropies H(X), H(>), and the joint
entropy H(X,>) as follows:

1. Distribute X and > on an array consisting
of M]M bins. Choose the bins in such
a way that the marginal probabilities
Pr(X"x

m
)"p

m
and Pr(>"y

n
)"p

n
are

uniform. We have H(X)"H(>)"log
2
M,

since p
m
"p

n
"1/M.

2. Determine the joint probabilities,
Pr MX"x

m
, >"y

n
N"p

m,n
from the distri-

bution of X and > on the array of M2 bins.
3. Compute ;(X,>)"2!H(X,>)/log

2
M,

because H(X)"H(>)"log
2
M.

;(X,>) ranges from 0 to 1, where 0 corresponds
to the case in which X and > are statistically
independent, and 1 to the case in which X and
> are functionally dependent. ;(X, >) is related
to C(X,>), and it can be analytically shown that
weak correlations lead to ;(X,>)JC2(X,>)
(Herzel & Grosse, 1997).
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