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Abstract

We determine the backbone mass distributions for bond percolation between two lines of
arbitrary orientations in three dimensions. All simulations were performed at the percolation
threshold pc. The slope of the power law regime of the backbone mass distribution is dependent
upon the angle between the lines, �, but the characteristic backbone mass is only weakly a0ected
by �. We propose new scaling functions that reproduce the � dependence of the characteristic
backbone mass found in the simulations.
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1. Introduction

Since the 1950s, the percolation model has been applied to many disordered systems
[1–4], and continues to be useful today. Here we use percolation theory to investigate
the backbone mass distributions of clusters that are connected in con8gurations of the
type shown in Fig. 1, con8gurations in which the two lines are connected by occupied
bonds. The backbone mass of a cluster is the set of bonds that are connected to the
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Fig. 1. (a) Illustration of well geometry. (b) Examples of a percolation cluster with two line wells with
parameters r = 2, �= 90

◦
, and w=

√
50. The 8lled sites are members of the percolation cluster, which has

a mass of 52. Solid lines form the backbone, which has a mass of 28.

two lines through independent paths (i.e., paths that have no common bond [5–8]). For
con8gurations of two points, the distributions of various quantities have been studied
[9–15]. Recently, the distribution of the shortest paths between two lines has been
studied for a three-dimensional cubic lattice [13], and here we calculate the backbone
distributions.
The motivation for this study is its relevance to techniques of oil recovery in oil

8elds [16]. A common technique used in oil recovery is the injection of Guid into the
ground at one site in the 8eld in order to force oil out of the ground at another site
nearby (Fig. 1). It is common to inject the Guid along a portion of the length of the
injection well and to collect the oil along a portion of the length of the production well
(as opposed to injecting and collecting at single points on the wells). In our model, each
line represents a well in the oil 8eld. One line represents the injection well, and the
other the production well. In many cases the oil reservoir is extremely heterogeneous,
and the percolation model is appropriate. Separation of the rocks into two types—
high permeability (“good rock”) and low or zero permeability (“bad rock”)—can be
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accomplished at the outset, with the good rock represented by occupied bonds and
the bad rock represented by unoccupied bonds. The backbone mass represents the
recoverable oil in a reservoir.

2. Simulations

We perform a numerical study of the system using Monte Carlo simulations. We
specify two sets of points representing lines in a simple cubic lattice to be the wells
and we grow the cluster from these two lines of seeds. If the growth of either cluster
stops before the two clusters connect, we discard the realization. For realizations in
which the two clusters connect, the simulation ends either when the cluster growth
stops naturally, or when the cluster mass reaches some speci8ed limit. To eliminate
8nite size e0ects, we use the techniques of Ref. [13] to simulate systems on lattices
of large enough size that the clusters never reach the edge of the lattice. We perform
the simulations at the percolation threshold, pc = 0:2488126 [17]. The con8gurations
are characterized by three parameters: length w, angle �, and minimal distance r [see
Fig. 1(a)]. For each con8guration, we run at least 106 non-discarded realizations. We
calculate the backbone mass for each of these realizations as exempli8ed in Fig. 1(b).

3. Results

In backbone mass distributions we observe an initial cuto0 due to the fact that these
masses cannot be smaller than the distance r. We expect to see a second cuto0 due
to the fact that the backbone mass cannot be greater than the cluster mass at which
we stop the simulations. In addition, we expect to observe a regime that exhibits
power-law behavior. These general features of the distributions have been observed
in the distributions for other quantities [9–13]. The quantities of interest are (i) the
most-probable value of the distribution (the maximum), the scaling of which will be
determined by the fractal dimensions of the quantities measured, and (ii) the slope
of the power-law regime. For clusters grown from a single point, the slopes of the
power-law regimes of the backbone distributions are �B − 1, where �B is the Fisher
exponent for the backbone. The fractal dimensions and power law regime slopes are
related by [1,3,5]

�B − 1 =
d
dB
; (1)

where d is the dimension of the system, and dB is the fractal dimensions of the
backbone. For d= 3, estimates for these exponents are [18,19]

dB = 1:855± 0:015 ; (2)

�B − 1 = 1:617± 0:013 : (3)

We show the results for the backbone probability distribution P(mB|�) in Fig. 2(a) for
various values of �. The distributions of backbone mass exhibit power-law regimes,
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Fig. 2. (a) Backbone mass distribution P(mB|�) for non-parallel wells with r=8, w=64, and several values
of �. The cuto0 of cluster growth is at a cluster mass of 218. (b) Backbone mass distribution P(mB|�) for the
case of nonparallel wells with r = 1, w= 64 for various �. The cuto0 of cluster growth is at a cluster mass
of 220. (c) Power-law exponent gB(�), de8ned in Eq. (4), for the corresponding backbone mass distribution
presented in (b).
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Fig. 3. Backbone mass distribution P(mB|w) for the nonparallel wells for 8xed � (=180
◦
) and several values

of w. The larger the value of w, the later a crossover occurs from behavior reGecting a con8guration of two
lines with � = 180

◦
to a con8guration e0ectively of two points, with power-law-regime exponent �B − 1.

the exponents of which depend on � while the characteristic mass m∗, is essentially
independent of �. Thus, an appropriate functional form for P(mB|�) is

P(mB|�) ∼
(mB
rdB

)gB(�)
f1

(mB
rdB

)
f2

(mB
LdB

)
; (4)

where f1 and f2 are cuto0 functions. The 8rst cuto0 function, f1, reGects the fact
that the backbone mass must always be at least equal to the distance r between the
two points; the second cuto0 function, f2, reGects the fact that the backbone mass
is bounded because of the 8nite size, L, of the system. Similar behavior has been
observed for the distributions of shortest paths between two lines [13].
In order to determine the varying slope more accurately we perform simulations

for various � for r = 1, which results in the largest power-law regime. The results of
these simulations are shown in Fig. 2(b). In Fig. 2(c) we plot the power-law regime
exponent, gB vs. �. For �= 0, the con8guration is that of parallel lines, and the slope
is �B − 1. For � = �, the exponent decreases to a value of about 0.84. The marked
di0erence in these two exponents is shown clearly in Fig. 3, in which we plot for 8xed
r = 1, �= 180◦, P(mB|r) for various values of w. The larger the value of w, the later
a crossover occurs from behavior reGecting a con8guration of two lines with �=180◦

to a con8guration e0ectively of two points, with power-law-regime exponent �B − 1.
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4. Discussion

We have analyzed the distribution of backbone mass for various con8gurations of
two-line 3d percolation clusters. We have found that the exponent of the power-law
regime for the backbone mass distributions is dependent on the angle � between the
lines. It remains to develop a theory which can predict the speci8c dependence of this
exponent on �.
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