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We show that fractal viscous fingers can be formed in a Hele-Shaw cell with radial symmetry,
thereby permitting their study—for the first time—without the complicating effects of boundary
conditions such as those present in the conventional linear cell. We find—for a wide range of
shear-thinning fluids, flow rates, and plate separations—that radial viscous fingers have a fractal
dimension dy=1.70 £0.05, the same as diffusion-limited aggregation. We also quantitatively mea-
sure the set of growth sites and compare with diffusion-limited aggregation.

PACS numbers: 47.90.+a

Recently, there has occurred an explosive burst of
activity focused on the wide range of physical
phenomena that occur when a low-viscosity liquid is
forced into a high-viscosity liquid.!"!! Particularly
striking is the fact that under certain conditions the
resulting viscous fingers are fractal objects.? This
means that the fractal dimension d; can be used as a
new quantitative parameter that can be used to charac-
terize an important liquid instability.

The utility of the above remarks is compromised by
the fact that experiments are typically carried out in a
rectangular Hele-Shaw cell, and the apparent value of
dy is a strong function of the width of the cell [cf. Fig.
6 of Ref. 2]. As a result, it is difficult to interpret ex-
perimental findings on d;, and the entire utility of be-
ing able to characterize the viscous-fingering instability
by a quantitative parameter is called into question.
Moreover, the question of what boundary conditions
to use for the lateral walls of the Hele-Shaw cell is
quite subtle. To interpret viscous-finger patterns in
terms of a statistical mechanical model, one assumes
that particles launched from one end of the cell are ab-
sorbed if they strike the lateral walls.

The purpose of this Letter is to describe a Hele-
Shaw cell that differs fundamentally from the conven-
tional Hele-Shaw cell: It has radial symmetry and
overcomes all the above objections. Accordingly, it
becomes possible to attempt—for the first time—a
meaningful comparison between experimental results
and model simulations.

Our radial cell'! consists of a pair of circular glass
plates which are 1 m in diameter and 2 cm thick [Fig.
1(a)]. The plates are held apart by spacers so that their
separation is a constant distance b (typically b=0.5
mm). The high-viscosity fluid occupies all the space
between the plates until suddenly water is forced
through a circular inlet in the center of the cell. After
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some care with spacing and other experimental condi-
tions, we were able to generate viscous fingers with a
striking radial geometry [cf. Fig. 1(b)]. Our viscous-
fingering phenomena appear to be quite universal, be-
ing independent, e.g., of the microscopic structure of
the liquids.!? To demonstrate this, we made experi-
ments with several high-viscosity polymer solutions
and also latex (an aqueous suspension of polymer
spheres).!® In all cases the viscosity ratio was roughly
102-10%, depending on the velocity of the low-
viscosity water.

The quantitative analysis of a radial viscous finger
(RVF) is carried out by several independent methods;
all begin with machine digitization of the finger, re-
placing the cell with a lattice of N =2!¢ points. We
calculated df using several methods:

(i) Sandbox method'*: About every lattice point in
the finger, one forms an imaginary L X L square box.
The number N(L) of finger points is counted and
averaged over all possible lattice points as center. A
log-log plot of N (L) vs L has slope d; [Fig. 1(c)].

(ii) Radius of gyration (R,) method'*: Here several
photographs of the finger are taken at successive
stages of growth. For each photograph, R, is mea-
sured. A log-log plot against finger mass has slope
1/d;.

(iii) Density-density correlation function method'*:
Here one randomly chooses a cluster point and calcu-
lates the probability that cluster points a distance r
away are connected to it. The slope of a log-log plot
against r is the codimension, dy— d.

The estimates of dy obtained by the three methods
are consistent with one another, and we conclude that

dy(radial cell) =1.70 £0.05, (1

which is considerably larger than the values for even
the widest Hele-Shaw cell studied experimentally.?
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What microscopic phenomena give rise to this fractal
geometry? To answer this question, we devised an ex-
perimental procedure to measure quantitatively the
growth of a finger. We subtracted two successive pho-
tographs of the finger taken at 1-sec intervals (Fig. 2).
We found that the finger grows only by consecutive
splitting of the leading tips: essentially no growth oc-
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FIG. 1. (a) Schematic illustration of the lateral and radial
cells, (b) typical radial viscous finger, and (c) analysis of the
fractal dimension by method (i).

curs in the ‘‘screened’ interior regions. This differs
from dendritic growth, which often shows stable tips
but proliferating side branches.!* Our experimental
results are also in quantitative agreement with simula-
tions of diffusion-limited aggregation'® (DLA); e.g.,
our density correlation function falls off with distance
wilgh an exponent of —1.3 +0.1, while the DLA value
is'* —1.1.

Interpretation.—Because of the qualitative visual
similarity between our data [Fig. 1(b)] and a DLA
cluster, it is tempting to conclude that DLA accurately
describes viscous fingering in a radial geometry. This
conclusion is supported by the quantitative similarity of
the respective values of dy for DLA and RVF. On
careful comparison between the experimental photo-
graphs of RVF and off-lattice simulations of DLA,!
we do note a few qualitative differences: (i) The
‘‘spokes’” of the RVF are straight, relative to the
“‘sinuous’’ spokes of DLA.!* (ii) There is more ‘foli-
age’’ growing on the DLA spokes compared to the re-
latively barren impression of the RVF spokes.!* (iii) If
one makes a histogram of tip splitting angle, measured

+
.

FIG. 2. The ‘‘growth region” of a typical radial viscous
finger, obtained by subtracting the images of the same finger
photographed at slightly different times. The fact that the
growth regions are only on the tips is a striking proof of the
high degree of screening.
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at each of the finger bifurcations, one finds that the
RVF distribution is narrower than for DLA."’

Although there may be some qualitative differences
in visual appearance between RVF and DLA, there are
striking mathematical similarities—at least for the case
of Newtonian fluids. In DLA the local probability
field ¢ (r,?) satisfies the Laplace equation divgrade
=0, with the boundary conditions that ¢ =0 at the ag-
gregate and ¢ =1 at the launch of the random walkers.
Growth is proportional to the gradient of ¢ (r,1); this is
similar to the flow velocity u for Newtonian fluids in a
Hele-Shaw cell, which is proportional to the gradient
of the pressure, P(r). We assume that the low-
viscosity fluid has negligible viscosity and has constant
pressure P(r) independent of distance r from the
center. With the incompressibility condition divu=0
we then obtain a Laplace equation for the pressure dis-
tribution in the high-viscosity fluid.

For shear-thinning fluids, however, the growth rate
or flow velocity is

ucx (gradP)™, 2)

where m=1/n" and n'— 1 is the slope of a log-log plot
of viscosity versus shear rate.!® Depending on the
type of fluid used, we found n’ to vary between 0.4
and 0.1. Applying the constraint divu= 0, we find that
the pressure has to follow!?

div(|gradP|™~'gradP) =0. 3)
The solution of Eq. (3) is
P(r)= [R(m—l)/m_ r(m—l)/m]/[R(m—l)/m_ 1]
for m#=1, (4a)

P(r)=1—1logr/logR for m=1, (4v)
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FIG. 3. Dependence of the pressure field P (r) on the dis-
tance r from the center of a radial Hele-Shaw cell. Shown
are several curves for different values of the parameter
m=1/n', where n’ is the shear-thinning exponent. The
Newtonian fluids analyzed previously concern the case
m=1. We used high-viscosity fluids with n’ in the range
0.1-0.4 so that m > 1.
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with the boundary condition P=1 at r=1 and P=0
when r= R (see Fig. 3). The case m =1 corresponds
to DLA (or dielectric breakdown!® or gradient-
governed growth?®). Combining (2) and (4), we see
that non-Newtonian fluids will follow the same growth
law u ~ 1/r. Because of the (gradP)™ term in (2),
non-Newtonian growth for m > 1 shows more tenden-
cy to grow on the tip than in the bulk compared with
Newtonian growth. However, this tendency is bal-
anced by the much flatter overall pressure distribution
of Eq. (4a) [see Fig. 3], which makes the differences
between the local pressure gradients at tip and bulk
smaller compared with Newtonian growth. That non-
Newtonian effects will not change the growth rate (to
first approximation) explains the close proximity in
fractal dimension between DLA and RVF.2

In summary, we have tested the degree to which
viscous fingers may be modeled by DLA. To this end,
we have introduced a new radial cell which avoids the
problems in interpretation that arise from the lateral
walls of a traditional Hele-Shaw cell. We find that the
radial fingers thus generated have a well-defined and
reproducible fractal dimension, with a value close to
that predicted for off-lattice DLA; indeed, we found
quantitative agreement with DLA for all the fractal
properties we measured. The practical choice of the
fluids used guaranteed essentially zero interfacial ten-
sion, a high viscosity ratio, and almost ‘‘plug flow”
displacement of the polymer solution by the water. All
three properties appear to be important for obtaining
fractal growth.?3 Linear stability analysis by Chuoke,
Van Meurs, and Van der Poel?* predicts that for im-
miscible fluids, the finger thickness A,, (the ‘‘charac-
teristic wavelength of growth’’) scales linearly with the
plate separation. For miscible fluids, Paterson® also
put forward a linear scaling relation based on a viscous
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FIG. 4. Dependence of the finger width A,, (the ‘‘charac-
teristic wavelength’’) upon the separation b of the Hele-
Shaw plates for the non-Newtonian fluid scleroglucan
(shear-thinning exponent n'=0.15).
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dissipation theory. It differs from early work in that
A, does not depend on the viscosity difference and
flow rate. We measured A, as a function of b, with b
varying from 0.2 to 1.2 mm (almost an order of mag-
nitude). We find (Fig. 4) a linear growth law. The
slope is roughly ~ 4.6, close to the value proposed by
Paterson; however, it is not clear that Paterson’s
theory can be applied to our fluids since the dissipation
mechanisms are considerably different in our non-
Newtonian fluids.
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ten and J. D. Sherwood for helpful discussions, and
F. Rondelez for helpful comments on the manuscript.
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FIG. 1. (a) Schematic illustration of the lateral and radial
cells, (b) typical radial viscous finger, and (c) analysis of the
fractal dimension by method (i).
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FIG. 2. The ‘‘growth region” of a typical radial viscous
finger, obtained by subtracting the images of the same finger
photographed at slightly different times. The fact that the
growth regions are only on the tips is a striking proof of the
high degree of screening.



