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Abstract

Water is characterized by a density anomaly whose origin is a matter of debate.

Theoretical works have shown that two of the proposed explanations, the

second-critical-point hypothesis and the singularity-free scenario, have the

same microscopic origin, but arise from different choices of parameters, such

as the hydrogen bond strength or geometry. We consider a Hamiltonian model

proposed by Sastry et al that supports the singularity-free scenario and was

solved in an approximation where the intra-molecular interactions are neglected.

We show that, by including these interactions, the second critical point is

recovered, elucidating the differences in the mechanisms at the origin of the

two interpretations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Water shows an anomalous behavior at low temperatures [1–3], that has led to an extensive

experimental [1–16], theoretical [1, 2, 17–32] and numerical [1–3, 33–42] study. The main

anomalies are a rapid increase of the absolute magnitude of isothermal compressibility [5],

isobaric heat capacity [7] and thermal expansion coefficient [8] in the supercooled (metastable)

liquid water below the melting line, and a density maximum that is observable even at

ambient pressure and 4 ◦C, and that occurs along a line of temperatures of maximum density

(TMD line) [6, 9].

Three major theories have been proposed to explain this phenomenon, but none of them has

been definitively confirmed or refuted, as a consequence of the difficulty of probing metastable

water without encountering inevitable crystallization [12]. These three theories are known as
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the stability-limit conjecture [20], the second-critical-point hypothesis [33] and the singularity-

free scenario [18, 29].

The stability-limit conjecture [20–22] assumes that the limits of stability (spinodal lines)

of the superheated, supercooled and stretched liquid water form a single spinodal line, with

negative derivative in the P–T phase diagram at low T and positive derivative at high T

(retracing spinodal). This conjecture predicts a divergence for the response functions in

correspondence to the supercooled liquid-to-liquid spinodal. This prediction is consistent

with experimental data, but the experiments cannot discriminate between a genuine divergence

and a fast increase with a maximum. No experimental or numerical evidence of a retracing

spinodal is available for realistic models of water [42], but the mean field solutions of lattice

models [23, 24, 28] and a modified van der Waals equation for weak-hydrogen-bonding

liquids [25] show a liquid spinodal that retraces where it meets the TMD line, as predicted by

the stability-limit conjecture.

The two-critical-point hypothesis [33–35] interprets the increasing in the response

functions as a divergence associated with a critical point in the supercooled liquid region.

This critical point, at temperature lower than the gas–liquid critical point, is predicted at

the end of a first-order phase-transition line that separates two liquid phases, a low-density

liquid (LDL) and a high-density liquid (HDL), considered as metastable counterparts of a

low-density amorphous and a high-density amorphous, whose first-order transition line has

been studied experimentally [14]. The second critical point has been inspired by numerical

simulations for realistic model of water [33–35] and has been rationalized by theoretical

models [25,26,28,31,32] receiving some partial experimental confirmation [15,16]. Recently

clear experimental evidence of a liquid–liquid phase transition for phosphorus has been

presented [43,44] and then confirmed by specific numerical simulations [45]. Other numerical

results on carbon [46] and silica [47] suggest a liquid–liquid critical point.

In the singularity-free scenario [17, 18] the response functions are not considered to

diverge, but merely to have maxima. This behaviour can be associated with a TMD line

that retraces in the P–T plane, with negative derivative at high P (in the stable liquid phase)

and positive derivative at lower P (in the super-heated liquid phase). A number of theoretical

approaches [17, 18, 28, 29, 31, 36, 37] have predicted this scenario in specific ranges of model

parameters. It is consistent with the lack of experimental evidence for an increasing correlation

length [10], but there is no direct experimental confirmation of the existence of a part of the

TMD line with negative slope. Even an experimental observation of a retracing TMD line

will not give a definitive answer, since the TMD line is retracing also in the two-critical-point

hypothesis.

From the theoretical point of view, it is possible to see that these different scenarios can be

reconciled without inconsistencies [25,28,31,37]; however, increasing evidence [1,42] shows

that the stability-limit conjecture is not a probable interpretation of the experimental data,

and many models [28, 31, 37] suggest that the singularity-free and the second-critical-point

scenarios arise from the same microscopic description, with different choices of the hydrogen

bond strength or geometry. Nevertheless it is still an open problem which of the two is the

correct description for water.

Here we consider a model for water introduced by Sastry et al [29], and supporting, in an

approximated solution, the singularity-free scenario. We show that by including an interaction,

neglected for sake of simplicity in the original model but motivated by experimental results, the

two-critical-point scenario is predicted, suggesting that this interpretation is the one describing

the water case.
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2. The model

A fluid can be represented by partitioning the system intoN cells of equal size. With each cell

i = 1, . . . , N a variable ni is associated, with ni = 1 if the average density of the cell is above

a threshold, ni = 0 otherwise. The threshold is by definition such as to discriminate between

liquid and gas densities. The van der Waals attractive interaction between the molecules is

given by the lattice-gas Hamiltonian

HLG = −ε
∑

〈i,j 〉

ninj − µ
∑

i

ni (1)

where ε > 0 is the characteristic energy, the first sum is extended to nearest-neighbour (nn)

cells 〈i, j〉, the second term determines the average density in the system through the chemical

potentialµ (greaterµ favours the liquid state) and the cells are represented by sites on a regular

lattice.

The Hamiltonian HLG describes a simple fluid with the gas–liquid critical point. Defining

the liquid (number) density as ρl =
∑

i ni/N and the gas (number) density as ρg = 1 −ρl, the

relevant order parameter of the transition ism = ρl −ρg = 2ρl −1, that is 1 for a uniform liquid

system, and −1 for a uniform gas system. Above the critical temperature Tc the discontinuity

disappears and is2 m = 0.

Liquid water forms a dynamic network of hydrogen bonds (HBs), with each molecule

bonded to four other molecules [1]. Even though is known that a molecule in excited states

can have more than four HBs, as a first approximation Sastry et al [29] associate with each

molecule four arms, one per HB in the ground state, and consider cells with the size of a water

molecule and with coordination number z = 4.

Since two molecules can form an HB only if they are correctly oriented [1], Sastry et al

describe this inter-molecular interaction by introducing an orientational variable per each arm.

The orientation of the arm of the molecule on the site i that faces the site j is represented by a

(discrete) Potts variable σij = 1, . . . , q, with a finite number q of possible orientational states,

as suggested by other theoretical works [19]. The Potts variable σij interacts only with the

variable σji of the arm of the molecule (if any) on the site j facing the site i [29].

Therefore, in addition to equation (1), the attractive term in the Hamiltonian

HHB = −J
∑

〈i,j 〉

ninjδσij ,σji (2)

accounts for the energy decrease −J < 0 due to the HB formed when two nearest-neighbour

cells are occupied by a molecule (ninj = 1) and the two arms σij and σji have the appropriate

orientation (i.e. δσij ,σji = 1, with δa,b = 1 if a = b, otherwise δa,b = 0). For the sake of

simplicity, Sastry et al [29]3 assume that to form an HB the arms must be in the same state.

The experimental oxygen–oxygen correlation function shows that an HB is formed if the

inter-molecular distance is within a characteristic range, and that it is not formed below this

range [3]. Since, to minimize the energy, the HBs are preferred at low T , this observation is

crucial to understand the density anomaly (expansion upon isobaric cooling) (∂V/∂T )P < 0,

because the formation of an HB leads to a local expansion. This is consistent with the fact

that the solid, and fully hydrogen-bonded, phase (ice) has a specific volume larger than the

liquid phase. To take into account the increase of volume associated with the HB, Sastry et al

proposed to express the (liquid) volume as

V = V0 +NHBvHB (3)
2 The solid phase has no representation in the LG model and, for T going to zero, m goes to 1, i.e. the model is in a

uniform liquid phase at zero temperature.
3 By considering that other specific patterns of orientations minimize the energy, one changes only the multiplicity

(entropy) of the ground state by a factor.
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where V0 is the volume of the liquid with no HBs,

NHB =
∑

〈i,j 〉

ninjδσij ,σji (4)

denotes the total number of HBs in the system and vHB is the specific volume per HB. Since

the formation of HBs decreases the number of possible Potts configurations for the system, the

entropy decreases for increasing NHB. Therefore the Sastry et al model, HLG + HHB with the

equation (3), takes into account the inter-molecular orientational correlation (equation (2)), the

expansion and the anticorrelation between V and S, upon HB formation (equations (3), (4)).

The model predicts the singularity-free scenario, in the approximation with the arms of the

same molecule completely independent.

However, experiments [3] show that the relative orientations of the arms of the same

molecules are strongly correlated at low T . Hence the interaction between the arms of each

single molecule must be taken into account.

To this goal, we add to HLG + HHB an intra-molecular term that, for each occupied cell

(ni = 1), gives a negative contribution (−Jσ < 0) to the energy when two of its arms are in

the appropriate orientational state (δσik ,σil = 1 assuming, for simplicity, that they have to be in

the same state):

HI = −Jσ
∑

i

ni
∑

(k,l)i

δσik ,σil (5)

where the term is summed over all the cells and over all the six different pairs (k, l)i of the

four arms belonging to the same molecule i. Therefore the model considered here is defined

by the Hamiltonian

H = HLG + HHB + HI (6)

given by equations (1), (2), (5) and by the volume definition equation (3).

Since the number of liquid cells N =
∑

i ni , the volume V , the entropy S and the total

energy U = H + µN are not constant, the equation of state is implicitly given by

U − T S + PV − µN = 0 (7)

where the left-hand side is the relevant thermodynamic potential for the system. By using the

equations (1)–(6), we obtain

T S − PV0 = −
∑

〈i,j 〉

ε′
ij (P, σ )ninj −

∑

i

µ′
i(σ )ni (8)

with the effective attraction energy, depending on P and the local Potts configuration,

ε′
ij (P, σ ) = ε + J ′(P )δσij ,σji (9)

where

J ′(P ) = J − PvHB (10)

can be seen as the effective HB interaction energy due to the HB volume increase, and

µ′
i(σ ) = µ + Jσ

∑

(k,l)i

δσki ,σli (11)

is the effective chemical potential depending on the (local) configuration of Potts variables on

the molecule i.

For q > 1 and Jσ = 0 the model recovers the Sastry et al case, in which each Potts

variable on a molecule arm interacts only with the facing Potts variable on the nn molecule

(if any) and does not interact with the other arms of the same molecule. Therefore the Potts

variables are on a disconnected lattice and there is no Potts transition. Nevertheless at low T ,
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to minimize the free energy, the Potts variables match in pairs and NHB (and the volume)

increases giving the density anomaly reported in [29]. The characteristic temperature of this

ordering process is given by kBT ∼ O(J ′) (where kB is the Boltzmann constant), suggesting

that this characteristic temperature decreases for increasing P (equation (10)), as seen in the

experiments, and that for P � P0, with

P0 =
J

vHB

(12)

such that J ′(P0) = 0, there are no HBs.

3. Analytic approach, results and conclusions

For the general case with q > 1 and finite Jσ we consider the model described in

equations (3), (6), and associate an order parameterm ∈ [−1, 1] with the LG variables ni , and

an order parametermσ ∈ [0, 1] with the orientational Potts variables σij . The order parameter

m is proportional to the (liquid) number density n =
∑

i ni/N , while mσ is proportional

to the number density nσ of Potts variables in the appropriate state for HB. A mean field

approximation consists in assuming that the relations between n and m and between nσ and

mσ are linear, i.e.

n = (1 +m)/2 and nσ = [1 + (q − 1)mσ ]/q. (13)

In this approximation, the (liquid) molar density ρ = nN/V is

ρ =
1 +m

2v0 + vHBpHB γ
(14)

where v0 = V0/N , γ = 4 is the number of arms of the molecules and pHB is the probability

of forming an HB between two nn molecules. Since by definition all the nn molecules are

at a distance within the HB interaction range it is, pHB = n2pσ where n2 is the probability

of having two nn molecules, and pσ is the probability of having the facing arms of the two

molecules in the same Potts state.

To find the expression for pσ we note that at low enough T the Potts variables order in the

same state, as a consequence of the interactions between them, and mσ goes to 1. Therefore

pσ increases for decreasing T as an effect of the cooperativity between the Potts variables,

going to 1 for T → 0 and going to 1/q for T → ∞.

To include the cooperativity effect, we consider that each Potts variable interacts with

a mean field generated by all the surrounding Potts variables. Since the system breaks the

symmetry, ordering in the preferred state for the HB, a choice is to consider the field proportional

to the density of particles in the preferred state nσ with a proportionality factor given by the

Potts interaction strength and the number of nn variables4.

In the first-order approximation the field generated by three of the Potts variables in a

molecule and acting on the fourth Potts variable is5

h = 3Jσnσ . (15)

4 In principle we can consider explicitly the field generated by the first shell of variables around a centre one, and

include the effect of all the others in a field acting on the variables in the first shell in an approximation a la Bethe–

Peierls [48]. The latter can be separated as the field of the second shell and the field of the outer shells, and so on

in a shell expansion, getting higher orders of the approximation. We shall report on the higher-order approximations

elsewhere. Note that we considered the zeroth-order approximation (i.e. no effect of surrounding field) in [49], finding

a line of first-order phase transitions to a low-density state inside the liquid region with negative slope in the P–T

plane and at T below the liquid–gas critical temperature.
5 In this approximation h does not depend on T explicitly, but the dependence is implicit via nσ that turns out to be

a function of T .
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Writing the partition function Zh for the fourth Potts variable (e.g. σij ) interacting with the

facing Potts variable (σji) on the nn molecule, with both variables in the field h, the probability

pσ in this case can be expressed as

Zhpσ =
∑

σij ,σji

δσij ,σji exp{[(J − PvHB)δσij ,σji + h(δσij ,1 + δσji ,1)]/(kBT )} (16)

where

Zh =
∑

σij ,σji

exp{[(J − PvHB)δσij ,σji + h(δσij ,1 + δσji ,1)]/(kBT )} (17)

and where the symbol
∑

σij ,σji
denotes the sum over all the possible states of the two Potts

variables.

The resulting expression for pσ (T , P ) is

pσ (T , P ) =

[

1 + (q − 1)
2wT + q − 2

wP,T [w2
T + q − 1]

]−1

(18)

where

wP,T = exp[(J − PvHB)/(kBT )] and

wT = exp[3Jσ (1 +mσ )/(qkBT )]
(19)

with pσ → 1/q for T → ∞ and pσ = 1 for T = 0, as expected. We assume that the

equation (18) is an approximation for pσ in the general case in which each cell is interacting

with the surrounding cells and without the field h, i.e. (n2
σ + (q − 1)(1 − nσ )

2/(q − 1)2).

Therefore the solution of the equation

pσ (T , P ) = n2
σ + (q − 1)

(

1 − nσ

1 − q

)2

≡
1 + (q − 1)m2

σ

q
(20)

gives a new expression formσ (T , P ) and nσ (T , P ). The equation (20) has no solution at high

enough P , i.e. above a limiting value Pmax(T ) there is no Potts transition and with mσ = 0

and nσ = 1/q. It turns out that at T = 0, Pmax(0) � P0 (equation (12)) and that Pmax(T )

decreases with T approximately as a linear function of mσ .

To calculate the phase diagram of the system we minimize, with respect to the order

parameters m and mσ , the molar Gibbs free energy for the liquid6 g = u − T s + Pv ≡ µ,

whereu is the molar energy, s is the molar entropy and v = 1/ρ is the molar volume. The molar

energy u, the total energy divided by nN , has contributions from the LG term equation (1),

the inter-molecular term equation (2) and the intra-molecular term equation (5):

u = −
γ

2

{

εn +
[

Jn + (γ − 1)Jσ
]

pσ
}

. (21)

The molar entropy s = S/(nN) has a contribution from the (N ) LG variables, that in the mean

field approximation is

−
SLG

kBN
= n ln n + (1 − n) ln(1 − n) (22)

and a contribution from the γ nN Potts variables

−
Sσ

kBγ nN
= nσ ln nσ + (q − 1)(1 − nσ ) ln

1 − nσ

q − 1
(23)

where nσ = nσ (T , P ) is given by the solution of equation (20) for P � Pmax(T ) and by 1/q

elsewhere. The resulting total molar entropy, to the leading order in N , is s ≡ (SLG+Sσ )/(nN).

6 The liquid is described by the canonical ensemble where P , T and the number of particles is fixed. Nevertheless

the number N of liquid cells is changing since the volume is changing.
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Figure 1. The density ρ as a function of the temperature T for pressures (top to bottom)

Pv0/ε = 1.6, 1.5, 1.4, 1.35, 1.3, 1.275, 1.25, 1.2, 1.1, 1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.25, 0.2, 0.15, 0.1, 0, from the analytic solution of the model with parameters q = 6, J/ε = 0.5,

Jσ /ε = 0.05, γ = 4 and vHB/v0 = 0.5.
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Figure 2. The P–T phase diagram for the model with the parameters in figure 1. The HDL–LDL

phase transition line is approximately linear, with negative slope, ending in the critical point C′′.

The liquid–gas critical point is C′ at the end of the liquid–gas phase transition line. Circles along

the two transition lines are estimated from the discontinuities in figure 1. The TMD (dashed) curve

shows the P(T ) of the maxima in ρ in figure 1. Note that P0 = 1ε/v0 is only a rough estimate of

Pmax, the maximum pressure at which the TMD occurs. Circles are estimated from the maxima in

figure 1. The curves are only guides for the eyes.
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From the minimization of g(T , P ) we find the equilibrium m(T , P ), mσ (T , P ) and

µ(T , P ). Then, by using equation (14) for the equilibrium values ofm andmσ , we calculate the

equilibrium value of ρ(T , P ) (figure 1). At high P the density ρ is monotonically decreasing

with T . At lower P , ρ has a maximum. Decreasing P , the maximum shifts to higher T , and

at lower T a discontinuity in ρ appears. The discontinuity at low T disappears for lower P ,

and at high T another discontinuity in ρ occurs. The latter discontinuity (at high T ) shows the

liquid–gas first-order phase transition, disappearing in the liquid–gas critical point C′ (figure 2).

The maximum in ρ is the TMD line, shifting at higher T for decreasing P , as seen in the range

of the experimental measurements [6,9]. The low-T discontinuity in ρ shows the HDL–LDL

first-order phase transition, disappearing in the HDL–LDL critical point C′′. The slope of the

line of HDL–LDL phase transitions is negative (figure 2) as predicted by the two-critical-point

hypothesis.

In conclusion, the Hamiltonian model for water proposed by Sastry et al [29] and analysed

with the approximation that the HBs on a molecule can form any angle, independently of the

temperature, supports the free-singularity scenario. However the experiments suggest that the

HB angles are strongly correlated at low T . We therefore introduce a new Hamiltonian term

to take into account this correlation. We have presented here the analytic solution of this new

model in a first-order approximation, in which the cooperativity effect is included by a mean

field for the four Potts variables decribing the orientations of the four hydrogen-bonding arms

of a molecule. The resulting phase diagram shows the occurrence of an HDL–LDL phase

transition ending in a critical point. Therefore the correlation in the HBs leads to a model

supporting the second-critical-point hypothesis as the most reasonable explanation for the

anomalies of water instead of the singularity-free scenario, elucidating the difference between

these two possible scenarios.
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