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Abstract

The purpose of this report is to describe some recent progress in applying scaling concepts
to various systems in nature. We review several systems characterized by scaling laws such as
DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent
o quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also
discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and
report the recent finding that the scaling exponent o is smaller during sleep periods compared
to wake periods. We also discuss the recent findings that suggest a universal scaling exponent
characterizing the weather fluctuations. (© 1999 Elsevier Science B.V. All rights reserved.
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0. Introduction

In the last decade it was realized that many systems in nature have no characteristic
length or time scale, i.e., they have fractal — or, more generally, scaling — properties
[1-15]. However, the fractal properties in different systems, have quite different nature,
origin, and appearance. In some cases, it is the geometrical shape of an object itself
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that exhibits obvious fractal features, while in other cases the fractal properties are
more “hidden” and can only be perceived if data are studied as a function of time or
mapped onto a graph in some special way. After an appropriate mapping, such a graph
may resemble a mountain landscape, with jagged ridges of all length scales from very
small bumps to enormous peaks. Mathematically, these landscapes can be quantified
in terms of fractal and scaling concepts such as self-affinity. The range of systems
that apparently display power-law and hence scale-invariant correlations have increased
dramatically in recent years, ranging from base pair correlations in deoxyribonucleic
acid (DNA) [16], lung inflation [17,18] and interbeat intervals of the human heart
[19-23] to complex systems involving large numbers of interacting subunits that display
“free will”, such as city growth [24], weather fluctuations [25] and even economics
[26—28]. The main purpose of this paper is devoted to the study of such hidden fractal
properties that have been recently discovered in DNA sequences, heartbeat activity
and weather fluctuations. The common feature of these three topics is the long-range
power-law correlations which have been found in these systems.

1. DNA

The role of genomic DNA sequence in coding for protein structure is well known
[29,30]. The human genome contains information for approximately 100,000 different
proteins, which define all inheritable features of an individual. The genomic sequence
is likely the most sophisticated information database created by nature through the
dynamic process of evolution. Equally remarkable is the precise transformation of in-
formation (duplication, decoding, etc.) that occurs in a relatively short time interval.

In order to study the scale-invariant long-range correlations of a DNA sequence,
we first introduced a graphical representation of DNA sequences, which we term a
fractal landscape or DNA walk [16]. For the conventional one-dimensional random
walk model [31,32], a walker moves either “up” [u(i) = +1] or “down” [u(i) = —1]
one unit length for each step i of the walk. For the case of an uncorrelated walk, the
direction of each step is independent of the previous steps. For the case of a correlated
random walk, the direction of each step depends on the history (“memory”) of the
walker [33-36].

One definition of the DNA walk is that the walker steps “up” if a pyrimidine (C
or T) occurs at position i along the DNA chain, while the walker steps “down” if a
purine (A or G) occurs at position i. The question we asked was whether such a walk
displays only short-range correlations (as in an n-step Markov chain) or long-range
correlations (as in critical phenomena and other scale-free “fractal” phenomena). A
similar kind of DNA walk was suggested by Azbel [37].

There have also been attempts to map DNA sequence onto multi-dimensional DNA
walks [38,39]. However, recent work [40,41] indicates that the original purine-
pyrimidine rule provides the most robust results, probably due to the purine-pyrimidine
chemical complementarity.
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Fig. 1. DNA walk displacement y(¢) (excess of purines over pyrimidines) vs. nucleotide distance / for
(a) HUMHBB (human beta globin chromosomal region of the total length L = 73239); (b) the LINElc
region of HUMHBB starting from 23 137 to 29515. This sub-segment is a Markovian random walk. Note
that in all cases the overall bias was subtracted from the graph such that the beginning and ending points
have the same vertical displacement (y = 0). This was done to make the graphs clearer and does not affect
the quantitative analysis of the data. Courtesy of S.V. Buldyrev et al. [56,108].

An important statistical quantity characterizing any walk [31,32] is the root mean-
square fluctuation F(/) about the average of the displacement of a quantity Ay(/)
defined by Ay(¢) = y(£o + ) — y(£o), where

¢
OEDIOP ()
i=1
If there is no characteristic length (i.e., if the correlation were “infinite-range”), then
fluctuations will also be described by a power law

F(/)~(* (2)
with o # % The value o« = % correspond to short-range correlations.

Figure 1 shows a typical example of a gene that contains a significant fraction of
base pairs that do not code for amino acids. It is immediately apparent that the DNA
walk has an extremely jagged contour which corresponds to long-range correlations.

The fact that data for intron-containing and intergenic (i.e., noncoding) sequences are
linear on double logarithmic plot confirms that F(£) ~ /*. A least-squares fit produces
a straight line with slope « substantially larger than the prediction for an uncorrelated
walk, o= %, thus providing direct experimental evidence for the presence of long-range
correlations.

On the other hand, the dependence of F(¢) for coding sequences is not linear on
the log—log plot: its slope undergoes a crossover from 0.5 for small Z to 1 for large 7.

However, if a single patch is analyzed separately, the log—log plot of F(/) is again
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a straight line with the slope close to 0.5. This suggests that within a large patch
the coding sequence is almost uncorrelated. The function F(/) was also studied for
DNA sequences by Azbel [42], who identified qualitatively the presence of long-range
correlations.

2. Detrended fluctuation analysis (DFA) applied to DNA

The initial report [16,38] on long-range (scale-invariant) correlations only in non-
coding DNA sequences has generated contradicting responses. Some [43—45] support
our initial finding, while some [46—54] disagree. However, the conclusions of Refs.
[46—54] are inconsistent with one another in which Nee [46] and Karlin and Bren-
del [54] doubt the existence of long-range correlations (even in noncoding sequences)
while Voss [47], Prabhu and Claverie [49] and Chatzidimitriou Dreismann et al. [50
—53] conclude that even coding regions display long-range correlations (o > %). Prabhu
and Claverie [49] claim that their analysis of the putative coding regions of the yeast
chromosome III produces a wide range of exponent values, some larger than 0.5. The
source of these contradicting claims may arise from the fact that, in addition to normal
statistical fluctuations expected for analysis of rather short sequences, coding regions
typically consist of only a few lengthy regions of alternating strand bias — and so we
have nonstationarity. Hence conventional scaling analyses cannot be applied reliably to
the entire sequence but only to sub-sequences.

Peng et al. [55] have developed a method specifically adapted to handle problems
associated with nonstationary sequences which they term detrended fluctuation analysis
(DFA).

The idea of the DFA method is to compute the dependence of the standard error of
a linear interpolation of a DNA walk F;(/) on the size of the interpolation segment /.
The mehtod takes into account differences in local nucleotide content and may be
applied ot the entire sequence which has lengthy patches. In contrast with the original
F (/) function, which has spurious crossovers even for / much smaller than a typical
patch size, the detrended function F,;(/) shows linear behavior on the log—log plot for
all length scales up to the characteristic patch size, which is of the order of a thousand
nucleotides in the coding sequences. For ¢ close to the characteristic patch size the
log—log plot of F,;(/) has an abrupt change in its slope.

The DFA method clearly supports the difference between coding and noncoding
sequences, showing that the coding sequences are less correlated than noncoding se-
quences for the length scales less than 1000, which is close to characteristic patch
size in the coding regions. Buldyrev et al. [56] analyzed using DFA all 33301 coding
and all 29453 noncoding eukaryotic sequences — each of length larger than 512 base
pairs (bp) — in the 1995 release of the GenBank to determine whether there is any
statistically significant distinction in their long-range correlation properties.

Buldyrev et al. [56] find that standard fast Fourier transform (FFT) analysis indicates
that coding sequences have practically no correlatins in the range from 10 to 100 bp
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(spectral exponent f + 25D = 0.00 4+ 0.04). Here f is defined through the relation
S(f)~ 1/fP, where S(f) is the Fourier transform of the correlation function, and f is
related to the long-range correlation exponent o by =20 —1 so that ac:% corresponds
to f =0 (white noise). In contrast, for noncoding sequences, the average value of the
spectral exponent £ is positive (0.16 40.05), which unambiguously shows the presence
of long-range correlations. The near-perfect agreement between the two independent
analysis methods, FFT and DFA, increases the confidence in the reliability of the
conclusion of long-range correlation properties of coding and noncoding sequences.

From a practical viewpoint, the statistically significant difference in long-range power-
law correlations between coding and noncoding DNA regions that we observe supports
the development of gene finding algorithms based on these distinct scaling properties.
A reported algorithm of this kind [40,41] is especially useful in the analysis of DNA
sequences with relatively long coding regions, such as those in yeast chromosome III.

Arneodo et al. [57,58] studied long-range correlation in DNA sequences using wavelet
analysis. The wavelet transform can be made blind to “patchiness” of genomic se-
quences. They found the existence of long-range correlations in noncoding regimes,
and no long-range correlations in coding regimes in excellent agreement with Buldyrev
et al. [56].

Very recently, Thermes et al. [59] by means of wavelet analysis found universal
multi-scale properties of genomic DNA. They relate these scaling properties to the
structural organization of the DNA molecule. Such relation was also suggested by
Grosberg et al. [45].

3. Scaling analysis of heartbeat intervals

The idea of long-range correlations has been applied to the analysis of the beat-to-beat
intervals in the normal and diseased heart [22]. The healthy heartbeat is generally
thought to be regulated according to the classical principle of homeostasis whereby
physiologic systems operate to reduce variability and achieve an equilibrium-like state
[60]. We find, however, that under normal conditions, beat-to-beat fluctuations in heart
rate display the kind of long-range correlations typically exhibited by physical dy-
namical systems far from equilibrium, such as those near a critical point. We review
recently reported evidence for such power-law correlations that extend over thousands
of heart-beats in healthy subjects. In contrast, heart rate time series from patients with
severe congestive heart failure show a breakdown of this long-range correlation behav-
ior, with the emergence of a characteristic short-range time scale. Such alterations in
correlation behavior may be important in modeling the transition from health to disease
in a wide variety of pathologic conditions.

Normal activity of the heart is usually described as “regular sinus rhythm” [61-64].
However, as shown in Fig. 2, cardiac interbeat intervals fluctuate in an irregular man-
ner in healthy subjects — even at rest or during sleep [65]. The complex behavior of
the heartbeat manifests itself through the nonstationarity and nonlinearity of interbeat
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Fig. 2. Consecutive heartbeat intervals vs. beat number are plotted for 6 h recorded for the same healthy
subject during: (a) wake period: 12 p.m. to 6 p.m. and (b) sleep period: 12 a.m. to 6 a.m. (Note that there
are fewer interbeat intervals during sleep due to the larger average of the interbeat intervals, i.e. slower heart
rate.) Courtesy of P.Ch. Ivanov et al. [83].

interval sequences [66—68]. In recent years, the intriguing statistical properties of in-
terbeat interval sequences have attracted the attention of researchers from many fields
[69-74].

Initially, anlaysis of heartbeat fluctuations focused on short time oscillations associ-
ated with breathing, blood pressure and neuroautonomic control [75]. Studies of longer
heartbeat records, however, revealed 1/f-like behavior [19,76]. Recent anlaysis of very
long time series (up to 24h: n = 10° beats) show that under healthy conditions, inter-
beat interval increments exhibit power-law anticorrelations [22] and follow a universal
scaling form in their distributions [77]. These scaling features change with disease and
advanced age [78-80]. The emergence of scale-invariant properties in the seemingly
“noisy” heartbeat fluctuations is believed to be a result of highly complex, nonlinear
mechanisms of physiologic control [81].

It is known that circadian rhythms are associated with periodic changes in key phys-
iological processes [64,65,82]. Here, we review a recent study [83] asking if there
are characteristic differences in the scaling behavior between sleep and wake cardiac
dynamics. Typically, the differences in the cardiac dynamics during sleep and wake
phases are reflected in the average (higher in sleep) and standard deviation (lower
in sleep) of the interbeat intervals [82]. Such differences can be easily observed in
plots of the interbeat intervals recorded from subjects during sleep and wake periods
(Fig. 2). The hypothesis is that sleep and wake changes in cardiac control may occur on
all time scales and thus could lead to systematic changes in the scaling properties of
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the heartbeat dynamics. Elucidating the nature of these sleep—wake rhythms could lead
to a better understanding of the neuroautonomic mechanisms of cardiac regulation.

Ivanov et al. [83] analyzed 30 databases — each with 24h of interbeat intervals
— from 18 healthy subjects amd 12 patients with congestive heart failure [98]. The
nocturnal and diurnal fractions of the dataset of each subject correspond to the 6h
(n =~ 22,000 beats) from midnight to 6 a.m. and from noon to 6 p.m.

The detrended fluctuation analysis (DFA) method [55] has been applied to quan-
tify long-range correlations embedded in the nonstationary heartbeat time series. This
method avoids spurious detection of correlations that are artifacts of nonstationarity.
Briefly, we first integrate the interbeat interval time series and then divide it into
boxes of equal length, n. In each box, we fit the data with a least-squares line which
represents the local trend in that box. Next we detrend the integrated time series by
subtracting the local trend in each box. We calculate the root-mean-square fluctuation
F(n) of this integrated and detrended time series for different time scales (box sizes) n.
A power-law relation between the average fluctuation F(n) and the number of beats n
in a box indicates the presence of scaling; the correlations in the heart-beat fluctuations
can be characterized by the scaling exponent o, defined as F(n) ~ n*, see Eq. (2).

Ref. [83] finds that at scales above = 1min (n > 60) the data during wake hours
display long-range correlations over two decades with average exponents oy ~ 1.05
for the healthy group and oy ~ 1.2 for the heart failure patients. For the sleep data,
we systematically find a crossover at scale n =~ 60 beats, followed by a scaling regime
extending over two decades characterized by a smaller exponent: ag ~ 0.85 for the
healthy group and og ~ 0.95 for the heart failure group (Fig. 3). Although the values
of the sleep and wake exponents vary from subject to subject, we find [83] that for all
individuals studied, the heartbeat dynamics during sleep are characterized by a smaller
exponent (Table 1).

As a control, an identical analysis is performed on two surrogate data sets obtained
by reshuffling and integrating the increments in the interbeat intervals of the sleep and

Table 1

Comparison of the statistics for the scaling exponents from
the three groups in our database. Here N is the number of
datasets in each group, o is the corresponding group average
value and o is the standard deviation of the exponent val-
ues for each group. The diferences between the average sleep
and wake-phase exponents for all three groups are statistically
significant (p < 107> by the Student’s t-test). Courtesy of
P.Ch. Ivanov et al. [83].

Group N o 4

Healthy wake 18 1.05 0.07
Healthy sleep 18 0.85 0.10
Cosmonaut wake 17 1.04 0.12
Cosmonaut sleep 17 0.82 0.07
Heart failure wake 12 1.20 0.09

Heart failure sleep 12 0.95 0.15
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Fig. 3. Plots of log F(n) vs. log n for 6 h wake (open circles) and sleep records (filled triangles) of
(a) one typical healthy subject; (b) one cosmonaut (during orbital flight); and (c) one patient with congestive
heart failure. Note the systematic lower exponent for the sleep phase (filled triangles), indicating stronger
anticorrelations. (d) As a control, we reshuffle and integrate the interbeat increments from the wake and
sleep data of the healthy subject presented in (a). We find a Brownian noise scaling over all time scales
for both wake and sleep phases with an exponent o = 1.5, as one expects for random walk-like fluctuations.
Courtesy of P.Ch. Ivanov et al. [83].
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wake records from the same healthy subject presented in Fig. 3a. Both surrogate sets
display uncorrelated random walk fluctuations with a scaling exponent of 1.5 (Brow-
nian noise) (Fig. 3d). A scaling exponent larger than 1.5 would indicate persistent
correlated behavior, while exponents with values smaller than 1.5 characterize anticor-
relations (a perfectly anticorrelated signal would have an exponent close to zero). Our
results therefore suggest that the interbeat fluctuations during sleep and wake phases
are long-range anticorrelated but with a significantly greater degree of anticorrelation
(smaller exponent) during sleep.

An important question is whether the observed scaling differences between sleep
and wake cardiac dynamics arise trivially from changes in environmental conditions
(different daily activities are reflected in the strong nonstationarity of heartbeat time
series). Environmental “noise”, however, can be treated as a “trend” and distinguished
from the more subtle fluctuations that may reveal intrinsic correlation properties of the
dynamics. Alternatively, the interbeat fluctuations may arise from nonlinear dynamical
control of the neuroautonomic system rather than being an epiphenomenon of environ-
mental stimuli, in which case only the fluctuations arising from the intrinsic dynamics
of the neuroautonomic system should show long-range scaling behavior.

The analysis in Ref. [83] suggests that the observed sleep—wake scaling differences
are due to intrinsic changes in the cardiac control mechanisms for the following reasons:
(1) The DFA method removes the “noise” due to activity by detrending the nonstation-
arities in the interbeat interval signal and analyzing the fluctuations along the trends.
(i1) Responses to external stimuli should give rise to a different type of fluctuations
having characteristic time scales, i.e., frequencies related to the stimuli. However, fluc-
tuations in both diurnal and nocturnal cardiac dynamics exhibit scale-free behavior.
(iii) The weaker anticorrelated behavior observed for all wake-phase records cannot
be simply explained as a superposition of stronger anticorrelated sleep dynamics and
random noise of day activity. Such noise would dominate at large scales and should
lead to a crossover with an exponent of 1.5. However, such crossover behavior is not
observed in any of the wake-phase datasets (Fig. 3). Rather, the wake dynamics are
typically charaacterized by a stable scaling regime up to n = 5000 beats.

The robustness of the above results was tested by anlyzing 17 datasets from six
cosmonauts during long-term orbital flight on the Mir space station [84]. Each dataset
contains continuous periods of 6 h data under both sleep and wake conditions. We find
that for all cosmonauts the heartbeat fluctuations exhibit anticorrelated behavior with
average scaling exponents consistent with those found for the healthy terrestrial group:
o ~ 1.04 for the wake phase and as ~ 0.82 for the sleep phase (Table 1). The sleep—
wake scaling difference is observed not only for the group averaged exponents but
for each individual cosmonaut dataset (Fig. 3b). Moreover, the scaling differences are
persistent in time, since records of the same cosmonaut taken on different days (ranging
from the 3rd to the 158th day in orbit), exhibit a higher degree of anticorrelation during
sleep.

We find that even under the extreme conditions of zero gravity land high-stress
activity, the sleep and wake scaling exponents for the cosmonauts are statistically
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consistent (p = 0.7 by Student’s ¢-test) with those of the terrestrial healthy group [2].
Thus the larger values for the wake phase scaling exponents cannot be a trivial arti-
fact of activity. Furthermore, the larger value of the average wake exponent for the
heart failure group compared to the other two groups (Table 1) cannot be attributed
to external stimuli either, since patients with severe cardiac disease are strongly re-
stricted in their physical activity. Instead, our results suggest that the observed scaling
characteristics in the heartbeat fluctuations during sleep and wake phases are related to
intrinsic mechanisms of neuroautonomic control. The observed sleep-wake changes in
the scaling characteristics may indicate different regimes of intrinsic neuroautonomic
regulation of the cardiac dynamics, which may “switch” on and off associated with
circadian rhythms.

Surprisingly, we note that for large time scales (n > 60) the average sleep—wake
scaling difference is comparable to the scaling difference between health and disease;
cf. Table 1. At small time scales (n < 60), we do not observe systematic sleep—wake
differences. The scaling exponents obtained from 24h records of healthy and heart
failure subjects in the asymptotic region of large time scales are in agreement with
the results for the healthy and heart failure groups during the wake phase only. Since
the weaker anticorrelations associated with the wake phase are charcterized by a larger
exponent while the stronger anticorrelated behavior during sleep has a smaller exponent,
at large scales the superposition of the two phases (in 24 h records) will exhibit behavior
dominated by the larger exponent of the wake phase.

We also note that the scaling exponents for the heart failure group during sleep are
close to the exponents observed for the healthy group (Table 1). Since heart failure
occurs when the cardiac output is not adequate to meet the metabolic demands of the
body, one would anticipate that the manifestations of heart failure would be most severe
during physical stress when metabolic demands are greatest, and least severe when
metabolic demands are minimal, i.e., during rest or sleep. The scaling results we obtain
are consistent with these physiological considerations: the heart failure subjects should
be closer to normal during minimal activity. Of related interest, recennt studies indicate
that sudden death in individuals with underlying heart disease is most likely to occur in
the hours just after awakening [85,86]. Our findings raise the intriguing possibility that
the transition between the sleep and wake phases is a period of potentially increased
neuroautonomic instability because it requires a transition from strongly to weakly
anticorrelated regulation of the heart.

The finding of stronger heartbeat anticorrelations during sleep is of interest from a
physiological viewpoint, since it may motivate new modeling approaches and supports
a reassessment of the sleep phase as a surprisingly active dynamical state. Perhaps the
“restorative” functions of sleep may relate to an increased reflexive-type responsiveness
of neuroautonomic control, not just at one characteristic frequency, but over a broad
range of time scales.

Recent work by Ivanov et al. [87] indicates that key statistical characteristics of
the healthy cardiac dynamics can be successfully reproduced by a stochastic nonlin-
ear feedback mechanism. The present observation of sleep—wake scaling differences
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poses a new challenge to such modeling approaches, which could require considering
reciprocity in the activity of the sympathetic and parasympathetic branches of the au-
tonomic nervous system during sleep and wake phases, as well as different correlation
times of the sympathetic and parasympathetic impulses.

4. Wavelet analysis of heartbeat intervals

Time series of beat-to-beat (RR) heart rate intervals (Fig. 4a) obtained from digi-
tized electrocardiograms are known to be nonstationary and exhibit extremely complex
behavior [88-90]. A typical feature of these signals is the presence of “patchy” pat-
terns which change over time (Fig. 4b). Heterogeneous properties may be even more
strongly expressed in certain cases of abnormal heart activity. Traditional approaches —
such as the power spectrum and correlation analysis [91,92] — are not suited for such
nonstationary (patchy) sequences, and do not carry information stored in the Fourier
phases (crucial for determining nonlinear characteristics).

To address these problems, we present an alternative method — “cumulative vari-
ation magnitude analysis” [77] — to study the subtle structure of physiological time
series. This method comprises sequential application of a set of algorithms based on
wavelet and Hilbert transform analysis. First, we apply the wavelet transform (Fig. 4c),
because it does not require stationarity and preserves the Fourier phase information.
The wavelet transform [93-95] of a time series s(¢) is defined as

Ty(toa) = a~' /%o () (t - t°> dt, 3)

o a

where the analyzing wavelet i/ has a width of the order of the scale a and is centered
at ty. For high frequencies (small a), the  functions have good localization (being ef-
fectively nonzero only on small sub-intervals), so short-time regimes or high-frequency
components can be detected by the wavelet analysis. The wavelet transform is some-
times called a “mathematical microscope” because it allows one to study properties
of the signal on any chosen scale a. However, a wavelet with too large a value of
scale a (low frequency) will filter out almost the entire frequency content of the time
series, thus losing information about the intrinsic dynamics of the system. We focus
our “microscope” on scale a = 8 beats which smoothes locally very high-frequency
variations and best probes patterns of specific duration (= % — Imin) (Fig. 4). The
wavelet transform is attractive because it can eliminate local polynomial behavior in
the nonstationary signal by an appropriate choice of the analyzing wavelet Y. In our
study we use derivatives of the Gaussian function: Wy = d"/d¢e=(1/2)¢",

The wavelet transform is thus a cumulative measure of the variations in the heart
rate signal over a region proportional to the wavelet scale, so study of the behav-
ior of the wavelet values can reveal intrinsic properties of the dynamics masked by
nonstationarity.

The second step of the cumulative variation magnitude analysis is to extract the
instantaneous variation amplitudes of the wavelet-filtered signal by means of an analytic
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Fig. 4. (a) Segment of electrocardiogram showing beat-to-beat (RR;) intervals. (b) Plot of RR-time se-
ries vs. consecutive beat number for a period of 6 h (= 2.5 x 10* beats). Nonstationarity (patchiness)
is evident over both long and short time scales. (c) Wavelet transform T, (RR) of the RR-signal in
(b) using the second derivative of the Gaussian function () as analyzing wavelet with scale « = 8 beats.
Non-stationarities related to constants and linear trends have been filtered out. (d) Instantaneous amplitudes
A(t) of the wavelet-transform signal in (c); 4(¢), which is calculated using the Hilbert transform, measures
the cumulative variations in the interbeat intervals over an interval proportional to the wavelet scale a.
Courtesy of P.Ch. Ivanov et al. [77].

signal approach [91,96] which also does not require stationarity. Let s(¢) represent
an arbitrary signal. The analytic signal, a complex function of time, is defined by
S(t) = s(t) +i5(t) = A(¢)e'?"), where §(¢) is the Hilbert transform [97] of s(¢). The
instantaneous magnitude A(¢) (Fig. 4d) and the instantaneous phase of the signal ¢(¢)
are defined as A(¢) = 1/s%(¢) + §(¢) and ¢(1) = tan~'(5(2)/s(2)).

We study the distribution of the amplitudes of the beat-to-beat variations (Fig. 5)
for a group of healthy subjects (N = 18; 5 male, 13 female; age: 20—50, mean -
34) and a group of subjects [98] with obstructive sleep apnea [99] (N = 16 males;
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Fig. 5. (a) Probability distributions P(x) of the amplitudes of heart-rate variations x = A(¢) for a group
of 18 healthy adults. Individual differences are reflected in the different average value and widths (standard
deviations) of these distributions. All distributions are normalized to unit area. (b) Same probability distri-
butions as in (a) after rescaling: P(x) by Pmax, and x by 1/Pmax to preserve the normalization to unit area.
The data points collapse onto a single curve. (c¢) Probability distributions for a group of 16 subjects with
obstructive sleep apnea. We note that the second (rightward) peak in the distributions for the sleep apnea
subjects corresponds to the transient emergence of characteristic pathologic oscillations in the heart rate
associated with periodic breathing [99,105]. (d) Distributions for the apnea group after the same rescaling
as in (b). These distributions cannot be well described by a single curve, indicating that the nonequilibrium
dynamics are altered. Courtesy of P.Ch. Ivanov et al. [77].

age; 32 — 56, mean - 43). We begin by considering night phase (12 p.m. — 6 a.m.)
records of interbeat intervals (= 10* beats) for both groups to minimize nonstationarity
due to changes in the level of activity. Inspection of the distribution functions of the
amplitudes of the cumulative variations reveals marked differences between individuals
(Fig. 5a). These discrepancies are not surprising given the underlying physiological
differences among healthy subjects. To test the hyothesis that there is a hidden, possi-
bly universal structure to these heterogeneous time series, we rescale the distributions
and find for all healthy subjects that the data conform to a single scaled plot (“data
collapse”) (Fig. 5b). We are able to describe the distributions using a single curve, in-
dicating a robust, consistent scaling mechanism for the nonequilibrium dynamics. Such
behavior is reminiscent of a wide class of well-studied physical systems with universal
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scaling properties [100,4,14]. In contrast, the subjects with sleep apnea (Fig. 5¢) show
individual probability distributions which fail to collapse (Fig. 5d).

The absence of data collapse demonstrates deviation from the normal heart behavior.
We note that direct analysis of interbeat interval histograms does not lead to data
collapse or separation between the healthy and apnea group. Moreover, we find that
the direct application of the Hilbert transform yielding the probability distribution of
the instantaneous amplitudes of the original signal does not clearly distinguish healthy
from abnormal cardiac dynamics. Hence, the crucial feature of the wavelet transform
is that it extracts dynamical properties hidden in the cumulative variations. We observe
for the healthy group good data collapse with stable scaling form for wavelet scales
a=2 up to a=32 (Fig. 6¢c). However, for very small scales (¢ =1,2) the average of
the rescaled distributions of the apnea group is indistinguishable from the average of
the rescaled distributions of the healthy group. Hence very high frequencies are equally
present in the signals from both groups. Our analysis yields the most robust results
when « is tuned to probe the collective properties of patterns with duration of ~ % -1
min in the time series (¢ =8, 10). The subtle difference between day and night phases
is also best seen for this scale range.

We next analyze the distributions of the beat-to-beat variation amplitudes. For the
healthy group, we find that these are well fit by the Gamma form: P(x) = (b""'/I'(v +
1))x'e~*, where b = v/xo, I'(v + 1) is the Gamma function, x, is the position of the
peak P=Ppn,y, and v is the fitting parameter (Fig. 6a). Although individual distributions
have different values of b, the homogeneous property of the functional form of P(x)
leads to reduction of the independent variable x and parameter b to a single-scaled
variable u = bx. Instead of the data points falling on a family of curves, one for each
value of b, we find the data points collapse onto a single curve given by the scaling
function P(u) = P(x)/b. Thus, it is sufficient to specify only one parameter b in order
to characterize the heterogeneous heartbeat variations of each subject in this group.

We also analyzed heart-rate dynamics for the healthy subjects during day-time hours
(noon — 6 p.m.). Our results indicate that the observed, apparently universal behavior
holds not only for the night phase but for the day phase as well (Fig. 6b). Semilog
plots of the averaged distributions show a systematic deviation from the exponential
form (slower decay) in the tails of the night-phase distributions, whereas the day-phase
distributions follow the exponential form over practically the entire range. Note that
the tail of the observed distribution for the night phase indicates higher probability of
larger variations in the healthy heart dynamics during sleep hours in comparison with
the daytime dynamics [101].

It has been hypothesized [102] that even if the interbeat variations are different
(e.g. smaller) during illness, the pattern of heart-rate variability might be otherwise
very similar to that during health, so that the interbeat variations for normal and ab-
normal cardiac dynamics, once normalized, would have the same distribution. Our
study clearly rejects this hypothesis, showing the presence of scaling in the distribu-
tions of the variation amplitudes for the healthy (Fig. 5b) and a breakdown of this
scaling for abnormal dynamics (Fig. 5d). Moreover, the stability of this scaling form
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Fig. 6. (a) The solid line is an analytic fit of the rescaled distributions of the beat-to-beat variation am-
plitudes of the 18 healthy subjects during sleep hours to a stable Gamma distribution with v = 1.4 4 0.1.
(b) Data for 6 h records of RR intervals for the day phase of the same control group of 18 healthy sub-
jects demonstrate similar scaling behavior with a Gamma distribution and v = 1.8 & 0.1, thereby showing
that the observed common structure for the healthy heart dynamics is not confined to the nocturnal phase.
Semilog plots of the averaged distributions show a systematic deviation — crossover — in the tails of the
night-phase distribtuions, whereas the day-phase distributions follow the exponential form over practically
the entire range [101]. Note that the observed crossover for the night phase indicates higher probability of
larger variations in the healthy heart dynamics during sleep hours in comparison with the daytime dynamics.
(c) Group average of the rescaled distributions of the cumulative variation amplitudes for the healthy in-
dividuals during nocturnal hours. Note that the observed Gamma scaling is stable for a wide range of the
wavelet transform scales a. Courtesy of P.Ch. Ivanov et al. [77].

(Fig. 6¢) indicates that the underlying dynamical mechanisms regulating the healthy
heart beat have similar statistical properties on different time scales. Such statistical
self-similarity is an important characteristic of fractal objects. The wavelet decomposi-
tion of beat-to-beat heart-rate signals can be used to provide a visual representation of
this fractal structure (Fig. 7). The wavelet transform, with its ability to remove local
trends and to extract interbeat variations on different time scales, enables us to identify
self-similar patterns (arches) in these variations even when the signals change as a
result of background interference. Data from sick heart lack these patterns.

The study of Ivanov et al. [77] uncovers a previously unknown nonlinear feature of
healthy heart-rate fluctuations. Prior reports of universal properties of the normal heart



Fig. 7. Color-coded wavelet analysis of RR signals. The x-axis represents time (/2 2000 beats) and the y-axis
indicates the scale of the wavelet used (a = 1,2,...,60) with large scales at the top. The brighter colors
indicate larger values of the wavelet amplitudes. The wavelet analysis performed with () (the Mexican
hat) as an analyzing wavelet uncovers a hierarchical scale invariance (top panel) quantitatively expressed
by the stability of the scaling form on Fig. 6(c). This wavelet decomposition reveals a self-similar fractal
structure in the healthy cardiac dynamics — a magnification of the central portion of the top panel with
200 beats on the x-axis and wavelet scale @ = 1,2,...,25 on the y-axis shows identical branching patterns
(middle panel). Loss of this fractal structure in cases with sleep apnea (lower panel). Courtesy of P.Ch.
Ivanov et al. [103].
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beat and other physiological signals relate to long-range correlations and power-law
scaling. However, these properties, detected by Fourier and fluctuation analysis tech-
niques, ignore information related to the phase interactions of component modes [103].
The nonlinear interaction of these modes accounts for the patchy, non-homogeneous
appearance of the heartbeat time series and appears to be related to the recently re-
ported multifractal properties of the heartbeat dynamics [104]. This finding suggests
that for healthy individuals, there may be a common structure to this nonlinear phase
interaction. The scaling property cannot be accounted for by activity, since we analyzed
data from subjects during nocturnal hours. Moreover, it cannot be accounted for by
sleep stage transitions, since we found a similar pattern during day-time hours. The
basis of this robust temporal structure remains unknown and presents a new challenge
to understanding nonlinear mechanisms of heartbeat control.

Additionally, we find that subjects with sleep apnea, a common and important insta-
bility of cardiopulmonary control, show a dramatic alteration in the scaling pattern —
possibly related to pathologic mode locking associated with periodic breathing dynam-
ics [105]. Thus, the dual use of wavelet and Hilbert transform techniques may be of
practical diagnostic and prognostic value, and may also be applicable to a wide range
of heterogeneous, “real world” physiological signals.

5. Scaling in weather fluctuations

It is well known in meteorology that the weather is persistent on short time scales.
If one day is sunny and warm, there is a higher probability that the next day remains
the same, and any “sophisticated” weather forecast must be better than the “trivial”
one that predicts that the weather of tomorrow is the same as the weather of today
[106,107].

To quantify the persistence, we have analyzed the records of the maximum daily
temperatures 7; of the following 14 weather stations (the length of the records is written
within the parentheses): Albany (90 y), Brookings (99 y), Huron (55 y), Luling (90
y), Melbourne (136 y), New York City (116 y), Pendleton (57 y), Prague (218 y),
Sydney (117 y), Spokane (102 y), Tucson (97 y), Vancouver (93 y), Moscow (115
y), and St. Petersburg (111 y). The stations have been chosen randomly and represent
the different climatological zones. We review the results from Koscielny et al. [25] and
extend them using further complementary methods, such as Fast Fourier Transforms.

For each weather station, we consider the daily maximum termperature 7;. The total
number N of days i available for a given weather station ranges typically from 20,000
days (Huron) to 80,000 days (Prague). For eliminating the periodic seasonal trends,
we have considered the variations of 7;, AT;=T;— T;, from the mean maximum daily
temperature 7; for each calendary date i, say Ist of April, which has been obtained by
averaging over all years in the temperature series. To analyze the AT; time series we
have used several mathematical techniques: fluctuation analysis (FA), DFA, wavelets
(WL1, WL2, WL3), and Fourier-analysis (for details see Ref. [25]). Our analysis
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Fig. 8. (a) Maximum daily temperatures 7; for the year 1905 in the city of Prague. Values of 7; larger
than the mean maximum temperature of the calendary date i, T;, are indicated in light grey, and the values
T; < T; in black. Here T; has been obtained by averaging T; over the period (1775-1992), consisting i.e. of
218 years. We have excluded the 29th February from the bissextile years. (b) Daily temperature variations
AT; = T; — T; for the same data shown in (a). Courtesy of E. Koscielny et al. [25].

suggests that the temperature fluctuations at days i and i+ / are long-range power-law
correlated, i.e., the correlation function behaves like

(/) = (ATAT ) ~ 07 @)

with an apparently universal exponent y 2 0.7 for all weather stations considered. The
brackets in Eq. (4) denote an average over all pairs of temperature data separated by
/ days,

N—¢

LY anar., (5)
i=1

(ATiAT /) = N7«

From our results we can conclude that, within the pertinent error bars, the power-law
correlations set in after about one week (which is the typical time scale for a weather
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Fig. 9. Fluctuation analysis for the city of Prague. (a) FA (circles), (b) WLI1 (triangles), WL2 (diamonds)

and WL3 (stars). The straight lines have slopes 2 and are drawn as a guide to the eye. Courtesy of

3
E. Koscielny et al. [25].

situation) and range at least over one decade of years. We did not find any evidence for
a crossover to uncorrelated behavior at very large time scales, and cannot exclude the
possibility that the range of the power-law correlations is larger than the range of the
temperature series considered. In contrast to the universal behavior of the correlations,
the distribution S#°(AT) of the temperature variations does not exhibit a universal form.

We show representative results for Prague (Fig. 8). We begin the analysis with the
temperature series {AT;} for Prague which is the largest series (218 y) in this study.

Fig. 9 shows the fluctuation analysis for Prague obtained from the three methods.
In the log—log plot, the DFA and wavelets curves are approximately straight lines for
¢/ > 10 days, with a slope o = 0.65. For / of the order of few days, the slope is a
little larger. This result suggests, that there exists long-range persistence expressed by
the power-law decay of the correlation function, with an exponent y =2 0.7. A closer
look at these curves indicated that the effects of trends and correlations can be, to a
certain extent, distinguished by the available methods. At about 10° days, the curves
of FA and WLI1 show a crossover towards a slightly larger exponent «. This behavior
can be interpreted as the effect of the warming of Prague due to urban development.
In contrast, DFA, WL2, and WL3 yield approximate straight lines until about 10*
days above which the data start to scatter. The systematic crossover at about 10° days
does not occur here, since DFA, WL2, and WL3 eliminate the (roughly) linear trend
of warming. For the Fourier-transform analysis, we obtain, in the double logarithmic
representation, a straight line with the slope —(1 —y) =2 — 1 =—0.3, consistent with
the other methods. For f above f = 100, corresponding to / smaller than roughly 10
days, we see a crossover towards a larger exponent, in agreement with the previous
analysis. Since the power spectrum analysis is limited to 2048 days, we cannot see
the influence of trends involved in WL1. The direct evaluation of the autocorrelation
function (Fig. 10) yields a consistent picture, C(/) ~ /~7. At very large time scales,
scattering becomes dominant and hides the power-law behavior.
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Fig. 10. The autocorrelation function C(¢/) for two days separated by / days, for the city of Prague. The
straight line has slope y = f% and is drawn as a guide to the eye. Courtesy of E. Koscielny et al. [25].
0.12 .
Moscow Tucson
0.1
-
3 008 (%o
ES &N,
0.06 ‘é .
/ %
0.04 Vs \:
0.02 ./, '\\ (a) ©)
0-12 St. Petersburg Luling K
0.1 .
S o008 Vet
BN / ‘e
0.06 / A
fooN
0.04 - \
/ .
/* \
0.02 Pl b
anar”’ o
-20 -10 0 10
AT (°C) AT [°C)

Fig. 11. The distribution of temperature variations A7; for: (a) Moscow (1880-1994, 115 years), (b) St.
Petersburg (1884—1994, 111 years), (¢) Tucson (Arizona) (1895-1991, 97 years) and (d) Luling (Texas)
(1902-1991, 90 years). The lines are Gaussian fits with: (a) ¢ = 5.05°C, (b) ¢ = 4.62°C, (¢) 6 =3.99°C
and (d) o =4.72°C.

We obtain analogous results for the fluctuation functions for thirteen cities from all
climate zones. The curves have the same features as the curves for Prague, and the
exponents o and ) seem to have almost the same values as for Prague. This may
suggest the existence of a “global weather law”.

Finally, we have studied the normalized distribution function H(AT) of the temper-
ature variations AT; for the various meteorological stations. The distributions represent
the number of day with AT; in the interval (AT, AT + ¢) with ¢ =1 C divided by
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the total number of days. Fig. 11 shows the result for four stations from two different
climatological zones. Apparently, there is no universal behaviour for the distribution
functions.
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