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We study statistical properties of the Jensen-Shannon divergence D, which quantifies the difference between
probability distributions, and which has been widely applied to analyses of symbolic sequences. We present
three interpretations of D in the framework of statistical physics, information theory, and mathematical statis-
tics, and obtain approximations of the mean, the variance, and the probability distribution of D in random,
uncorrelated sequences. We present a segmentation method based on D that is able to segment a nonstationary
symbolic sequence into stationary subsequences, and apply this method to DNA sequences, which are known
to be nonstationary on a wide range of different length scales.
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I. INTRODUCTION

The statistical analysis of symbolic sequences is of central
importance in various fields of science, such as symbolic
dynamics @1,2#, linguistics ~following the pioneering works
of Shannon @3#!, or DNA sequence analysis @4–7#. One ad-
vantage of using information theoretical functionals for the
analysis of symbolic sequences is that they do not require the
symbolic sequence to be mapped to a numerical sequence,
which is necessary in spectral or correlation analyses @8#.
One of these functionals is the Jensen-Shannon divergence D
@9–12#, which quantifies the difference between two ~or
more! probability distributions, and which can be used to
compare the symbol composition between different se-
quences.

There are three reasons why we choose D as a measure of
divergence between probability distributions: ~i! D is related
to other information-theoretical functionals, such as the rela-
tive entropy or the Kullback divergence, and hence it shares
their mathematical properties as well as their intuitive inter-
pretability, ~ii! D can be generalized to measure the distance
between more than two distributions, and ~iii! the compared
distributions can be weighted, which allows us to take into
account the different lengths of the subsequences from which
the probability distributions are computed @13#.

D has been used for measuring the distance between ran-
dom graphs @10#, for testing the goodness-of-fit of point es-
timations @12#, in the analysis of DNA sequences @13,14#, in
the segmentation of textured images @15#, and in the design
of a statistical characterization of the mobility edge in disor-
dered materials @16#. In addition, by making use of its ability
to be generalized to an arbitrary number of probability dis-
tributions, D has been used to quantify the complex hetero-
geneity of DNA sequences @17–19# as well as to detect bor-
ders between coding and noncoding DNA @20#.

Here we describe in detail some statistical properties of D
as well as some theoretical background relevant for the
above-mentioned applications. This paper is organized as
follows: in Sec. II we introduce D and some of its math-

ematical properties. In Sec. III we provide three interpreta-
tions of D, one in the framework of statistical physics, one in
the framework of information theory, and one in the frame-
work of mathematical statistics. In Sec. IV we discuss some
statistical properties of D, and we derive the mean, the vari-
ance, and the asymptotic probability distribution function of
D. In Sec. V we apply the Jensen-Shannon divergence to the
problem of segmenting a nonstationary sequence into sta-
tionary subsequences, and show that in this context the maxi-
mum value Dmax of the Jensen-Shannon divergence D
sampled along a sequence becomes a quantity of central im-
portance. Hence, we study the probability distribution of
Dmax by means of Monte-Carlo simulations. In Sec. VI we
present three examples of how D can be applied to the prob-
lem of segmenting nonstationary symbolic sequences ~such
as DNA sequences! into stationary subsequences, and Sec.
VII concludes this paper.

II. THE JENSEN-SHANNON DIVERGENCE

Several measures have been proposed to quantify the dif-
ference ~sometimes called divergence! between two ~or
more! probability distributions @9#. One of those measures is
the Jensen-Shannon divergence, which is defined as follows:
let p(1)[(p1

(1) ,p2
(1) , . . . ,pk

(1)) and p(2)[(p1
(2) ,p2

(2) , . . . ,pk
(2))

denote two probability distributions satisfying the usual con-
straints ( i51

k p i
( j)

51 and 0<p i
( j)<1 for all i51,2,...,k and

j51, 2; and let p (1) and p (2) denote the weights of the
distributions p(1) and p(2), satisfying the constraints p (1)

1p (2)
51 and 0<p ( j)<1. Then the Jensen-Shannon diver-

gence D between the probability distributions p(1) and p(2)

with weights p (1) and p (2) is defined by @11#

D@p~1 !,p~2 !#[H@p ~1 !p~1 !
1p ~2 !p~2 !#2~p ~1 !H@p~1 !#

1p ~2 !H@p~2 !# !, ~1!

where
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H@p#52(
i51

k

p i log2p i ~2!

denotes the Shannon entropy of the probability distribution
p[(p1 ,p2 , . . . ,pk).

The Jensen-Shannon divergence D can be shown to be a
special case of the Jensen difference divergence introduced
by Burbea and Rao @21#. Also, D can be shown to be a
special case of the w divergence introduced by Csiszar
@12,22#. Hence, the Jensen-Shannon divergence D shares all
mathematical properties of both the Jensen difference diver-
gence and the w divergence. It is interesting to note that the
Jensen-Shannon divergence is the only measure that simul-
taneously belongs to the family of Jensen difference diver-
gences and the family of w divergences @12#, i.e., the inter-
section of the family of Jensen difference divergences and
the family of w divergences contains only a single measure,
and that measure is the Jensen-Shannon divergence D.

In the following two paragraphs we list some mathemati-
cal properties of D that turn out to be important for its ap-
plication as a divergence measure.

~1! By using the Jensen inequality @23# it is easy to see
that

D@p~1 !,p~2 !#>0, ~3!

with D @p(1),p(2)#50 if and only if p(1)
5p(2) .

~2! D is symmetric in its arguments p(1) and p(2), i.e.,

D@p~1 !,p~2 !#5D@p~2 !,p~1 !# . ~4!

~3! D is well defined even if p(1) and p(2) are not abso-
lutely continuous, i.e., D is well-defined even if p i

(1) vanishes
without vanishing p i

(2) or if p i
(2) vanishes without vanishing

p i
(1) .

D can be generalized to quantify the divergence between
an arbitrary number of probability distributions. Let us con-
sider m probability distributions p(1), p(2), . . . , p(m), and let
us denote by p (1),p (2), . . . ,p (m) the corresponding weights.
We can define the Jensen-Shannon divergence between the m
probability distributions p(1),p(2), . . . ,p(m) with weights
p (1),p (2), . . . ,p (m) by

D@p~1 !,p~2 !, . . . ,p~m !#5HF (
j51

m

p ~ j !p~ j !G2(
j51

m

p ~ j !H@p~ j !# .

~5!

It is interesting to note that the three mathematical properties
mentioned above for the binary case can be generalized to
the m-ary case as follows:

~1! The Jensen inequality @23# implies that

D@p~1 !,p~2 !, . . . ,p~m !#>0, ~6!

with D @p(1),p(2), . . . ,p(m)#50 if and only if all probability
distributions p(1),p(2), . . . ,p(m) are identical, i.e., if and only if
p(1)

5p(2)
5¯5p(m).

~2! D is symmetric in its arguments p(1),p(2), . . . ,p(m), i.e.,
D is invariant under any permutation of its arguments
p(1),p(2), . . . ,p(m) .

~3! D is well defined even if the probability distributions
p(1),p(2), . . . ,p(m) are not absolutely continuous.

III. INTERPRETATIONS OF D

In the following three sections we will present three in-
tuitive interpretations of the Jensen-Shannon divergence D.

A. Interpretation of D in the framework of statistical physics

In this section we show that D can be interpreted as the
intensive mixture entropy in the following way: let us con-
sider m vessels, each one containing a mixture of k ideal
gases, let f( j)[( f 1

( j) , f 2
( j) , . . . , f k

( j)) denote the vector of molar
fractions of the k gases in the j th vessel for j51,2,...,m , and
let n ( j) denote the total number of molecules in the j th ves-
sel. Then we know from the second law of thermodynamics
that the sum of the Boltzmann entropies of the m separate
vessels is smaller than ~or equal to! the Boltzmann entropy
of the joint vessel that we obtain after mixing the gases from
all m vessels, and we can easily show that the difference of
the sum of the entropies obtained before the ideal gases are
mixed and the entropy obtained after the ideal gases are
mixed is equal to

Hmix5NkB~ ln 2 !H@f#2(
j51

m

n ~ j !kB~ ln 2 !H@f~ j !# , ~7!

where kB denotes the Boltzmann constant, N[S j51
m n ( j) de-

notes the total number of ideal gas particles in all m vessels,
and f[S j51

m (n ( j)/N)f( j) denotes the vector of molar fractions
of the k gases in the mixture containing the gas particles of
all of the m vessels. Hmix is commonly called mixing entropy,
and it is easy to see that

Hmix5NkB~ ln 2 !D , ~8!

if the weights are chosen to be p ( j)[n ( j)/N . Hence, D can
be interpreted as the intensive mixture entropy measured in
units of kB ln 2.

B. Interpretation of D in the framework of information theory

In this section we show that D can be interpreted as the
mutual information in the following way: let us consider a
sequence S of N symbols chosen from the alphabet A

5$a1 ,a2 , . . . ,ak%, and let us denote by p i the probability of
finding symbol a i at an arbitrary but fixed position in se-
quence S, for i51,2,...,k . Suppose that the sequence S is
divided into m subsequences S

(1),S(2), . . . ,S(m) of given
lengths n (1),n (2), . . . ,n (m), and let us denote by p i

( j) the prob-
ability of finding symbol a i at an arbitrary but fixed position
in sequence S

( j), for i51,2,...,k and j51,2,...,m .
In order to establish the connection between D and the

mutual information defined in the framework of information
theory, we define the random vector (a , s), where the ran-
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dom variables a P A and s P $S(1), S
(2), . . . ,S(m)

% are gener-
ated as follows: draw a random position n with a uniform
probability distribution along the sequence S, denote by a
the symbol at position n, denote by s the subsequence that
contains position n, and denote by p i j the joint probability of
a5a i and s5S

( j) for i51,2, . . . ,k and j51,2, . . . m .
Then we obtain that the random variable a assumes the val-
ues a1 ,a2 , . . . ,ak with probabilities p1 ,p2 , . . . ,pk , and the
random variable s assumes the values S

(1),S(2), . . . ,S(m) with
probabilities p (1)[n (1)/N , p (2)[n (2)/N . . . , p (m)[n (m)/N ,
where the marginal possibilities p i and p ( j) are defined by

p i[(
j51

m

p i j and p ~ j ![(
i51

k

p i j

for i51,2, . . . ,k and j51,2, . . . ,m .
Suppose that someone is drawing a symbol a from the

entire sequence S, not telling us from which subsequence s
this symbol was drawn, and suppose it is our task to guess
that subsequence S from which symbol a was drawn. One
question answered by information theory is: ‘‘How much
information I can we obtain from learning the identity of the
symbol a about the identity of that subsequence s from
which symbol a was drawn, provided we know the probabil-
ity distribution $p i j%?’’

I is called the mutual information in a about s and defined
by @3#

I[(
i51

k

(
j51

m

p i j log2

p i j

p ~ j !p i
. ~9!

Taking into account that p i
( j) denotes the conditional prob-

ability of finding symbol a i at an arbitrary but fixed position
in a given ~fixed! sequence S

( j), it follows that p i j

5p ( j)p i
( j) , and Eq. ~9! can be rewritten as

I[(
i51

k

(
j51

m

p ~ j !p i
~ j ! log2

p i
~ j !

p i
. ~10!

By rewriting Eq. ~10! we obtain

I5(
j51

m

p ~ j !(
i51

k

p i
~ j ! log2 p i

~ j !
2(

i51

k S (
j51

m

p ~ j !p i
~ j !D log2 p i .

~11!

As p i5S j51
m p ( j)p i

( j) defines the probability of finding sym-
bol a i in the whole sequence, we obtain

I5D@p~1 !,p~2 !, . . . ,p~m !# . ~12!

Hence, D is identical to the mutual information in a about s ,
which quantifies the amount of information we obtain from
learning the identity of the chosen symbol a about the iden-
tity of that subsequence s from which symbol a was chosen.

As I is symmetric in its arguments a and s, we may also
consider the following game: suppose someone is drawing a
symbol a from sequence S, not telling us the identity of the
drawn symbol a, but telling us the identity of that subse-

quence s from which symbol a was drawn. Suppose further
that it is our task to guess the identity of the drawn symbol a.
One question answered by information theory is: ‘‘How
much information I can we obtain from learning the identity
of the subsequence s about the identity of the drawn symbol
a, provided we know the probability distribution $p i j% .’’ It
can be mathematically proven that the mutual information in
a about s is identical to the mutual information in s about a,
and hence we can state that the Jensen-Shannon divergence
D quantifies the amount of information we obtain from learn-
ing the identity of the subsequence s about the identity of the
drawn symbol a.

If p(1)
5p(2)

5¯5p(m), then it is clear that knowing the
identity of the symbol a does not tell us anything about the
identity of the subsequence s from which a was drawn, as the
probability distributions of a are identical in all subse-
quences s. Likewise, it is clear that in this case knowing the
subsequence s from which a was drawn does not tell us
anything about the identity of a. Hence, it is intuitively clear
that the mutual information in a about s ~or the mutual in-
formation in s about a! is equal to zero, and hence it is also
intuitively clear that in this case the Jensen-Shannon diver-
gence D is equal to zero.

C. Interpretation of D in the framework of mathematical
statistics

In this section we show that D can be interpreted as the
log-likelihood ratio in the following way: consider the prob-
lem of estimating the probabilities p[(p1 ,p2 , . . . ,pk) from a
symbolic i.i.d. @24# sequence S of length N, in which at each
position a symbol a iPA[$a1 ,a2 , . . . ,ak% is randomly drawn
with probability p i . The maximum likelihood principle sug-
gests to choose that probability vector p which maximizes
the likelihood

L~Sup![)
i51

k

p i
F i, ~13!

where F i denotes the number of occurrences of symbol a i in
sequence S. As the logarithm is a strictly monotonic func-
tion, one may equally search for that p which maximizes
ln L5(i51

k Fi ln pi . It is easy to derive by using one Lagrange
multiplier for the constraint S i51

k p i51 that p i5F i /N maxi-
mizes the log-likelihood ln L. Hence, we obtain as maximum
log-likelihood

ln Lmax5N(
i51

k

f i ln f i52N~ ln 2 !H@f# , ~14!

where f i[F i /N denotes the relative frequency of finding
symbol a i in sequence S of length N.

Now consider the slightly more complicated problem of a
nonstationary sequence S of length N consisting of m station-
ary subsequences S

(1),S(2), . . . ,S(m) with lengths
n (1),n (2), . . . ,n (m), where the probability p i

( j) of generating
symbol a i in subsequence S

( j) may vary from subsequence
to subsequence. The likelihood of obtaining the entire se-
quence S is equal to the product of the likelihoods of obtain-
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ing the m subsequences S
(1),S(2), . . . ,S(m). Hence, the maxi-

mum likelihood principle suggests to choose for each j
51,2,...,m that probability vector p( j)[(p1

( j) ,p2
( j) , . . . ,pk

( j))
that maximizes the likelihood

L~S~ j !up~ j !![)
i51

k

~p i
~ j !!F i

~ j !
, ~15!

where F i
( j) is the number of occurrences of symbol a i in

subsequence S
( j). It is again easy to derive by using m

Lagrange multipliers for the m constraints ( i51
k p i

( j)
51 that

p i
( j)

5F i
( j)/n ( j) maximizes the log-likelihood ln L(j). Hence,

we obtain as maximum log-likelihood

ln Lmax
~ j !

5n ~ j !(
i

f i
~ j ! ln f i

~ j !
52n ~ j !~ ln 2 !H@f~ j !# , ~16!

where f i
( j)[F i

( j)/n ( j) denotes the relative frequency of find-
ing symbol a i in subsequence S

( j) of length n ( j).
As problem one ~with just one sequence! is a special case

of problem two ~of having m sequences!, the sum of the
maximum log-likelihoods ( j51

m ln Lmax
(j) cannot be smaller

than ln Lmax , because in the ‘‘worst’’ case in which all of the
m subsequences of problem two were identical, problem two
would just reduce to problem one, giving the same log-
likelihood as in problem one. Hence, the quantity

DL[(
j51

m

ln Lmax
~ j !

2ln Lmax ~17!

is non-negative, and DL is commonly called the log-
likelihood ratio.

It is straightforward to see from Eqs. ~14!, ~16!, and ~17!
that

DL5N~ ln 2 !D . ~18!

Hence, in the framework of mathematical statistics DL can
be interpreted as the increase of the log-likelihood when se-
quence S, instead of being modeled as a sequence generated
with a single probability vector p, is modeled as a concat-
enation of m subsequences S

(1),S(2), . . . ,S(m) ~in that order!
generated from the probability vectors p(1),p(2), . . . ,p(m).

The inequality DL>0 states that any partition of the
original sequence into m subsequences increases the likeli-
hood of the second model over the first model. In order to
choose hypothesis two ~m subsequences! in favor of hypoth-
esis one ~only one sequence!, we require that DL be signifi-
cantly greater than zero, and it is the goal of this paper to
derive an approximation of the probability distribution func-
tion of DL .

Note that in all of the above interpretations of D the
weights of the distributions p (1),p (2), . . . ,p (m) are propor-
tional to the ‘‘sizes’’ n (1),n (2), . . . ,n (m) of the m elements con-
sidered: the number of particles of each of the m ideal ves-
sels or the number of symbols in each of the m
subsequences. It is interesting that this particular choice of
weights arises in a natural way from all of the three interpre-

tations presented above, and—as we will see later—this
choice of weights endows the Jensen-Shannon divergence D
with several statistical properties that make D particularly
suitable for the analysis of symbolic sequences.

IV. STATISTICAL PROPERTIES OF D

Formally, D is a function of the probability distributions
p(1),p(2), . . . ,p(m), but in analyses of experimental data those
probability distributions are not ~directly! observable. How-
ever, when we study experimental symbolic sequences we
can estimate those probability distributions p( j) from the fre-
quency distributions f( j)[( f 1

( j) , f 2
( j) , . . . , f k

( j)), where f i
( j) de-

notes the relative frequency of symbol a i in subsequence
S

( j), for i51,2,...,k and j51,2,...,m .
In all analyses of experimental data the Jensen-Shannon

divergence D must be computed from those ~observable! fre-
quency distributions f(1),f(2), . . . ,f(m) rather than from the
~nonobservable! probability distributions p(1),p(2), . . . ,p(m).
As a consequence of replacing the probabilities p i

( j) by the
corresponding relative frequencies f i

( j) in Eq. ~1!, the nu-
merical values of D will fluctuate from data set to data set,
even if those data sets can be assumed to be generated from
the same probability distribution.

The fluctuation of f i
( j) from data set to data set may not

only result in fluctuations of the numerical values of D, but
also in a systematic shift ~bias! of the numerical values of D
computed from the observed data as compared to the numeri-
cal value of D computed from the unobservable probability
distributions. In order to illustrate the presence of those fluc-
tuations of D as well as its systematic shift ~called bias!, we
perform the following control experiments:

We generate an ensemble of 2000 binary sequences (k
52) of N52500 symbols each, obtained by joining m52
subsequences as follows: we generate the left sequence of
length n5500 by concatenating random, uncorrelated sym-
bols drawn from the probability distribution p(1)

5(0.45,0.55), and the right sequence of length N2n
52000 symbols drawn from the probability distribution
p(2)

5(0.55,0.45).
We move a cursor along the entire sequence, and we com-

pute D between the subsequences at both sides of the cursor
for all positions n (1)

51,2,..., N21 and n (2)
5N21, N

22,...,1. In order to illustrate the effect of different choices
of the weights p ( j), we compute the Jensen-Shannon diver-
gence in two different ways: ~i! for the choice of equal
weights p ( j)

51/m for all subsequences S
( j), and ~ii! for the

natural choice of weights p ( j)
5n ( j)/N . In the following we

denote by D1/m the Jensen-Shannon divergence with the
choice of equal weights ~i!, and we denote by D the Jensen-
Shannon divergence with the natural choice of weights ~ii!.

An ideal estimator of D, which quantifies the difference
between two probability distributions, should reach its maxi-
mum value exactly at that point which separates the subse-
quences generated by different probability distributions, i.e.,
it should reach its maximum value when n (1)

5n5500 and
n (2)

5N2n52000. Figure 1~a! shows ^D& versus n (1) and
^D1/2& versus n (1), where the symbol ^¯& denotes the en-
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semble average over all 2000 realizations.
Figure 1~a! shows that there are dramatic finite size ef-

fects when using D1/2 ~dashed line! instead of D ~solid line!.
While D clearly achieves its global maximum at position
n (1)'n5500 @marked with a vertical dotted line in Fig.
1~a!#, D1/2 achieves its highest values at the beginning and
the end of the horizontal axis, i.e., at very small and very
large values of n (1).

We perform a second control experiment similar to the
first experiment, in which we change the lengths of the two
subsequences to n51250 as well as N2n51250, and in
which we keep all other parameters the same as before. Fig-
ure 1~b! shows clearly that, again, D achieves its maximum
at n (1)'n51250, while D1/2 achieves its highest values at
the beginning and the end of the horizontal axis, i.e., at very
small and very large values of n (1).

These control experiments demonstrate two results: ~i! the
location of the maximum of D can separate regions of dif-
ferent composition and size in a symbolic sequence, and ~ii!
the estimation of D1/2 and D from sequences of finite length
is affected by finite size effects. In order to illustrate point
~ii! directly, we perform a third control experiment in which
we generate the two subsequences from the same probability
distribution. In this case the experimentally obtained values
of D that are nonzero are due only to statistical fluctuations.

Figure 1~c! shows ^D& versus n (1) and ^D1/2& versus n (1)

for an ensemble of 2000 stationary, binary sequences of
length N52500 in which each symbol is generated with
probability 0.5. We find that, for all positions n (1), the values
of D are approximately the same, whereas the values D1/2

depend dramatically on n (1). Figure 1~c! also shows that ^D&
is not identical to zero, and we devote the following three
sections to derivations of approximations of the mean, the
variance, and the probability distribution function of D.

A. Mean of D

In this section we will derive an analytical approximation
of the mean value of D when computed from an ensemble of
finite i.i.d. sequences of length N.

It follows directly from the Jensen inequality that the ex-
pected value, ^H@f#&, of the entropy computed from an en-
semble of finite-length sequences cannot be greater than the
theoretical value, H@p# , of the entropy computed from the
~unobservable! probabilities @25#, i.e.,

^Hufu&<H@p# , ~19!

where ^¯& denotes the expectation value over the ensemble
of finite-length i.i.d. sequences generated by the probability
distribution p.

This mathematical statement is intuitively clear: due to
the finite sample size, the relative frequency vector f fluctu-
ates from sample to sample around the probability vector p,
and the majority of these fluctuations will make f less uni-
form than p. Since the entropy H@p# quantifies the unifor-
mity of the probability distribution p, we expect that the
majority of the values of H@f# computed from an ensemble
of fluctuating frequency vectors f will be smaller than the
value of H@p# .

FIG. 1. Comparison of D and D1/2 . We generate an ensemble of
2000 binary sequences of length N52500, obtained by joining two
subsequences of lengths n and N2n , where the left subsequence of
length n is generated from a probability distribution (x ,12x) and
the right subsequence of length N2n is generated from a probabil-
ity distribution (y ,12y). We move a cursor along the entire se-
quence and we compute D and D1/2 between the subsequences at
both sides of the cursor. Finally we plot the ensemble averages ^D&

~solid line! and ^D1/2& ~dashed line! as a function of the position of
the cursor n (1)

51,2,...,N21. In ~a! we choose n5500, x50.45,
and y50.55, and find that D achieves its global maximum at n (1)

'500 in the vicinity of the true fusion point of the two subse-
quences at n5500, whereas D1/2 achieves its global maximum at
the edges n (1)

→0 or n (1)
→2500 far away from the true fusion

point of the two subsequences at n5500. This finding indicates that
D might serve as an appropriate divergence measure to quantify the
compositional differences between symbolic subsequences, whereas
D1/2 might not. In ~b! we choose n51250, x50.45, and y50.55,
and find again that D achieves its global maximum at n (1)'1250 in
the vicinity of the true fusion point of the two subsequences at n
51250, whereas D1/2 achieves its global maximum at the edges
n (1)

→0 or n (1)
→2500 far away from true fusion point of the two

subsequences at n51250, confirming the finding from ~a! that D
might serve as an appropriate divergence measure to quantify the
compositional differences between symbolic subsequences, whereas
D1/2 might not. In ~c! we choose n51250 and x5y50.5, and we
find that D stays quite constant at a small value of approximately
2.931024 bits, reflecting the fact that the analyzed sequences are
stationary, whereas D1/2 is clearly increasing as n (1)

→0 or n (1)

→2500, confirming the finding from ~a! and ~b! that D might serve
as an appropriate divergence measure to quantify the compositional
differences between symbolic subsequences, whereas D1/2 might
not. The effect that even in the case of i.i.d. sequences the expected
value of D is greater than zero is referred to as finite-size effect, and
we address this finite-size effect in Sec. IV.
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Up to first order the expected value of H@f# can be ap-
proximated by @26–30#

^Hufu&.H@p#2

k21

2N ln 2
, ~20!

where k is the number of components of the probability and
frequency vectors p and f, N is the sample size, and the
symbol . indicates that we neglect terms of the order of
O(1/N2). By applying Eq. ~20! to each of the m subse-
quences we obtain

^H@f~ j !#&.H@p~ j !#2

k21

2n ~ j !ln 2
, ~21!

for j51,2,...,m , where the symbol . indicates that we ne-
glect terms of the order of O„1/(n ( j))2…. We will use approxi-
mations ~20! and ~21! to derive in the remainder of this sec-
tion the expected value of the Jensen-Shannon divergence
D@f(1),f(2), . . . ,f(m)# computed from an ensemble of m i.i.d.
sequences of total length N.

In order to avoid lengthy expressions, we define D@F#
[D@f(1),f(2), . . . ,f(m)# and D@P#[D@p(1),p(2), . . . ,p(m)# , and
by substituting Eqs. ~20! and ~21! into Eq. ~1! we obtain

^D@F#&.D@P#1

k21

2N ln 2 S (
j51

m

p ~ j !
N

n ~ j !21 D . ~22!

This expression shows that, in general, the bias ^D@F#&
2D@P# depends on the lengths n ( j) of the subsequences.

It is easy to see that one choice of weights that makes Eq.
~22! independent of the subsequence lengths n ( j) is

p ~ j ![n ~ j !/N , ~23!

for j51,2,...,m . This finding is interesting because this par-
ticular choice of weights turns out to be identical to the natu-
ral choice of weights in all of the three interpretations of D
presented in Sec. III.

With this choice of weights, the expected value of the
Jensen-Shannon divergence D becomes

^D@F#&.D@p#1

k21

2N ln 2
~m21 !, ~24!

which is independent of the subsequence lengths n ( j). Figure
2 illustrates the independence of the mean value of D of the
subsequence lengths n ( j), and it also shows that Eq. ~24! is a
reasonable approximation of the mean value of D.

Hence, expression ~24! can be used as a reference to de-
cide if a difference in composition between two sequences is
larger than expected. Note that in Fig. 1~c! the average value
of D fits the value predicted by Eq. ~24!, namely, ^D&52.9
31024 bits. In addition, from Eq. ~24! we see that the bias of
the quantity ND is independent of the sequence length N,
which allows us to compare Jensen-Shannon divergence val-
ues obtained from sequences of different sizes.

With the naive choice of weights p ( j)
51/m we obtain for

the expected value of the Jensen-Shannon divergence the ap-
proximation

^D1/m@F#&.D1/m@P#1

k21

2N ln 2 S N

m
A21 D , ~25!

where A[( j51
m 1/n ( j) denotes the harmonic mean of the sub-

sequence lengths n ( j). Clearly ^D1/m& depends on the subse-
quence lengths n ( j), and we see that ^D1/m& becomes mini-
mal for n ( j)

5N/m , while ^D1/m& diverges to infinity for
n ( j)

→0. This analytical approximation of the expected value
of D1/m is consistent with the dramatic increase of the dashed
line ~corresponding to ^D1/m&! close to the edges ~n (1)

→0 or
n (2)

→0! of the abscissa of Fig. 1.
There is another advantage of choosing the weights p ( j)

by Eq. ~23!. We will show in the following section that the
choice of the weights p ( j)[n ( j)/N minimizes the quadratic
deviation of the observed from the true Jensen-Shannon di-
vergence. This advantage is more important than the advan-
tage of having a bias that is independent of n ( j), because the
bias can be corrected analytically, in a first-order approxima-
tion, whereas the quadratic deviation of the observed from
the true Jensen-Shannon divergence ~i.e., the quadratic error!
cannot be reduced. Hence, it is desirable to obtain an estima-
tor of D that minimizes the quadratic deviation of the ob-
served from the true Jensen-Shannon divergence ~i.e., the
quadratic error!, and we will show in the following section
that the choice of the weights p ( j)[n ( j)/N yields exactly
that optimal estimator.

FIG. 2. Mean value of D as a function of the total sequence
length N, ranging from N510 to N5105, averaged over an en-
semble of 2000 i.i.d. sequences generated from a four-letters alpha-
bet (k54), where each symbol occurs with probability 1/4. For
each sequence length N we choose three different cutting points
n (1)

50.5N , n (1)
50.6N , and n (1)

50.7N , and we compute for each
N and each n (1) and each of the 2000 i.i.d. sequences the Jensen-
Shannon divergence D between the composition of the left subse-
quence of length n (1) and the composition of the right subsequence
of length n (2)

5N2n (1). For each N and n (1) we compute the av-
erage of D over the ensemble of all 2000 i.i.d. sequences, and the
figure shows the ensemble average ^D& as a function of N and n (1).
We find that log10 ^D& decays almost linearly as a function log10 N ,
with a slope very close to 21, for each n (1)

50.5N ~circles!, n (1)

50.6N ~triangles!, and n (1)
50.7N ~diamonds!, and we also find

that the approximation of ^D& from Eq. ~24! ~solid line! agrees very
well with the simulation results.
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B. Variance of D

The variance of D@F# is given by

s2~D@F# !5s2S H@f#2(
j51

m

p jH@f~ j !# D
5s2~H@f# !1(

j51

m

p j
2s2~H@f~ j !# !

22(
j51

m

p jcovH@f# ,~H@f~ j !# !

12(
j51

m

(
l5 j11

m

p jp lcov~H@f~ j !# ,H@f~ l !# !.

~26!

As the set of vectors $f(1),f(2), . . . ,f(m)% is product-
multinomially distributed, we obtain that H@f( j)# and H@f(l)#
are statistically independent for any jÞl . Hence, the terms
cov(H@f( j)# ,H@f(l)#) are all equal to zero, and we need to
consider only the terms s2(H@f#), s2(H@f( j)#), and
cov(H@f# ,H@f( j)#).

By Taylor-expanding H@f# about p we obtain a first-order
approximation of the variance of H@f# @5,6,27,28#,

s2~H@f# !.
1

N
s2~ log2 p!, ~27!

where n j denotes the length of subsequence S
( j),

s2(log2 p( j)) denotes the variance of the numbers log2 pi
with respect to the probability distribution $p i%, and the sym-
bol . indicates that we neglect terms of the order of
O(1/N2).

Likewise, we obtain a first-order approximation of the
variance of H@f( j)# ,

s2~H@f~ j !# !.
1

n j
s2~ log2 p~ j !! , ~28!

where N denotes the length of the whole sequence,
s2(log2 p( j)) denotes the variance of the numbers log2 pi

(j)

with respect to the probability distribution $p i
( j)% for every

j51,2,...,m , and the symbol . indicates that we neglect
terms of the order of O„1/(n ( j))2….

In the Appendix we derive a similar first-order approxi-
mation of the covariance terms, and under the null hypoth-
esis that p(1)

5p(2)
5¯5p(m)

5p we obtain

cov~H@f# ,H@f~ j !# !.
1

N
s2~ log2 p! ~29!

for all j51,2,...,m , where s2(log2 p) denotes the variance of
the numbers log2 pi with respect to the probability distribu-
tion $p i%, and the symbol . indicates that we neglect terms
of the order of O(1/N2). It is interesting to note that the
first-order approximation of the covariance between H@f#

and H@f( j)# @Eq. ~29!# is equal to the first-order approxima-
tion of the variance of H@f# @Eq. ~27!#.

By substituting the expressions from Eqs. ~27!, ~28!, and
~29! into Eq. ~26! we obtain for the variance of the Jensen-
Shannon divergence with arbitrary weights
p (1),p (2), . . . ,p (m),

s2~D !.S (
j51

m

p ~ j !
p ~ j !

n ~ j ! 2

1

N Ds2~ log2 p!, ~30!

under the null hypothesis that p(1)
5p(2)

5¯5p(m)
5p,

where the symbol . indicates that we neglect terms of the
order of O(1/N2).

Let us now consider that choice of weights p ( j) which
minimizes the quadratic deviation of the observed from the
true Jensen-Shannon divergence

^~D@F#2D@P# !2&5s2~D !1~^D@E#&2D@P# !2. ~31!

As the second term on the right hand side of Eq. ~31! is of
the order of O(1/N2), the minimization of the quadratic de-
viation of the observed from the true Jensen-Shannon diver-
gence reduces to the minimization of the variance of the
Jensen-Shannon divergence estimator.

By using one Lagrange multiplier for the normalization
constraint ( jp

( j)
51 we obtain that the set of weights p ( j)

5n ( j)/N minimizes the variance of the Jensen-Shannon di-
vergence D. This finding is intriguing, because this set of
weights is ~i! identical to the natural choice of weights in all
of the three interpretations of D presented in Sec. III as well
as ~ii! identical to the special choice of weights that makes
the bias of D independent of the subsequence lengths n ( j)

@Eq. ~24!#.
Furthermore, we find that for the special choice of

weights p ( j)[n ( j)/N the variance of D vanishes in O(1/N).
This means that for the special choice of weights p ( j)

[n ( j)/N the leading term of s2(D) decreases with the se-
quence length N as 1/N2, whereas—in general—it decreases
as 1/N . It is clear that for the special choice of weights
p ( j)[n ( j)/N the O(1/N) term of s2(D) becomes indepen-
dent of both n ( j) and p, and it is interesting that for this
special choice of weights the O(1/N2) term of s2(D) also
turns out to be independent of both n ( j) and p.

In contrast, we find that for the naive choice of weights
p ( j)[1/m the variance of D1/m neither vanishes in O(1/N)
nor does it become independent of the subsequence lengths
n ( j), and we obtain for the variance of the Jensen-Shannon
divergence D1/m ,

s2~D !.
s2~ log2 p !

N S N

m2 A21 D , ~32!

where A[( j51
m 1/n ( j) denotes the harmonic mean of the sub-

sequence lengths n ( j). Note that the expression inside the
parentheses on the right-hand side of Eq. ~32! is similar to
the expression inside the parentheses on the right-hand side
of Eq. ~25!. Hence, the variance of D1/m shows a singular
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behavior similar to that of the mean of D1/m when the length
of at least one subsequence becomes very small.

C. Probability distribution of D

Expression ~24! provides a good criterion to tell whether
an experimentally observed Jensen-Shannon divergence D
between m frequency distributions is greater than expected
by chance, but it does not tell if D is significantly greater
than expected by chance. In this section we will derive the
probability distribution of D in order to quantify the statisti-
cal significance of experimentally observed values of D.

Given an observed value of D5x , we will calculate the
probability of obtaining this value or a lower value by
chance under the null hypothesis that all m sequences are
generated from the same probability distribution. We call this
probability the significance threshold of the given value x,
and we denote it by

s~x ![Prob$D<x% . ~33!

As s(x) does not seem to admit an easy analytical expres-
sion, we will obtain an approximation by using the Taylor
expansion

x log2

x

a
5

x2a

ln 2
1

~x2a !2

a~2 ln 2 !
1O„~x2a !3…, ~34!

to approximate D in terms of quadratic functions as follows:

D[(
i51

k

(
j51

m

p i
~ j !p ~ j ! log2

p i
~ j !p ~ j !

p ip
~ j !

.(
i51

k

(
j51

m p i
~ j !p ~ j !

2p ip
~ j !

ln 2
1(

i51

k

(
j51

m
~p i

~ j !p ~ j !
2p ip

~ j !!2

p ip
~ j !~2 ln 2 !

~35!

5(
i51

k

(
j51

m
~p i

~ j !p ~ j !
2p ip

~ j !!2

p ip
~ j !~2 ln 2 !

. ~36!

It is interesting to note that in this quadratic approxima-
tion of D there are no constant or linear terms because the
first double sum of Eq. ~35! vanishes exactly due to normal-
ization of the probability distributions p i

( j) , p i , and p ( j).
If we express the x2 statistic @31# in the same notation, we

obtain

x2[N(
i51

k

(
j51

m
~p i

~ j !p ~ j !
2p ip

~ j !!2

p ip
~ j ! .2N~ ln 2 !D . ~37!

The above x2 statistic is known to converge—for asymptoti-
cally large values of N—to the x2 distribution with n5(k
21)(m21) degrees of freedom @31#. Hence, also 2N(ln 2)D
converges—for asymptotically large values of N—to the x2

distribution with n5(k21)(m21) degrees of freedom, i.e.,
we obtain for asymptotically large values of N the approxi-
mation

s~x !.Fn@2N~ ln 2 !x#[
g@n/2,N~ ln 2 !x#

G~n/2!
, ~38!

where g(a ,x) and G(a) denote the incomplete and complete
gamma functions, respectively @31,32#.

The fact that D can be interpreted as mutual information
agrees with Eq. ~38!, as it is known that, up to a multiplica-
tive constant, the mutual information converges—for asymp-
totically large values of N—to the x2 probability distribution
with n5(k21)(m21) degrees of freedom @6#.

V. STATISTICAL PROPERTIES OF Dmax

Expression ~38! gives the significance threshold of a
single value of D computed between two samples of fixed
length. From the practical point of view this is equivalent to
preselecting a fixed point that divides a sequence into two
subsequences and asking for the probability that both subse-
quences have been generated from different probability dis-
tributions. But, in general, when facing an unknown se-
quence we do not have any a priori knowledge of the
location of the possible cutting point.

The problem of finding the point where a nonstationary
sequence can be most likely divided into two stationary sub-
sequences has been widely studied in mathematics. There,
the problem is known as the change-point problem @33–35#,
which consists of finding out ~i! whether there exists a
change point in the studied sequence, and ~ii! at which posi-
tion in the sequence the change point is located, provided it
exists. Task ~i! corresponds to determining whether the stud-
ied sequence is nonstationary, and task ~ii! corresponds to
determining the ~most likely! location of the nonstationarity,
provided it exists.

Since 2N(ln 2)D can be interpreted as the log-likelihood
ratio of the model with change point and the model without
change point, the maximization of D along the sequence
yields a natural way of determining the most likely location
of the change point. Hence, we move a cursor along the
entire sequence, compute D between the subsequences at
both sides of the cursor for all positions, and choose that
position as the optimal change point at which D reaches its
maximum value Dmax .

In Sec. VI we describe a recursive segmentation algorithm
that is based on this idea. The problem we will address in
this section is to decide if the value Dmax of the Jensen-
Shannon divergence at the optimal change point is suffi-
ciently large to partition the sequence at that point, or if the
value Dmax is sufficiently small to consider the entire se-
quence as stationary and not partition it at all. Hence, we will
address in this section the problem of computing the statis-
tical significance of experimentally observed values of Dmax .

Even if the studied sequence has been generated from a
single probability distribution, we find Dmax.0 due to statis-
tical fluctuations. Moreover, we find that Dmax increases
above any significance threshold s computed in Sec. IV as N
increases. To decide if the obtained value Dmax5x is statis-
tically significant we need to compute the probability of ob-
taining this value or a lower value by chance in a random
sequence, i.e., we need to compute
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smax~x !5Prob$Dmax<x%. ~39!

Obviously smax(x)Þs(x). In fact, if each value of D at each
position of the cursor were independent of the others, we
would obtain @36#

smax~x !5s~x !N
5$Fk21@2N~ ln 2 !x#%N, ~40!

where N denotes the sequence length. Note that we are deal-
ing with the comparison between only two distributions (m
52), and hence the number of degrees of freedom is n5k
21.

It is clear that the random variables D sampled at different
positions of the same sequence are not statistically indepen-
dent, because the value of D at a given position is almost
identical to the value of D at the neighboring positions.

For binary (k52) i.i.d. sequences Horvath @37# derives
an analytic expression for smax(x) in the limit of asymptoti-
cally large sequence lengths N, and Csorgo and Horvath @38#
generalize that result to arbitrary k by deriving that the prob-
ability distribution function of ZN[2N(ln 2)Dmax
converges—for asymptotically large values of N—to

Prob$ANZN<@BN~n !1x#2%5exp~22e2x!, ~41!

where N denotes the sequence length, n[k21 denotes the
number of degrees of freedom, AN is defined by

AN[2 ln ln N , ~42!

and BN(n) is defined by

BN~n ![2 ln ln N1

n

2
ln ln ln N2ln GS n

2 D . ~43!

By converting Eq. ~41! into our notation we obtain

smax
` ~x !5exp~22eBN~n !2AAN~2N ln 2 !x!. ~44!

In the following paragraphs we test how accurately the
asymptotic approximation smax

` (x) agrees with the finite-size
histogram ŝmax(x) obtained by Monte-Carlo simulations of
sequences of length N ranging from 102 to 108. For each
sequence length N5102, 104, 106, and 108, we generate an
ensemble of 105 quaternary (k54) i.i.d. sequences of
length N, and for each sequence of each ensemble we move
a cursor along the sequence and compute at each position
15<n<N215 the Jensen-Shannon divergence D @39#. We
define Dmax as the maximum of all values of D computed
from one sequence, and by collecting all values Dmax of each
ensemble of 105 random i.i.d. sequences of length N we ob-
tain the histograms ŝmax(x) for each N.

Figure 3~a! shows the histograms ŝmax(x) for k54 and
N5102, 104, 106, and 108 ~symbols! together with the
asymptotic approximations smax

` (x) ~solid lines!. We find that
the asymptotic approximations smax

` (x) are not very accurate,
and that even for sequence lengths as large as N5108 there
is still a significant deviation between ŝmax(x) and smax

` (x).
Figure 3~a! also shows that the deviations between ŝmax(x)

and smax
` (x) are particularly large in the right tail, where we

desire both distributions agree particularly well.
Figure 3~b! illustrates the deviations between ŝmax(x) and

smax
` (x) by plotting ŝmax(x)2smax

` (x) versus 2N(ln 2)x. We find
that the deviations between ŝmax(x) and smax

` (x) tend to be-
come smaller as the sequence length N increases, but even
for sequences of length N5108 the deviations between
ŝmax(x) and smax

` (x) are greater than 0.04.
As the asymptotic approximation smax

` (x) is not very ac-
curate for sequences ranging in length from N5102 to 108,
we recruit Monte-Carlo simulations to obtain numerical ap-
proximations of ŝmax(x) as a function of the sequence length
N and the alphabet size k. We find that the functional form of
ŝmax(x) seems to be very similar to the functional form stated
in Eq. ~40! if we replace the sequence length N by an effec-
tive length Neff , and if we introduce a scaling factor b,1,
by which we multiply the argument of Fk21 .

Specifically, we find that the probability distribution of
Dmax may be approximated by

FIG. 3. Histograms ŝmax(x) of x52N(ln 2) Dmax and their
asymptotic approximations smax

` (x) obtained from ensembles of 105

quaternary (k54) i.i.d. sequences of length N5102, 104, 106, and
108. ~a! shows that the asymptotic approximations smax

` (x) are not
very accurate for finite-size sequences ranging in length N from 102

to 108, and that the largest deviations between ŝmax(x) and smax
` (x)

occur in the right tails of the distributions. ~b! shows a plot of the
differences between the histograms ŝmax(x) and their asymptotic ap-
proximations smax

` (x) versus x52N(ln 2) Dmax . We find that the
accuracy of the approximations increases with increasing N, but that
even for sequences of length N5108 the deviations between ŝmax(x)
and smax

` (x) are greater than 0.04.
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smax~x !.@s~bx !#Neff5$Fk21@2N~ ln 2 !bx#%Neff. ~45!

Neff can be understood as the effective number of indepen-
dent cutting points, and the scaling factor b accomplishes
that the variance of Dmax is reduced due to correlations be-
tween the values of D computed at different positions of the
same sequence.

Note that, in principle, both parameters Neff and b depend
on both N and k. To find an approximation of that depen-
dence of Neff and b on N and k, we perform the following
simulations:

~1! We generate, for a given alphabet size k and a given
sequence length N, an ensemble of 105 random i.i.d. se-
quences.

~2! For each sequence, we move a cursor along the se-
quence and compute at each position 15<n<N215 the
Jensen-Shannon divergence D @39#, and we define Dmax as
the maximum of all values of D computed from one se-
quence.

~3! For each ensemble of 105 random i.i.d. sequences we
obtain the histogram ŝmax(x), and we fit the parameters Neff
and b of smax(x) given by expression ~45! to ŝmax(x) by mini-
mizing the Kolmogorov-Smirnov distance u ŝmax(x)2smax(x)u.

~4! We repeat the above procedure for different values of
k and N.

Figure 4~a! shows the histograms ŝmax(x) for k54 and
N5102, 104, 106, and 108 ~symbols! together with the
finite-size approximation smax(x) obtained by the above pro-
cedure. We find by visual inspection of Fig. 4~a! and by
extensive analysis of the Kolmogorov-Smirnov distances be-
tween ŝmax(x) and smax(x) for k varying from 2 to 12 and N
varying from 102 to 108 that smax(x) from Eq. ~45! provides
a good approximation of ŝmax(x).

Figure 4~b! shows the deviations between ŝmax(x) and
smax(x) by plotting ŝmax(x)2smax(x) versus 2N(ln 2)x, and we
find that the maximum deviation between ŝmax(x) and smax(x)
stays below 0.02 for all of the cases we analyze, ranging
from k52 to k512 and from N5102 to N5108. Moreover,
we find that the maximum deviation between ŝmax(x) and
smax(x) stays below 0.01 if we restrict the comparison of
ŝmax(x) and smax(x) to the right tails of the distributions,
where we want the approximations to be particularly accu-
rate.

Next, we study how the parameters Neff and b obtained by
the fitting procedure described above depend on the alphabet
size k and the sequence length N. Figure 5 shows Neff and b
versus N for varying values of k. First, we find that b is
practically independent of N. Second, we find that for each k
the effective number of cutting points Neff admits a good
linear fit as a function of ln N, i.e.,

Neff5a ln N1b . ~46!

Both parameters a and b depend on the alphabet size k, and
we present the least-squares values of a and b as a function
of k in Table I.

VI. APPLICATIONS OF D

In this section we illustrate how the results obtained in the
previous sections may be used to develop an algorithm that
can partition a nonstationary sequence into stationary subse-
quences. We describe this segmentation algorithm based on
the Jensen-Shannon divergence D in detail, and we present
three application examples of this recursive segmentation al-
gorithm.

Many sequence analysis techniques rely on the stationar-
ity of the analyzed sequence, i.e., they rely on the assump-
tion that all portions of the sequence have at least the same
composition. This a priori assumption is very often in con-
flict with experimental data, such as, for example, in case of
DNA sequences @40#. The algorithm described here, which is
an improved version of the algorithm presented in Refs. @13#
and @18#, allows us to decompose a nonstationary sequence

FIG. 4. Histograms ŝmax(x) of x52N(ln 2) Dmax and their finite-
size approximations smax(x) obtained from ensembles of 105 quater-
nary (k54) i.i.d. sequences of length N5102, 104, 106, and 108.
~a! shows that the approximations smax(x) are more accurate for
sequences of length N ranging from 102 and 108 than the
asymptotic approximations smax

` (x) presented in Fig. 3, and that the
largest deviations between ŝmax(x) and smax

` (x) do not occur in the
right tails of the distributions, which we desire to approximate as
accurately as possible. ~b! shows a plot of the differences between
the histograms ŝmax(x) and their finite-size approximations smax(x)
versus x52N(ln 2) Dmax . We find that the deviations between
ŝmax(x) and smax

` (x) are smaller than 0.02. Moreover, we find that the
deviations between ŝmax(x) and smax

` (x) are smaller than 0.01 if we
restrict the comparison of ŝmax(x) and smax(x) to the tails of the
distributions, which we desire to approximate as accurately as pos-
sible.
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into stationary subsequences of homogeneous composition
as follows:

First, we move along the sequence a cursor that divides at
each position the sequence into two subsequences, and we
compute D for each position of the cursor. We select that
point at which D reaches its maximum value Dmax , and we
compute its statistical significance smax . If this smax exceeds
a given threshold s0 , the sequence is cut at this point, and
the procedure continues recursively for each of the two re-
sulting subsequences. Otherwise, the sequence remains undi-
vided. The process stops when none of the possible cutting
points has a significance threshold exceeding s0 , and we say
that the sequence is segmented at significance threshold s0 .

In the following three sections we present three examples
that illustrate this recursive segmentation process.

A. Segmentation of a model sequence with known
compositional domains

In order to test if the segmentation algorithm works, we
generate a binary sequence of length 53104 obtained by
joining patches of different length and composition. We
choose the sizes of the patches randomly from a power-law
distribution in order to obtain a wide range of different sizes,
and we choose the composition of the patches randomly
from a truncated Gaussian distribution centered at 1/2.

To show graphically the variation in composition along
this sequence, we plot in Fig. 6 the walk of the sequence.
Given a binary sequence $y i%, i51,...,N , where y i can as-
sume the values 11 or 21, the walk of the sequence at
position n is defined by @41#

w~n !5(
i51

n

y i . ~47!

Regions with a positive slope in Fig. 6 correspond to an
abundance of 11’s, and regions with a negative slope corre-
spond to an abundance of 21’s.

We apply the segmentation procedure presented above to
this example sequence, and the vertical lines in Fig. 6 corre-
spond to the cuts obtained by means of the segmentation
procedure. Figure 6 shows clearly that the positions of the
cuts coincide accurately with changes in the slope of w(n).
Moreover, regions without any cut do not seem to show a
significant change of the slope of w(n).

This observation allows us to conjecture that the subse-
quences obtained by the segmentation procedure are indeed
homogeneous at the considered significance threshold. It is
worth mentioning that the method does not rely on any initial
assumption about the size distribution of the subsequences,
and as we can verify by inspecting Fig. 6 the resulting sub-
sequences have indeed a great variety of sizes.

B. Length distribution of compositionally stationary domains
in prokaryotic and eukaryotic DNA

In this subsection we present one example in which we
apply the recursive segmentation procedure to DNA se-
quences with the goal of studying the length distribution of
compositionally stationary domains in prokaryotic and eu-
karyotic DNA. We segment at a significance threshold of
s0595% the complete genome of the bacterium Escherichia
coli @42# with a length of 4 639 221 base pairs ~bp! as well as
the human major histocompatibility complex ~MHC! region
of chromosome 6 @43# with a similar size of 3 673 777 bp. In
both cases we use the natural four-letter alphabet A

FIG. 5. Parameter values of Neff ~squares! and b ~circles! as a
function of the sequence length N, ranging from 200 to 105, for an
alphabet size k54. We find that b is almost independent of N, b
50.80, while Neff admits a good linear fit to ln N. The least-squares
fit to Neff5a ln N1b yields a52.44 and b526.15.

TABLE I. Values of the parameters a, b, and b obtained by
least-squares fitting of smax(x) for three values of the alphabet size k.

k a b b

2 2.96 27.88 0.80
4 2.44 26.15 0.80

12 2.32 24.32 0.85

FIG. 6. Segmentation of a computer generated binary sequence
of length 53104 obtained by joining patches of different length and
composition. The solid line represents the walk of the sequence ~see
text! and the vertical dotted lines represent the locations of the cuts
obtained by the recursive segmentation procedure at significance
threshold s0595%. We find that the recursive segmentation proce-
dure is indeed capable of partitioning the nonstationary input se-
quence into stationary subsequences at those points ~vertical dotted
lines! at which the local composition of the sequence changes, in-
dicated by changes of the slope of the sequence walk ~solid line!.
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[$A ,C ,G ,T%, where A stands for the base adenine, C stands
for the base cytosine, G stands for the base guanine, and T
stands for the base thymine.

We find that the recursive segmentation procedure parti-
tions the human MHC region into 6169 segments with an
average size of 595 bp, while it partitions the complete ge-
nome of the bacterium E. coli into 1534 segments with an
average size of 3024 bp. This finding is consistent with the
numbers of domains obtained by Li @44#, who computes the
significance threshold s0 based on the Bayesian information
criterion, and the finding that the number of domains ob-
tained for the human MHC region is significantly greater
than the number of domains obtained for the bacterium E.
coli is consistent with reports on the presence of large com-
positional inhomogeneities in human DNA sequences
@18,40,45#.

Figure 7 shows the histogram of segment sizes for both
the E. coli genome and the human MHC sequence. One note-
worthy feature of these histograms is the high density of
segments in the range below 30 bp. The high abundance of
those short domains may be related to the presence of peri-
odicities of about 10.5 bp in DNA sequences @46#. We find
by inspection of the resulting segments in this small-size
range that most of those short segments are made up of four
types of stacks consisting of either a majority of A/T or a
majority of AG/CT , respectively.

We find a weak signal indicating a second characteristic
segment size in the range of 200–400 bp, which is again in
agreement with previous studies @46,47#. The slower decay
of the distribution of segment sizes found for the bacterium
E. coli ~inset of Fig. 7! indicates a larger abundance of long
segments and seems to be a generic feature of the segment
size distribution of most prokaryotes.

In order to check the robustness of the results against a
change of the significance threshold s0 , we repeat the seg-
mentation of these two sequences at different values of s0 .
Figure 8 shows that the distributions are not identical, but
that the main features of them, described above, remain un-
changed.

C. Searching for borders between coding and noncoding DNA

In this section we describe a recently presented applica-
tion of the recursive segmentation procedure to detect bor-
ders between coding and noncoding DNA @20#.

One well-known statistical feature of coding regions is the
nonuniform codon usage @48#, which means that inside cod-
ing regions not all triplets of nucleotides ~called codons! oc-
cur with the same probability. In particular, the probability p i
of finding nucleotide a iP$A ,C ,G ,T% varies from position to
position @5,49,50#. This variation may originate from the re-
strictions imposed by the genetic code and also from some
preferences in the synonymous codon usage, but irrespective
of its origin, this variation is not present in noncoding DNA.
Hence, this property can be used to distinguish coding from
noncoding DNA, and in fact the first gene prediction pro-
grams @50# were based on the presence or absence of the
positional variation of the nucleotide probabilities p i .

In order to take into account this statistical property of
coding DNA, we introduce the following 12-letter alphabet:
define the phase of position n by l[n modulo 3. Hence, each
of the nucleotides of the DNA sequences can be substituted
by one of the following symbols from the alphabet A12
[$A0 ,A1 ,A2 ,C0 ,C1 ,C2 ,G0 ,G1 ,G2T0 ,T1 ,T2 ,%, where,
for example, T2 denotes the nucleotide T with phase l52.
Using this alphabet we define the 12-letter frequency vector

FIG. 7. Normalized distributions of segment sizes for the com-
plete genome of the bacterium E. coli of length 4 639 221 bp and a
contiguous human DNA sequence—the 3 673 777 bp long human
MHC region of chromosome 6—of similar size. In both cases we
use the natural four-letter alphabet and a significance threshold s0

595%. We find that the human MHC region is more heterogeneous
than the E. coli genome, which is reflected by the longer tail ~and
the greater mean value! of the segment length distribution of the E.
coli genome as compared to the human MHC region. The inset
shows a double-logarithmic representation of the same distribu-
tions.

FIG. 8. Normalized distributions of segment sizes for several
values of the significance threshold s0 , for the complete genome of
the bacterium E. coli of length 4 639 221 bp and a contiguous hu-
man DNA sequence—the 3 673 777 bp long human MHC region of
chromosome 6—of similar size. In all cases we use the natural
four-letter alphabet, and we find that the length distributions are
quite robust against changes of the significance threshold s0 .
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f12[( f i ,l), where iP$A ,C ,G ,T%, lP$0,1,2%, and f i ,l de-
notes the relative number of counts of nucleotide i in phase l.

Although coding and noncoding DNA may have the same
or a similar composition when being described using the
standard four-letter alphabet, the compositions given by f12
can be quite different. In noncoding DNA the probability of
finding a given nucleotide is almost the same in all three
phases, whereas in coding DNA this probability clearly var-
ies from phase to phase. Even when comparing two coding
regions whose starting positions are in different phases, the
composition given by f12 is usually different. Hence, we pro-
pose the following modification of the segmentation proce-
dure described above with the goal of detecting borders be-
tween coding and noncoding DNA.

Instead of computing D in terms of f4 , we now compute
D in terms of f12 , and we hope that the resulting borders
between stationary subsequences will be highly correlated to
the borders between coding and noncoding DNA. The results
obtained by segmenting complete prokaryotic genomes are
fairly promising, taking into account that the segmentation
procedure may be supplemented by additional biological in-
formation ~see Ref. @20# for more details on the results!.

A technical question related to the computation of the
significance threshold for the 12-letter modification of the
Jensen-Shannon segmentation procedure is worth mention-
ing: following Sec. V one could naively think that we should
obtain smax(x) from Eq. ~45! with k512, using Eq. ~46! and
the fitting parameters given in Table I. However, when using
the frequency vector f12 we have to satisfy three constraints
and not only one: S i f i ,l51/3 for l50,1,2, because the num-
ber of nucleotides in each phase is 1/3 of the total. Hence, the
number of degrees of freedom is n5k2359, and for this
case Eq. ~45! reads

smax~x !5@s~bx !#Neff5$F9@b~2N ln 2 !x#%Neff. ~48!

By means of numerical simulations we obtain that b334 and
Neff are well fitted by b33450.84 and Neff5a334 ln N
1b334 , with a33452.34 and b334523.69.

VII. CONCLUSIONS

One important task in analyses of experimental data is to
partition a nonstationary sequence into stationary subse-
quences. This task is important because many statistical
analysis techniques rely on the stationarity of the analyzed
sequence, and the results of those analyses may be severely
affected by nonstationarities of the analyzed data. Detecting
nonstationarities in experimental data is nontrivial, and
hence there is no standard solution to this problem. Many
measures that can detect deviations from stationarity in one
way or another have been proposed in the past, and one of
the goals of this paper is to motivate the use of the Jensen-
Shannon divergence as a measure of stationarity for sym-
bolic sequences.

We propose to declare a sequence S stationary if we can-
not find any point n at which S could be divided into two
subsequences S

(1) and S
(2) with significantly different com-

position. In order to decide if the compositions of the two

subsequences S
(1) and S

(2) are different we propose to com-
pute the Jensen-Shannon divergence D between the two fre-
quency vectors f(1) and f(2) associated with S

(1) and S
(2),

and in order to decide if the maximum Jensen-Shannon di-
vergence Dmax is significant we propose to compute the
probability that this ~or a greater! value of Dmax could have
been obtained by chance.

One reason why we suggest the Jensen-Shannon diver-
gence as a measure of stationarity is its easy interpretability
in three different subfields of science. As we show in this
paper, the Jensen-Shannon divergence can be interpreted as
~i! the intensive mixture entropy in the framework of statis-
tical physics, ~ii! the mutual information in the framework of
information theory, and ~iii! the log-likelihood ratio in the
framework of mathematical statistics.

In general, the weights p ( j) enter the definition of the
Jensen-Shannon divergence D as free parameters, which may
be chosen in a problem-specific manner. It is interesting to
note that all three interpretations of D suggest one, i.e., the
same, natural choice of weights proportional to the sizes n ( j)

of the subsystems S
( j). Moreover, we find that this natural

choice of weights makes the mean, the variance, and the
probability distribution function of 2N(ln 2) D independent
of the subsystem sizes n ( j), which is important for practical
applications, where subsequences of different sizes must be
compared.

We devote Sec. IV to the derivation of the mean, the
variance, and the probability distribution function of
2N(ln 2) D, and we find that—for the natural choice of
weights p ( j)

5n ( j)/N—expressions ~22! and ~30! reduce to
the classical results of the mean and the variance of the mix-
ing entropy, mutual information, or log-likelihood ratio. We
also show that for the naive choice of weights p ( j)

51/M the
mean and the variance become singular as the length n ( j) of
at least one of the subsequences becomes very small. This
singularity makes the naive choice of weights inappropriate
for many practical applications, where subsequences with a
wide range of different lengths n ( j) are to be analyzed.

The natural choice of weights does not only make the
mean, the variance, and the asymptotic probability distribu-
tion function of 2N(ln 2) D independent of the subsequence
lengths n ( j), but also independent of the composition of the
studied sequence. Moreover, we find that ~i! the natural
choice of weights minimizes the variance of D in a first-order
approximation, and that ~ii! with the natural choice of
weights the variance of D decays as 1/N2 with the total se-
quence length N, whereas in general the variance of D de-
cays as 1/N . The combination of all of the above features are
the reason why we prefer the natural choice of weights in our
applications of the Jensen-Shannon divergence to analyses of
symbolic sequences.

In order to declare a sequence stationary we require there
be no point n at which the studied sequence could be parti-
tioned into two subsequences of significantly different com-
positions. This requirement is the motivation for our goal of
finding an approximation of the probability distribution func-
tion smax(x)[Prob$Dmax<x% for an ensemble of i.i.d. se-
quences of length N. If all of the D values computed along
the same sequence were statistically independent, smax(x)
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could be derived easily, but the nontrivial statistical depen-
dences between the D values computed along the same se-
quence makes the derivation of smax(x) hard.

Even in the limit of asymptotically large sequence lengths
N, finding an approximation of smax(x) is such a challenging
problem that it could be attacked by mathematicians only in
the last two decades. Pettitt, one of the pioneers in the field
of change-point analysis, wrote in 1980 that ‘‘the null distri-
bution of the likelihood-ratio statistic is completely intrac-
table’’ @51#, and it was only in 1989 when Horvath succeeded
in deriving an asymptotic approximation smax

` (x) of the prob-
ability distribution function of Dmax for the special case of an
ensemble of binary (k52) i.i.d. sequences @37#.

One interesting feature of the asymptotic probability dis-
tribution function smax

` (x) and its generalization @38# to the
multinomial case is its scaling with ln ln N, which states that
the expected value of 2N(ln 2) Dmax diverges to infinity as
N→` , but that this divergence is extremely slow.

For practical applications the asymptotic scaling of
smax

` (x) is not as important as the accuracy of smax
` (x) for

finite N ranging from 102 to 108. The longest of the currently
identified DNA sequences have a length of the order of 109

nucleotides, and the shortest identifiable DNA subsequences
of homogeneous nucleotide composition have a length of the
order of 10 nucleotides. Hence, we are interested in finding
an approximation of smax(x) that is accurate for lengths N
ranging roughly from 102 to 108 nucleotides.

We find that the asymptotic approximation smax
` (x) to the

finite-size distribution ŝmax(x) is not very accurate in that
range of N, and so we recruit Monte-Carlo simulations to
obtain a finite-size approximation smax(x) that is more accu-
rate than smax

` (x) for N ranging from 102 to 108 and for k
ranging from 2 to 12. In particular, we are interested in an
approximation smax(x) that is accurate in the right tail of the
distribution, because this is the region where an accurate
computation of the probability smax(x) is needed in practical
applications.

We find that smax(x) may be well approximated by Eq.
~45!, which states that the probability distribution function of
the maximum of all N21 statistically dependent values of D
computed along a sequence of length N is similar to the
probability distribution function of the maximum of Neff sta-
tistically independent random variables bD , where Neff de-
notes the effective sequence length, and where b is a scaling
factor that we introduce to account for the decrease of the
variance of Dmax due to correlations between the values of D
computed at different positions of the same sequence. The
finding that smax(x) given by Eq. ~45! yields an accurate ap-
proximation for N ranging from 102 to 108 and for k ranging
from 2 to 12 is the central result of this paper.

When studying the dependence of b and Neff on the se-
quence length N and the alphabet size k, we find that the
scaling factor b is almost independent of both N and k, and
that the effective sequence length Neff admits a surprisingly
accurate fit to a ln N1b, where a and b are constants that
depend only on the alphabet size k.

In the last section of this paper we introduce a recursive
segmentation algorithm, which is an improved version of the

algorithm proposed by Bernaola et al. @13#, and which dif-
fers from the original algorithm by computing the probability
of performing a segmentation step from the probability dis-
tribution function smax(x) rather than from the probability
distribution function s(x). While the original algorithm tends
to partition even a stationary sequence into domains of aver-
age size 1/(12s0), the recursive segmentation algorithm
based on smax(x) does not suffer from this artifact.

One question that has been raised in previous years is the
question for the length distribution of compositionally homo-
geneous domains in DNA sequences of different organisms.
Here we apply the recursive segmentation algorithm based
on smax(x) to the complete genome of the bacterium E. coli
and the human MHC region on chromosome 6. Both DNA
sequences have a similar length of approximately 43106

nucleotides, and we find in Figs. 7 and 8 that the recursive
segmentation algorithm based on smax(x) yields in both cases
compositionally homogeneous domains with a wide range of
domain sizes. When comparing the two resulting segment
size distributions to each other, we find that the human MHC
region consists of more and shorter compositionally homo-
geneous domains than the E. coli genome, which is in agree-
ment with previous findings on the complex organization of
eukaryotic genomes.

In a second application example we study if the recursive
segmentation algorithm could possibly be used to detect bor-
ders between coding and noncoding DNA sequences, and we
find that—by choosing an appropriate representation of DNA
sequences by 12 rather than four letters, encoding not only
the identity of each nucleotide but also its position in the
reading frame—the recursive segmentation algorithm based
on smax(x) can detect borders between coding and noncoding
DNA sequences more accurately than conventional sliding-
window techniques @20#.

There is a whole plethora of problems in DNA sequence
analysis that could be attacked by the recursive segmentation
process, such as the identification of CpG islands or isoch-
ores, the determination of origins and termini of replication,
or the detection of complex repeats or regulatory elements
@52#. As the results presented in this paper are not restricted
to quaternary sequences, they might possibly be useful in a
wide variety of applications involving the problem of parti-
tioning a nonstationary symbolic sequence into its stationary
subsequences.
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APPENDIX: APPROXIMATION OF THE ENTROPY
COVARIANCE

In this appendix we derive a first-order approximation of
the covariance between the entropy H@f# sampled from the
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entire sequence S of length N and the entropy H@f( j)#
sampled from subsequence S

( j) of length n ( j) under the null
hypothesis that S is an i.i.d. sequence.

We start with a Taylor expansion of H@f# about the vector
p, and by using the definitions

Ĥ[H@f# ,

H[H@p# ,

DH[Ĥ2H ,

D f i[ f i2p i ,

we obtain

DH.2(
i51

k

D f i log2p i2(
i51

k
~D f i!

2

2p i ln 2
, ~A1!

where the symbol . indicates that we neglect terms of the
order of O„(D f i)

3….
Analogously, we Taylor-expand H@f( j)# about the vector

p( j), and by using the definitions

Ĥ ~ j ![H@f~ j !# ,

H ~ j ![H@p~ j !# ,

DH ~ j ![Ĥ ~ j !
2H ~ j !,

D f i
~ j ![ f i

~ j !
2p i

~ j ! ,

we obtain

DH ~ j !.2(
i51

k

D f i
~ j ! log2 p i

~ j !
2(

i51

k
~D f i

~ j !!2

2p i
~ j ! ln 2

, ~A2!

where the symbol . indicates that we neglect terms of the
order of O„(D f i

( j))3….
We next express the covariance cov(H@f# ,H@f( j)#) in

terms of DH and DH ( j), and by using the above definitions
we obtain

cov~Ĥ ,Ĥ ~ j !![^~Ĥ2H !~Ĥ ~ j !
2H ~ j !!&

5^DHDH ~ j !&2^DH&^DH ~ j !&. ~A3!

Since the product ^DH&^DH ( j)& is of the order of O(1/N2),
we can neglect it in a first-order approximation of
cov(Ĥ ,Ĥ ( j)), and by plugging the Taylor expansions of Eqs.
~A1! and ~A2! into Eq. ~A3! we obtain

cov~Ĥ ,Ĥ ~ j !!. (
g ,i51

k

^D f gD f i
~ j !&log2pg log2p i

~ j ! , ~A4!

where the symbol . indicates that we neglect terms of the
order of O(1/N2).

The derivation of ^D f gD f i
( j)& is straightforward, because

we can use the equalities

f g5 (
h51

m
n ~h !

N
f g

~h ! and pg5 (
h51

m
n ~h !

N
pg

~h ! ~A5!

to obtain

^D f gD f i
~ j !&5 (

h51

m
n ~k !

N
^D f g

~h !D f i
~ j !&, ~A6!

and we can work out the terms ^D f g
(h)D f i

( j)& by completely
elementary methods.

The product-multinomial sampling of the frequency vec-
tors f( j) implies that the drawing of symbol agPA from sub-
sequence S

(h) and the drawing of symbol a iPA from sub-
sequence S

( j) are statistically independent, which in turn
implies

^D f g
~h !D f i

~ j !&5^D f g
~h !&^D f i

~ j !&50, ~A7!

for all g, i51,2,...,k and h, j51,2,...,m with hÞ j . In case of
h5 j we find

^D f g
~ j !D f i

~ j !&5

pg
~ j !~dgi2p i

~ j !!

n ~ j ! , ~A8!

where dgi denotes Kronecker’s delta, which is equal to 1 if
g5i and equal to 0 otherwise.

By plugging Eqs. ~A7! and ~A8! into Eq. ~A6! we obtain

^D f gD f i
~ j !&5

pg
~ j !~dgi2p i

~ j !!

N
. ~A9!

Under the null hypothesis that p(h)
5p( j) for all h, j

51,2,...,m , Eq. ~A9! simplifies to

^D f gD f i
~ j !&5

pg~dgi2p i!

N
, ~A10!

and by plugging Eq. ~A10! into Eq. ~A4! we obtain

cov~Ĥ ,Ĥ ~ j !!.
1

N
s2~ log2p !, ~A11!

where the symbol . indicates that we neglect terms of the
order of O(1/N2), and where s2(log2 p) denotes the variance
of the numbers log2 pi with respect to the probability distri-
bution $p i%.
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