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Abstract

We review the analysis of the length of the optimal path ‘opt in random networks with

disorder (i.e., random weights on the links). In the case of strong disorder, in which the maximal

weight along the path dominates the sum, we find that ‘opt increases dramatically compared to

the known small-world result for the minimum distance ‘min: for Erd+os–Rényi (ER) networks

‘opt � N1=3; while for scale-free (SF) networks, with degree distribution PðkÞ � k�l; we find that

‘opt scales as N ðl�3Þ=ðl�1Þ for 3olo4 and as N1=3 for lX4: Thus, for these networks, the small-

world nature is destroyed. For 2olo3; our numerical results suggest that ‘opt scales as lnl�1N:
We also find numerically that for weak disorder ‘opt � ln N for ER models as well as for SF

networks. We also study the transition between the strong and weak disorder regimes in the

scaling properties of the average optimal path ‘opt in ER and SF networks.
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1. Introduction

Recently, much attention has been focused on the topic of complex networks

which characterize many biological, social, and communication systems [1–3]. The

networks are represented by nodes associated to individuals, organizations, or

computers and by links representing their interactions. The classical model for

random networks is the Erd +os–Rényi (ER) model [4–6]. An important quantity

characterizing networks is the average distance (minimal hopping) ‘min between two

nodes in the network of total N nodes. For the Erd +os–Rényi network ‘min scales as

ln N [6], which leads to the concept of ‘‘small worlds’’ or ‘‘six degrees of separation’’.

For scale-free (SF) [1] networks ‘min scales as ln ln N; this leads to the concept of

ultra small worlds [7].

In most studies, all links in the network are regarded as identical and thus a crucial

parameter for information flow including efficient routing, searching, and transport

is ‘min: In practice, however, the weights (e.g., the quality or cost) of links are usually

not equal, and thus the length of the optimal path ‘opt; minimizing the sum of

weights, is usually longer than the minimal hopcount distance ‘min: For example, the

cost could be the time required to transit the link. There are often many traffic routes

from points A to B with a set of time delays ti; associated with each link along the

path. The fastest (optimal) path is the one for which
P

iti is a minimum, and often

the optimal path has more links than the shortest path. In many cases, the selection

of the path is controlled by most of the weights (e.g., total cost) contributing to the

sum. This case corresponds to weak disorder (WD). However, in other cases, e.g.

when the distribution of disorder is very broad a single weight dominates the sum.

This situation—in which one link controls the selection of the path—is called the

strong disorder limit (SD). An example for SD is when a transmission at a constant

high rate is needed (e.g., in broadcasting video records over the Internet). In this

case, the narrowest band link in the path between the transmitter and receiver

controls the rate of transmission. This limit is also called the ‘‘ultrametric’’ limit and

we refer to the optimal path in this limit as the min–max path.

2. Algorithms

2.1. Construction of the networks

To construct an ER network of size N with average node degree hki; we start with

hkiN=2 edges and randomly pick a pair of nodes from the total possible NðN � 1Þ=2

pairs to connect with an edge. The only condition we impose is that there cannot be

multiple edges between two nodes. When hki41 almost all nodes of the network will

be connected with high probability.

To generate scale-free (SF) graphs of size N, we employ the Molloy–Reed

algorithm [8] in which each node is first assigned a random integer k from a power-

law distribution Pðk4k̄Þ ¼ ðk̄=k0Þ
�lþ1; where k0 is the minimal number of links for

each node. Next, we randomly select a node and try to connect each of its k links
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with randomly selected k nodes that still have free positions for links. When k041

there is a high probability that the network is fully connected.

The strong disorder limit can be implemented by assigning to each link a potential

barrier �i so that ti is the time to cross this barrier. Thus ti ¼ eb�i ; and the optimal

path corresponds to the minimum ð
P

itiÞ over all possible paths. Here b ¼ 1=kT ;
where k is the Boltzmann constant and T is the temperature. When b ! 1; only the

largest ti dominates the sum. Thus T ! 0 (very low temperatures) corresponds to

the strong disorder limit.

2.2. Dijkstra algorithm

This algorithm [9] is used in general to find the optimal path, when the weights are

drawn from an arbitrary distribution. The search for the optimal path follows a

procedure akin to ‘‘burning’’ where the ‘‘fire’’ starts from our chosen origin. At the

beginning, all nodes are given a distance 1 except the origin which is given a

distance 0. At each step we choose the next unburned node which is nearest to the

origin, and ‘‘burn’’ it, while updating the optimal distance to all its neighbors. The

optimal distance of a neighbor is updated only if reaching it from the current

burning node gives a total path length that is shorter than its current distance. This

algorithm enables us to construct the tree of all shortest paths from a chosen site [10].

2.3. Ultrametric optimization

Next we describe a numerical method for computing ‘opt between any two nodes

in strong disorder. This method also generates the minimum spanning tree [11]. We

assign weights to all the links in the graph where the order of magnitude is taken

from a uniform distribution [12]. This is accomplished by selecting 0p�io1 from a

uniform distribution, using a 48-bit random number generator, so that there are no

two identical values of �i in a system of any size that we study. In this case, D�X2�48

and we can select bX248 to guarantee the strong disorder limit. In the limit of strong

disorder the sum of the weights is dominated by the largest value along the path.

Next, we start from one node (the origin—see Fig. 1) and visit all the other nodes

connected to the origin using a burning algorithm. If a node at distance ‘0 (from the

origin) is being visited for the first time, this node will be assigned a list S0 of weights

t0i; i ¼ 1; . . . ; ‘0; of the links by which we reach that node sorted in descending order:

S0 ¼ ft01; t02; t03; . . . ; t0l0g ; (1)

with t0j4t0jþ1 for all j. If we reach a node for a second time by another path of

length ‘1; we define for this path a new list

S1 ¼ ft11; t12; t13; . . . ; t1l1g ; (2)

and compare it with S0 previously defined for this node.

Different sequences can have weights in common because some paths have links in

common because of the loops, so it is not enough to identify the sequence by its

maximum weight; in this case it must also be compared with the second maximum,
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the third maximum, etc. We define SpoSq if there exists a value m,

1pmpminð‘p; ‘qÞ; such that

tpj ¼ tqj for 1pjom

and

tpjotqj for j ¼ m ; (3)

or if ‘q4‘p and tpj ¼ tqj for all jp‘p: If S1oS0; we replace S0 by S1: The procedure

continues until all paths have been explored and compared. At this point, S0 ¼ Sopt;
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Fig. 1. In (a) we show schematically a network consisting of five nodes (A, B, C, D, and E). The links

between them are shown in dashed lines. The origin (A) is marked in gray. All links were assigned random

weights, shown beside the links. In (b) one node (C) has been visited for the first time (marked in black)

and assigned the sequence (8) of length ‘ ¼ 1: The path is marked by a solid arrow. Notice that there is no

other path going from the origin (A) to this node (C) so ‘opt ¼ 1 for that path. In (c) another node (B) is

visited for the first time (marked in black) and assigned the sequence ð10; 8Þ of length 2. The sequence has

the information of all the weights of that path arranged in decreasing order. In (d) another node (D) is

visited for the first time and assigned the sequence ð8; 7Þ of length 2. In (e), node (B) visited in (c) with

sequence ð10; 8Þ is visited again with sequence ð8; 7; 6Þ: The last sequence is smaller than the previous

sequence ð10; 8Þ so that node (B) is reassigned the sequence ð8; 7; 6Þ of length 3. The new path is shown as a

solid line. In (f) a new node (E) is assigned with sequence ð8; 7; 4Þ: In (g) node (B) is reached for the third

time and reassigned the sequence ð8; 7; 4; 3Þ of length 4. The optimal path for this configuration from A to

B is denoted by the solid arrows in (g).

S. Havlin et al. / Physica A 346 (2005) 82–92 85



where Sopt is the sequence of weights for the optimal path of length ‘opt: A schematic

representation of this ultrametric algorithm is presented in Fig. 1. This algorithm is

slow and memory consuming since we have to keep track of a sequence of values and

the rank. Using this method, we obtain systems of sizes up to 212 nodes, typically 105

realizations of disorder.

2.4. Bombing optimization

This algorithm allows to compute ‘opt (and other relevant quantities) between any

two nodes in strong disorder. This algorithm was first introduced by Cieplak et al.

[13] and is valid in the limit of strong disorder. Basically the algorithm does the

following:

(i) Sort the edges by descending weight.

(ii) If the removal of the highest weight edge will not disconnect A from B—remove

it.

(iii) Go back to step (ii) until all edges have been processed.

Since the edge weights are random, so is the ordering. Therefore, in fact, one need

not even select edge weights and ‘‘bombing’’ algorithm can be replaced by simply

removing randomly chosen edges one at a time, where an edge is not removed if its

removal will break the connectivity between A and B. The final path left is the

optimal path between A and B in the limit b ! 1: This bombing algorithm is slow,

since one must test the connectivity after removal of each link. To enhance the speed,

we first find any path (selected path) on the network that connects two nodes. Then

we remove links in random order. Only if the removed link belongs to the selected

path, we check if the connectivity between the two nodes is still present. If the

connectivity between the two nodes is destroyed, we restore the link because this link

belongs to the optimal path and select another path that connects A and B. The best

choice for the selected path is the minimal path, at a given concentration of links,

because it is the shortest among all other existing paths between the two nodes, the

probability to select a link from it is lower than the probability to select a link from

any other path. The advantage of this procedure is that one has to test for

connectivity only if the selected link belongs to the minimal path. Since checking the

connectivity is the most time-consuming part in the original ‘bombing’ algorithm,

with this improvement we could reach systems of sizes up to 216 nodes and 105

realizations of weight disorder.

3. Strong disorder

We begin with the analytical considerations in the case of strong disorder. This is

believed to be relevant for computer and traffic networks, since the slowest link in

communication networks determines the connection speed. To obtain the optimal

path in the strong disorder limit, we present the following theoretical argument. It

has been shown [13,12] that the optimal path for b ! 1 between two nodes A and B

ARTICLE IN PRESS

S. Havlin et al. / Physica A 346 (2005) 82–9286



on the network can be obtained by the bombing algorithm described in Section 2.4.

This algorithm is based on randomly removing links. Since randomly removing links

is a percolation process, the optimal path must be on the percolation backbone

connecting A and B. Since the network is not embedded in space but has an infinite

dimensionality, we expect from percolation theory that at criticality loops are not

relevant. Thus, the shortest path at the percolation cluster at criticality must be the

same as the optimal path.

We begin by considering the case of the ER graph. At criticality, it is equivalent to

percolation on the Cayley tree or percolation at the upper critical dimension dc ¼ 6:
For the ER graph, it is known that the mass of the incipient infinite cluster S scales

as N2=3 [4]. This result can also be obtained in the framework of percolation theory

for dc ¼ 6: Since S � Rd f and N � Rd (where d f is the fractal dimension and R the

spatial diameter of the cluster), it follows that S � Ndf =d and for dc ¼ 6; d f ¼ 4 [14]

we obtain S � N2=3:
It is also known [14] that, at criticality, at the upper critical dimension, S � ‘d‘min

with d‘ ¼ 2; and thus

‘min � ‘opt � S1=d‘ � N2=3d‘ � Nnopt ; (4)

where nopt ¼
2
3
d‘ ¼

1
3
:

For SF networks, we can also use the percolation results at criticality. It was found

[15] that d‘ ¼ 2 for l44; d‘ ¼ ðl� 2Þ=ðl� 3Þ for 3olo4; S � N2=3 for l44; and

S � N ðl�2Þ=ðl�1Þ for 3olp4: Hence, we conclude that

‘min � ‘opt �
N1=3; l44

N ðl�3Þ=ðl�1Þ; 3olp4

(

: (5)

Thus nopt ¼
1
3

for ER and SF with l44; and nopt ¼ ðl� 3Þ=ðl� 1Þ for SF with

3olo4: Since for SF networks with l44 the scaling behavior of ‘opt is the same as

that for ER graphs and for lo4 the scaling is different, we can regard SF networks

as a generalization of ER graphs.

Next, we describe the details of our numerical simulations and show that the

results agree with our theoretical predictions. We perform numerical simulations in

the strong disorder limit by the method described in Section 2.4 for ER and SF

networks. We also perform additional simulations for the case of strong disorder on

ER networks using the ultrametric optimization algorithm (see Section 2.3) and find

results identical to the results obtained by randomly removing links. In Fig. 2 (left),

we show a double logarithmic plot of ‘opt as a function of N for ER graphs. To

evaluate the asymptotic value for nopt we use for both approaches successive slopes,

defined as centered differences of the values on Fig. 2. One can see from Fig. 2 (right)

that their value approaches 1
3

as Nb1; supporting Eq. (4).

The theoretical considerations [Eqs. (4) and (5)] predict that SF graphs with l44;
are similar to ER with ‘opt � N1=3; while for SF graphs with 3olo4; ‘opt �

N ðl�3Þ=ðl�1Þ: Fig. 3a shows data from numerical simulations supporting the linear

behavior of ‘opt versus N1=3 for lX4: The quality of the linear fit becomes poor for

l ! 4: At this value, there are corrections due to logarithmic divergence of the
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second moment of the degree distribution, i.e., ‘opt � N1=3= ln N (see Fig. 3b). Fig.

3c shows results of simulations supporting the asymptotic linear behavior of ‘opt

versus N ðl�3Þ=ðl�1Þ for 3olp4: Theoretically, as l ! 3; nopt ¼ ðl� 3Þ=ðl� 1Þ ! 0;
and thus one can expect for l ¼ 3 a logarithmic dependence of ‘opt versus N.

Interestingly, for 2olo3 our numerical results for the strong disorder limit suggest

that ‘opt scales faster than ln N: The numerical results can be fit to ‘opt � ðln NÞl�1

(seeFig. 3d). Note that the correct asymptotic behavior may be different and this

result represents only a crossover regime. The exact nature of the percolation cluster

at lo3 is not clear yet, since in this regime the transition does not occur at a finite

concentration [16]. We obtain similar results for SF networks where the weights are

associated with nodes instead of links.

4. Weak disorder

When b ¼ 1=kT ! 0; all the ti contribute to the total cost. Thus T ! 1 (very

high temperatures) corresponds to weak disorder limit. We expect that the optimal

path length in the weak disorder case will not be considerably different from the

shortest path, as found also for regular lattices [17] and random graphs [18]. Thus,

we expect that the scaling for the shortest path will also be valid for the optimal

path in weak disorder, but with a different prefactor depending on the details of the

graph and the type of disorder. We simulate weak disorder by selecting 0ptio1

from a uniform distribution. To compute ‘opt we use the Dijkstra algorithm

(See Section 2.2)[9]. The scaling of the length of the optimal path in WD for ER, is
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shown in Fig. 4(a). Here we plot ‘opt as a function of ln N for hki ¼ 4: The weak

disorder does not change the scaling behavior of ‘opt on ER compared to ‘min:
For SF networks, the behavior of the optimal path in the weak disorder limit is

shown in Fig. 4(b) for different degree distribution exponents l: Here we plot ‘opt as

a function of ln N: All the curves seem to have linear asymptotes. This result is

analogous to the behavior of the shortest path ‘min � ln N for 3olo4 and ER.

However, for 2olo3; ‘min scales as ln ln N [7] while ‘opt is significantly larger and

scales as ln N (Fig. 3b). Thus, weak disorder does not change the universality class of

the length of the optimal path except in the case of ‘‘ultra-small’’ worlds 2olo3;
where ‘opt � expð‘minÞ:

5. Transition from weak to strong disorder

Consider the case for finite b (finite temperature). In this case we expect a

transition on the length of the optimal path from strong disorder scaling

characteristic to weak disorder depending on the system size as well as on the value
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of b: In order to study this transition we have to use an implementation of disorder

that can be tuned to realize narrow distributions of link costs (WD) as well as broad

distributions of link costs (SD). The procedure that we adopt to implement the

disorder is as follows [13,19,12,20]. One assigns to each link i of the network a

random number ri; uniformly distributed between 0 and 1. The cost associated with

link i is then ti � expðbriÞ; where b controls the broadness of the distribution of link

costs. The parameter b represents the strength of disorder. The limit b ! 1 is the

strong disorder limit, where a single link dominates the cost of the path. We are

going to call the length of the optimal path in the SD regime ‘1; i.e., lopt � l1:
For strong disorder, ‘1 � Nnopt [12], where nopt ¼

1
3

for ER random networks and

for SF networks with l44; where l is the exponent characterizing the power law

decay of the degree distribution. For SF networks with 3olo4; nopt ¼ ðl� 3Þ=ðl�
1Þ (see Section 3). For weakly disordered ER networks and for SF networks with

l43; ‘opt � ln N (see Section 4). Porto et al. [19] considered the optimal path

transition from weak to strong disorder for 2-D and 3-D lattices, and found a

crossover in the scaling properties of the optimal path that depends on the disorder

strength b; as well as the lattice size L. Similar to regular lattices, there exists for any
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finite b; a crossover network size N�ðbÞ such that for N5N�ðbÞ; the scaling

properties of the optimal path are in the strong disorder regime while for NbN�ðbÞ;
the network is in the weak disorder regime. So the optimal length ‘optðbÞ depends

on b as well as on N [21]. In the following we use instead of N, the optimal path

in the ultrametric limit, ‘1; which is related to N as ‘1 � Nnopt : There exists a

crossover length ‘�ðbÞ; corresponding to thecrossover network size N�ðbÞ; such

that the scaling properties of ‘optðbÞ are: (i) for ‘15‘�ðbÞ in SD, and (ii) for

‘1b‘�ðbÞ in WD. The measure used to study the crossover is ‘optðbÞ=‘1: It is found

[21] that for ER networks, N�ðbÞ � b3; while for SF networks with 3plp4;
N�ðbÞ � bðl�1Þ=ðl�3Þ:

6. Summary

In this paper, we review recent work on the scaling of the average optimal path

length ‘opt in a disordered network. There are two scaling regimes of lopt
corresponding to the regimes of weak and strong disorder. For ER networks and

SF networks with l44; ‘opt � ln N in the weak disorder regime while ‘opt � N1=3 in

the strong disorder regime. For SF networks with 3olo4; ‘opt � ln N in the weak

disorder regime while ‘opt � N ðl�3Þ=ðl�1Þ in the strong disorder regime. For SF

networks with 2olo3; lopt � ln N in the weak disorder regime while lopt � lnl�1N

in the strong disorder regime. The scaling behavior of ‘opt in the strong disorder

regime for ER and SF networks with l43 is obtained analytically using percolation

theory [22]. Also mentioned briefly is work on the crossover in the scaling properties

of ‘opt from the weak disorder regime to the strong disorder regime. This work is

discussed in detail in Sreenivasan et al. (this volume).
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