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Faculty of Physics, University of Warsaw, Pasteur 5, PL-02093 Warsaw, Poland;
and Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

H. Eugene Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 23 November 2015; revised manuscript received 10 August 2016; published 7 October 2016)

We use a key concept of the continuous-time random walk formalism, i.e., continuous and fluctuating interevent
times in which mutual dependence is taken into account, to model market fluctuation data when traders experience
excessive (or superthreshold) losses or excessive (or superthreshold) profits. We analytically derive a class of
“superstatistics” that accurately model empirical market activity data supplied by Bogachev, Ludescher, Tsallis,
and Bunde that exhibit transition thresholds. We measure the interevent times between excessive losses and
excessive profits and use the mean interevent discrete (or step) time as a control variable to derive a universal
description of empirical data collapse. Our dominant superstatistic value is a power-law corrected by the lower
incomplete gamma function, which asymptotically tends toward robustness but initially gives an exponential.
We find that the scaling shape exponent that drives our superstatistics subordinates itself and a “superscaling”
configuration emerges. Thanks to the Weibull copula function, our approach reproduces the empirically proven
dependence between successive interevent times. We also use the approach to calculate a dynamic risk function
and hence the dynamic VaR, which is significant in financial risk analysis. Our results indicate that there is a
functional (but not literal) balance between excessive profits and excessive losses that can be described using the
same body of superstatistics but different calibration values and driving parameters. We also extend our original
approach to cover empirical seismic activity data (e.g., given by Corral), the interevent times of which range
from minutes to years. Superpositioned superstatistics is another class of superstatistics that protects power-law
behavior both for short- and long-time behaviors. These behaviors describe well the collapse of seismic activity
data and capture so-called volatility clustering phenomena.
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I. INTRODUCTION

Financial markets fluctuate, sometimes strongly, as traders
estimate risk levels in order to maximize profit. The interevent
interval between times when market returns produce excessive
profits and when they produce excessive losses can be
described using an element of the continuous-time random
walk (CTRW) formalism, i.e., the waiting or pause-time
distribution (see Refs. [1–4] and references therein).

Empirical market data on excessive profits and losses [5–8]
define excessive profits as those greater than some positive
fixed threshold Q and excessive losses as those below some
negative threshold −Q. The mean interevent (discrete or step)
time, measured by the clock tick between profits and losses
versus Q has been used as an aggregated basic variable. (The
term “interevent time” appears in the literature under such
names as “pausing time,” “waiting time,” “intertransaction
time,” “intertrade time,” and “interoccurrence time” in differ-
ent versions of the continuous-time random-walk formalism
[4,9–13]).

Interevent times constitute a universal stochastic measure-
ment of market activity on time scales that range from minutes
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to months [5,6]. The mean interevent discrete time can be used
as a control variable that produces a universal description of
empirical data collapse [7], i.e., it produces the distribution
of interevent times for a fixed mean interevent step time,
which is a universal statistical quantity unaffected by time
scale, type of market, asset, or index. Interevent times in
a multifractal structure of financial markets [10,11] and in
the single-step memory in order-book transaction dynamics
[13] are foundational in the analysis of double auction market
activity.

The distribution of interevent times can be described using
(i) the canonical CTRW valley model (see Refs. [2,4] and
references therein), which treats time intervals as random
variables and valley depths as single losses (or profits), and (ii)
generalized extreme value statistics for stochastic dependent
basic processes [14].

We use the extreme value theory to gain an approximate
understanding of the phenomena. This theory uses the extreme
type theorem (also called the three types theorem) and states
that there are only three types of distributions needed to model
the maximum or minimum of a set of random observations
from the same distribution. In practice, if a statistical ensemble
of M data sets (each of N elements) is generated from the
same distribution and creates a new data set that contains the
maximum values from these sets, the resulting data set can only
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be described (for large M and N ) using one of three models,
i.e., the Gumbel, Fréchet, and Weibull distributions. These
models, along with the generalized extreme value distribution,
are widely used in risk management, finance, insurance,
economics, hydrology, material sciences, telecommunications,
and many other fields that deal with extreme events.

The paper is organized as follows. In Sec. II we explain
the principal goal of our work and indicate a possibility of
extension of our approach to research areas far outside the
social sciences. In Sec. III we describe how it agrees with
empirical data and allows us to develop our formalism. In
Sec. IV we develop our formalism and compare its predictions
with a large body of empirical data from financial markets.
Finally, in Sec. V we describe some useful applications of our
formalism and provide concluding remarks.

II. PRINCIPAL GOAL

Our goal is to model empirical data associated with single-
variable statistics (see Sec. IV B for a detailed analysis), i.e.,
(i) the mean interevent discrete time period (or step) RQ

versus Q(>0) between successive extreme losses, which are
considered returns with absolute values that exceed a given
threshold Q(>0) (for the sake of simplicity we treat losses
as positive quantities), and (ii) the distribution ψQ(�Qt) of
the continuous interevent times between successive extreme
losses, �Qt , previously described using an ad hoc q expo-
nential [5]. Note that this type of distribution is one of the
two pillars of the continuous-time random walk formalism.
We thus systematically create a general formalism based on
superstatistics for constructing a class of these distributions,
which provides market superstatistics that have universality.

That our approach is superior to that based on q distributions
can clearly be seen by considering the dependence between
subsequent interevent times. The results of our approach agree
with empirical data and those based on q distributions do not
(see Sec. III C for details). Because no reliable empirical data
associated with our study of excessive profits are available (the
statistical errors are too large—see Sec. V B for details), we
focus on excessive losses and use the empirical data provided
in Refs. [5–8]. In addition to market empirical data, we can
accurately describe seismic earthquake data at any scale [15]
(see Sec. V C for details).

III. BASIC ACHIEVEMENT

We find an analytical closed form of the mean interevent
step time period RQ between successive excessive losses ε(>0)
that are greater than threshold Q(>0). We allow coupling
between these losses and preceding interevent continuous time
periods.

To more clearly explain RQ we consider the binomial
distribution as the simplest instructive reference case. An event
or loss −ε independent of other losses that has a probability
p of occurring, appears on average Np times during a series
of N observations. We thus find that the characteristic value
of N = 1/p and see on average a single loss during each
series of N observations. This is not surprising because their
dispersion around Np = 1 is

√
1 − p < 1. The variable N can

q−Weibull

q−exponential

Weibull

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Log10Q

Lo
g 1
0R

Q

FIG. 1. Mean interevent discrete time period RQ vs. threshold Q

for four typical classes of indices. Black circles, red squares, green
rhomboids, and blue triangles concern USD/GBP exchange rate, S&P
500 index, IBM stock, and WTI (crude oil) empirical data (from
January 2000 to June 2010) plotted from the top down to the bottom
of the figure, respectively, were taken from Fig. 2 in Ref. [5]. The
solid curves are the best fitted to the empirical data. These curves are
predictions of the formula from the upper branch of Eq. (4), which is
derived from the q-Weibull distribution. The remaining two types of
curves also fit well the empirical data although slightly less accurately
as the previous one. Assumed resolution of the figure does not allow
us to distinguish (in the range of the figure) between these two types.
That is, predictions of the formula from the middle branch of Eq. (4),
defined by the q exponential, are almost totally covered by predictions
of the formula from the bottom branch of Eq. (4), derived from the
usual Weibull distribution. Unfortunately, none of the predictions are
able to reproduce a weak wavy behavior of empirical data.

be used as a counting process and is sometimes referred to as
the operational time.

We identify probability p with the cumulative distribution
P (−ε � −Q). Hence, −ε � −Q can be considered an ex-
treme event within N (=1/p) observations. Note that large
N corresponds to a relatively small p value and hence to a
relatively large Q value. This is supported by the range of the
available empirical data (see Fig. 1 for details). Large losses
are significant from both theoretical and practical points of
view.

Using this identification we can compare RQ with the step
time variable N ,(

RQ

τ

)−1

= P (−ε � −Q) =
∫ −Q

−∞
D(−ε)dε, (1)

where τ is an arbitrary calibration time (found from the fit
to empirical data—see Eq. (4) and Fig. 1), and D(ε) is the
distribution of returns. The challenge is to find this distribution.

Without loss of generality we can use the absolute value of
the losses instead of their negative values,

P (−ε � −Q) = P (ε � Q) =
∫ ∞

Q

D(ε)dε. (2)

The second equality allows us to quantify the density of returns
D(ε) as a basic local quantity, which we set using empirical
data. This equation shows that there is no formal difference
between losses and profits when both assume positive values.
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TABLE I. Values of parameter q, exponent η, quantity ε̄, and calibration parameter τ obtained from the fit of predictions of the top branch
of Eq. (4) to the empirical data (all of them plotted in Fig. 1) representing the exchange rate U.S. Dollar against Great British Pound, the index
S&P 500, the IBM stock, and crude oil (WTI).

Index/Par. q η ε̄ τ

USD/GBP 1.1529 ± 0.0085 1.267 ± 0.0266 0.0041 ± 0.0 2.3131 ± 0.0333
S&P500 1.315 ± 0.0195 1.6202 ± 0.0869 0.0051 ± 0.0001 2.4504 ± 0.0689
IBM 1.2548 ± 0.0106 1.4983 ± 0.0398 0.0086 ± 0.0001 2.1187 ± 0.0267
WTI 1.2088 ± 0.0224 1.228 ± 0.0637 0.0131 ± 0.0003 2.0885 ± 0.0516

From Eqs. (1) and (2) we find

D(ε) = −d
(RQ

τ

)−1

dQ

∣∣∣∣∣
Q=ε

. (3)

We determine the distribution D(ε) in an analytical form using
the empirical dependence of R−1

Q on Q (cf. Fig. 1).
This finding allows us to extend relation Eqs. (1)–(3) to the

case of dependent losses. Because of the coupling mentioned
above we conclude that interevent continuous time periods can
be dependent, and this is verified in Sec. III C.

A. D(ε) versus empirical data

Note that quantity RQ can be directly obtained from
empirical data. Figure 1 shows the quantity RQ plotted versus
Q for four typical indices presented by different marks.

We found good agreement with empirical data (solid
curves) by assuming RQ in the form given by the formula
in the upper branch of Eq. (4), which was derived from the
q-Weibull distribution defined in the upper branch of Eq. (5),

RQ

τ
=

⎧⎪⎨
⎪⎩

(
exp−(Q/ε̄′)η

q ′
)−1

,

expQ/ε̄
q ,

exp((Q/ε̄)η),

(4)

where τ is the irrelevant calibration time or scale factor of RQ

axis that differs in different branches (see Tables I—III). Here
the values are q ′ = 1

2−q
, q < 2, ε̄′ = ε̄q ′1/η, ε̄, η > 0. Values

of fit parameters q, ε̄, and exponent η are shown in Table I. Here

expQ/ε̄
q = [1 + (1 − q)Q/ε̄]

1
(1−q) is a q exponential that tends

to the usual exponential exp(Q/ε̄) when q → 1. Values of fit
parameters ε̄ and q are shown in Table II. This q exponential
corresponds to the distribution defined in the middle branch of
Eq. (5). Table III also shows the values of ε̄ and η driving the

TABLE II. Values of parameters q, ε̄, and τ obtained from the fit
of predictions of the middle branch of Eq. (4) to the empirical data (all
of them plotted in Fig. 1) representing the exchange rate U.S. Dollar
against Great British Pound, the index S&P 500, the IBM stock, and
crude oil (WTI).

Index/Par. q ε̄ τ

USD/GBP 0.9370 ± 0.0051 0.0040 ± 0.0001 1.9619 ± 0.0302
S&P500 0.8353 ± 0.0114 0.0048 ± 0.0002 1.8354 ± 0.0646
IBM 0.8969 ± 0.0094 0.0086 ± 0.0002 1.7404 ± 0.0414
WTI 0.8639 ± 0.0086 0.0146 ± 0.0004 1.9155 ± 0.0343

formula in the bottom branch, which were derived from the
Weibull distribution—see the lower branch of Eq. (5).

Note that both the middle and bottom branches of Eq. (4)
describe the empirical data, although slightly less accurately
than the top branch. Note that middle and bottom branches are
almost indistinguishable in the range of the figure. We also
find an exponential distribution with predictions that differ
from the empirical data.

Hence, from Eqs. (3) and (4) we obtain distributions

D(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η

ε̄′
(

ε

ε̄′
)η−1

1−(1−q ′)(ε/ε̄′)η exp−(ε/ε̄′)η
q ′ ,

1
ε̄

(
expε/ε̄

q

)−(2−q)
,

η

ε̄

(
ε
ε̄

)η−1
exp(−(ε/ε̄)η).

(5)

These predictions are plotted in Fig. 2 for values of the
corresponding parameters given in Tables I–III. Note that
the q-Weibull distribution in the upper branch tends toward
the usual distribution when q ′ → 1, and the middle branch
shows the usual exponential distribution when q → 1.

Although q-Weibull and q-exponential distributions ap-
proximate a comprehensive analysis of the system [16,17],
because multivariate q distributions do not exist, we use a
two-point Weibull distribution to study the dependence of
successive interevent times.

The usual Weibull distribution is used to quantify the
interevent times. Reference [18] uses it to describe the statistics
of interevent times between subsequent transactions for a
given asset. We use it and the reinterpreted conditional
exponential distribution from the CTRW valley model to
derive superstatistics (or complex statistics) associated with
the threshold of excessive losses or excessive profits.

Sections III B and III C describe how the usual single-
variable Weibull distribution is indistinguishable from the
q-Weibull and q-exponential distributions.

TABLE III. Values of exponent η, quantity ε̄, and calibration
parameter τ obtained from the fit of predictions of the bottom branch
of Eq. (4) to the empirical data (all of them plotted in Fig. 1)
representing the exchange rate U.S. Dollar against Great British
Pound, the index S&P 500, the IBM stock, and crude oil (WTI).

Index/Par. η ε̄ τ

USD/GBP 0.8756 ± 0.0156 0.0037 ± 0.0003 1.7918 ± 0.0277
S&P500 0.6981 ± 0.0292 0.0035 ± 0.0005 1.3923 ± 0.0569
IBM 0.8246 ± 0.0236 0.0078 ± 0.0007 1.5791 ± 0.0346
WTI 0.7855 ± 0.0182 0.0131 ± 0.0008 1.7150 ± 0.0273
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FIG. 2. Distributions, D(ε) vs. ε (loss), which constituted the
basis for plots in Fig. 1. The q-Weibull distribution [curves in plot (a)]
only slightly differs (mainly for small losses) from the q exponential
[the corresponding curves in plot (b)] and the Weibull distributions
[the corresponding curves in plot (c)]. This is astonishing that q

exponential and Weibull distributions are almost indistinguishable in
the interesting range of ε.

B. An extension of the canonical EVT viewpoint

The Fisher-Tippett theorem of classical extreme value
theory (the limit laws for the affine transformed maxima [19])
indicates that the cumulative distribution function (CDF) must
be Fréchet, Weibull, or Gumbel standard extreme value CDFs,
but only the Weibull distribution, sometimes called a type III
excessive loss [19–21], agrees with empirical data. The Fréchet
and Gumbel distributions disagree with empirical data shown
in Fig. 1, and thus we put them aside. Table III shows that
when η < 1 the Weibull distribution for ε/ε̄ � 1 is a stretched
exponentially truncated decreasing power law [22].

Note that we consider random variable ε to be an increment
of some underlying stochastic process. For the Weibull distri-
bution, the relative mean value 〈ε〉

ε̄
= 1

η
�(1/η) and the relative

variance σ 2

〈ε〉2 = 〈ε2〉−〈ε〉2

〈ε〉2 = [2η
�(2/η)
�2(1/η) − 1] are η-dependent,

that is, they are—for fixed exponent η—universal quantities.
Bertin and Clusel [14] proved that the Fisher-Tippett theorem
can be extended to strongly dependent random variables.

C. Role of bivariate Weibull distribution

Unlike multivariate Weibull distributions, multivariate q

functions have not been found (see Eq. (5.1) in Ref. [23]
for details). We thus use the bivariate Weibull distribution
to construct the conditional mean interevent discrete time,
RQ(RQ0 ); i.e., we regard only the time intervals with a
preceding interval length RQ0 . We have

RQ(RQ0 )

τ
=

(∫ ∞

Q

D(ε|Q0)dε

)−1

, (6)

where the conditional distribution is defined by

D(ε|Q0)
def.=

∫ ∞
Q0

D(ε,ε0)dε0∫ ∞
Q0

D(ε0)dε0
= RQ0

τ

∫ ∞

Q0

D(ε,ε0)dε0, (7)

i.e., by the single-variate and bivariate distributions. Using
Eq. (5.1) in Ref. [23] and Eqs. (6) and (7), we find the
conditional mean discrete interevent time,

RQ(RQ0 )

τ
=

(
RQ0

τ

)−1

exp

({[
ln

(
RQ

τ

)]1/γ

+
[

ln

(
RQ0

τ

)]1/γ }γ )
, (8)

where exponent γ is a free parameter obtained from the fit
of this formula to the empirical data presented in Figs. 11(d)
and 11(e) in Ref. [7]. The corresponding Figs. 7(d) and 7(e),
10(d) and 10(e) concern profits. Note that based on the family
of Weibull copulas the free exponent γ defines the family of
bivariate Weibull distributions and not a unique distribution.
In addition, when γ 	= 1, the usual multivariate Weibull
distribution cannot be factored, i.e., it describes a possible
dependence between interevent times. Note that only for index
Brent and when RQ = 30 can the subsequent interevent times
be considered independent quantities (see Table IV). They
otherwise are dependent, which is a result unavailable when q

functions are used.
Figure 3 compares the predictions of Eq. (8) (solid curves)

with empirical data (different marks with extended error bars)
from Figs. 11(d) and 11(e) in Ref. [7]. Note the extended range
of RQ0/RQ where Eq. (8) imitates a power-law dependence,

TABLE IV. Values of exponent γ and parameter τ obtained from
the fit of predictions of Eq. (8) to empirical data (with about 10%
accuracy) for two values of RQ and four indices (as no other data are
available).

RQ = 10 RQ = 30

Index/Par. γ τ γ τ

DJIA 1.30 0.1 1.50 0.01
IBM 1.40 0.01 1.30 0.01
GBP/USD 1.37 0.001 1.27 1.0
Brent 1.25 0.0001 1.02 1.10
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FIG. 3. Comparison of theoretical and empirical dependencies
RQ(RQ0 )/RQ vs. RQ0/RQ for four different indices (see legends) and
two fixed values of RQ, i.e., RQ = 10 for plot (a) and RQ = 30 for
plot (b) (Empirical data were drawn from Fig. 7 in Ref. [7]).

and we find good agreement between our predictions and the
empirical data.

IV. CLASSES OF SUPERSTATISTICS

We next construct a distribution ψ±
Q(�Qt) of the interevent

time stochastic variable �Qt in the form of superstatistics (or
complex statistics),

ψ±
Q(�Qt) =

∫ ∞
Q

ψ±
Q(�Qt |ε)D(ε)dε∫ ∞

Q
D(ε)dε

= −
∫ ∞
Q

ψ±
Q(�Qt |ε)d

( ∫ ∞
ε

D(ε′)dε′)∫ ∞
Q

D(ε)dε
. (9)

We assume the conditional distribution ψ±
Q(�Qt |ε) in the

exponential form

ψ±
Q(�Qt |ε) = 1

τ±
Q (ε)

exp

(
− �Qt

τ±
Q (ε)

)
, (10)

where the condition means that the next (subsequent) loss is
exactly ε. The relaxation time, τ±

Q (ε), is defined as a mean
time-distance to this loss. If it monotonically increases with
the increasing value of ε its sign is “+” and “−” if it does not.
When it monotonically increases with the increasing value of
ε larger losses are less frequent, and when it does not there is
volatility clustering. In general, both effects properly weighted
can be present in the process. No forms of τ±

Q (ε) and D(ε) are
used in our derivation (see the Appendix for details, where no
additional constraint is assumed).

The exponential form of the conditional distribution
Eq. (10) does not exclude a statistical dependence of successful
interevent continuous times. In addition, because of the ε

dependence of τ±
Q (ε), there remains a dependence between

stochastic variables ε and �Qt .
The subsequent step is based on a key conjecture that is

valid for arbitrary ε � Q,(
τ±
Q (0)

τ±
Q (ε)

)±α±
Q

=
∫ ∞

ε

D(ε′)dε′ =
(

RQ=ε

τ

)−1

, α±
Q > 0,

(11)

which makes an integration in the second equation in Eqs. (9)
feasible. We need an integration exponent α±

Q that satisfies this
equation. Its existence allows us to transform ψ±

Q(�Qt) into
the useful form, Eq. (A1). It would appear that this exponent
makes the left-hand side of Eq. (11) Q-independent.

Equation (11) reflects the (nonlinear) general relation
between the corresponding statistics of losses and the mean
time distance between them. The left-hand side of this relation
as a combined quantity is independent of the threshold variable
Q, although all the individual components of this combined
quantity are Q-dependent quantities. Thus, we assume the
existence of an integrating exponent α±

Q that makes the
left-hand side of Eq. (11) a Q-independent quantity and the
integration in Eq. (9) feasible.

Note that Eq. (11) allows us to derive exponent α±
Q in an

explicit form when the relaxation time, τ±
Q (ε), is explicitly

given. Using Eq. (4) we obtain

τ±
Q (ε)

τ±
Q (0)

=

⎧⎪⎪⎨
⎪⎪⎩

(
exp−(ε/ε̄′)η

q ′
)∓1/α±

Q, for q-Weibull pdf,(
expε/ε̄

q

)±1/α±
Q, for q-exp pdf,

{exp[(ε/ε̄)η]}±1/α±
Q, for Weibull pdf.

(12)

Assuming a stretched exponential representation typical for
relaxation phenomena in disordered systems,

τ±
Q (ε)

τ±
Q (0)

= exp[±(B±
Qε)η], (13)

using Eq. (12) we obtain

α±
Q =

⎧⎪⎪⎨
⎪⎪⎩

1
(B±

Qε̄′)η , for q-Weibull pdf,
1

B±
Qε̄

, for q-exp pdf,
1

(B±
Qε̄)η

, for Weibull pdf,

(14)

in a parametrized form for any η value, but we assume strong
inequalities |1 − q ′| � 1 and |1 − q| � 1 in the upper and
middle branches, respectively (see Tables I and II). In Eq. (13) a

042305-5



DENYS, GUBIEC, KUTNER, JAGIELSKI, AND STANLEY PHYSICAL REVIEW E 94, 042305 (2016)

more consistent approach would mean replacing the usual exp
with expq , but this would strongly complicate our approach.

The stretched exponential given by Eq. (13) is a straightfor-
ward extension of the exponential relaxation time used in the
canonical CTRW valley model introduced by Refs. [1,24–26]
to describe an anomalous photocurrent relaxation in amor-
phous films. Quantity BQ is a formal analog of an inverse
temperature β and is found below its scaling with the control
threshold Q. Quantity ε̄ becomes the mean valley depth.

The Weibull exponent η is present in the upper and lower
branches of Eq. (12) and is the same as that used in Eqs. (4)
and (5). This assumption reduces the number of free exponents
(the principle of Ockham’s Razor) and enables the derivation
of superstatistics ψ±

Q(�Qt) in an exact closed analytical form.
In the canonical CTRW exponent η = 1 was set and

the usual exponential distribution was assumed according
to the Hopf-Arrhenius law defining the thermally activated
over-barrier transitions and the Vogel-Tamm-Vulcher law used
for diffusion and transport in glasses. Thus, quantities ε̄, ε̄′, η,
and B±

Q constitute an internal structure of combined shape
exponent α±

Q given by Eq. (14), which controls the long
time-dependence of the superstatistics ψ±

Q(�Qt) shown below.
Note that the stochastic dependence of interevent time �Qt

on loss ε assumed in Eq. (10) is confirmed when smaller losses
appear more frequently than larger ones. This is described by
the “+” case in definition Eq. (12), where the conditional mean
time at fixed ε given by 〈�Qt〉+ε = τ+

Q (ε) is a monotonically
increasing function of ε. This creates an expanding hierarchy
of interevent times where larger losses and profits appear less
frequently than smaller ones. Unfortunately, the “−” case is
examined only in Sec. V C.

Substituting Eq. (10) and the first equality in Eq. (11) into
Eq. (9), we obtain superstatistics in the form (for detailed
derivation see the Appendix)

ψ±
Q(�Qt) = 1

τ±
Q (Q)

α±
Q( �Qt

τ±
Q (Q)

)1±α±
Q

�±
(

1 ± α±
Q,

�Qt

τ±
Q (Q)

)
,

(15)

�±
(

1 ± α±
Q,

�Qt

τ±
Q (Q)

)
=

⎧⎪⎪⎨
⎪⎪⎩

∫ �Qt

τ
+
Q

(Q)

0 yα+
Qe−ydy,∫ ∞

�Qt

τ
−
Q

(Q)

y−α−
Qe−ydy,

(16)

where �±(1 ± α±
Q,

�Qt

τ±
Q (Q)

) are the lower (“+”) and upper (“−”)

incomplete gamma functions, respectively. We consider the
“+” and “−” cases separately because their dependence on
�Qt

τ±
Q (Q)

differs.

Equation (15) asymptotically for �Qt

τ+
Q (Q)

� 1 takes a power-

law form,

ψ+
Q(�Qt) ≈ 1

τ+
Q (Q)

α+
Q( �Qt

τ+
Q (Q)

)1+α+
Q

�+(1 + α+
Q), (17)

of the relative interevent time �Qt

τ+
Q (Q)

while initially (for �Qt

τ+
Q (Q)

�
1) it takes an exponential form,

ψ+
Q(�Qt) ≈ 1

τ+
Q (Q)

α+
Q

1 + α+
Q

exp

(
−1 + α+

Q

2 + α+
Q

�Qt

τ+
Q (Q)

)
.

(18)

For exponent α+
Q � 1, Eq. (15) reduces to the α+

Q-
independent exponential,

ψ+
Q(�Qt) ≈ 1

τ+
Q (Q)

exp[−�Qt/τ+
Q (Q)], (19)

which is consistent with Eq. (18). Note that Eqs. (17)–(19) are
necessary constraints that must be obeyed by any distribution
claiming to describe the empirical data shown in Figs. 4 and 5.

For the opposite “−” case when �Qt

τ−
Q (Q)

� 1, the cor-

responding relation for ψ−
Q(�Qt) in Eq. (15) becomes a

power law truncated by the incomplete upper γ function
�−(1 − α−

Q,
�Qt

τ−
Q (Q)

). For �Qt

τ−
Q (Q)

� 1 we obtain

ψ−
Q(�Qt) ≈ 1

τ−
Q (Q)

α−
Q( �Qt

τ−
Q (Q)

)1−α−
Q

�−(1 − α−
Q), (20)

which is a pure short-time power-law behavior.

A. Superscaling

We extract a scaling hypothesis for ln RQ as the scaling
variable and for Q because both are related by a one-to-
one transformation Eq. (4) that allows a universal form of
Eq. (15) to be solely dependent on RQ (or Q). This variable
was explored in Ref. [5] in the case of the q exponential.
Universality means that B±

Q present in Eq. (14) scales with Q

in a power-law form or with the related scaling variable ln RQ.
Thus, we formulate this hypothesis as

B±
Q = Qζ ×

⎧⎪⎨
⎪⎩

B
1/η
± /ε̄′1+ζ , q-Weibull pdf,

B±/ε̄1+ζ , q-exp pdf,

B
1/η
± /ε̄1+ζ , Weibull pdf,

(21)

where prefactor B± and exponent ζ are Q-independent basic
positive control parameters.

Thus, by using Eq. (4) to replace variable Q by RQ in
Eq. (21), we can use Eq. (14) and write superscaling relations,
i.e., the scaling of scaling exponent α±

Q,

1

α±
Q

= B± ×

⎧⎪⎪⎨
⎪⎪⎩

[− lnq ′
(RQ

τ

)−1]ζ
, q-Weibull pdf

lnζ
q

(RQ

τ

)
, q-exp pdf

lnζ
(RQ

τ

)
, Weibull pdf.

(22)

The expressions in Eq. (22) are useful because they can be
directly compared with empirical data, e.g., for the IBM firm,
which is a typical example. From Eq. (11) we also obtain the
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FIG. 4. Collected plots of empirical distributions (colored marks drawn from Refs. [5,6]) and theoretical superstatistics, ψQ(�Qt) (black
solid curves), which are predictions of our Eq. (15) (while the dashed curves are given by q exponential shown by Eq. (3) in Ref. [5]) vs.
interevent time, �Qt , for the monthly returns in the period 1709–1823 (a), for the relative daily price returns for 16 typical examples of financial
data in the period 1962–2010 (b), from minutes over the hours to daily returns for NASDAQ between March 16, 2004 and June 5, 2006 (c),
and for the detrended minute-by-minute eight most typical examples of financial data (d).

needed relation

ln

(
τ±
Q (Q)

τ±
Q (0)

)
= ± 1

α±
Q

ln

(
RQ

τ

)
. (23)

Note that quantities B±
Q, 1

α±
Q

, and
τ±
Q (Q)

τ±
Q (0)

all depend on the single

control variable RQ/τ . We will also consider below the RQ-
dependence of τ±

Q (0) itself. Using empirical data, we examine
all the above-mentioned quantities.

B. Empirical verification of our formulas

Here we empirically verify our formulas for the “+” case.
We consider the “−” case in Sec. V. For the sake of simplicity
we thus here omit the “±” sign.

Note that Fig. 4 and Table V show a data collapse for a
given (fixed) value of a single control (aggregated) variable
RQ.

When using the Weibull distribution, the RQ value is easier
to apply than the continuous (full) mean interevent time 〈�Qt〉.
Thus, we use Eqs. (9) and (10), the lower branch of Eq. (5), and

Eq. (13) to obtain the mth moment 〈(�Qt)m〉,m = 0,1,2, . . .,
in an explicit closed form,

〈(�Qt)m〉 =
∫ ∞

0
(�Qt)m ψQ(�Qt)d(�Qt)

= (τQ(Q))mGQ,m, (24)

where the first equality gives the definition (here we consider
only integer nonnegative moments), while the key factor,

GQ,m = m!

1 − m/αQ

, (25)

is responsible for the singular properties of 〈(�Qt)m〉 for the
“+” case, and in the “−” case no singularity appears. Here
〈(�Qt)m〉 is finite only when αQ > m, and when it is not
it diverges. This is in contrast to the behavior of RQ, which,
because of its quantile (not momentum) origin, is always finite.
For example, for IBM 〈�Qt〉 is finite only when RQ � 10
(see Table VI). We see an analogous situation in other, quite
different indices (see Table V). We thus have two radically
different cases, finite mean interevent continuous time, 〈�Qt〉,
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FIG. 5. The superstatistics, ψQ(�Qt), vs. interevent time, �Qt , in
log-log scale for the daily price returns of IBM (empty circles drawn
from Ref. [5]) in the period 1962–2010 for RQ = 2, 5, 10, 30, and 70
(in units of days). Black solid curves are predictions of our Eq. (15),
while the dashed curves are given by q exponential shown by Eq. (3)
in Ref. [5]. For RQ � 5 the power-law relaxation of ψQ(�Qt) is well
seen for �Qt > 30. The inset is the plot of ψQ(�Qt) vs. �Qt in the
semilogarithmic scale for RQ = 2 to clearly present the exponential
form of the superstatistics. This exponential form was expected due
to Eq. (19) as αQ is very large in this case (see Table VI).

and infinite time—about which much appears in the literature
(see, e.g., [3,27–31] and references therein).

Figure 5 shows the somewhat more accurate fits for the IBM
company, indicating an agreement between the predictions of
Eq. (15) (solid curves) and the empirical data (empty circles)
for RQ = 2, 5, 10, 30, and 70. Table VI shows the fitted
quantities αQ and τQ(Q).

The detailed plots shown in Fig. 6 also concern the IBM
company. Figure 6(a) shows the good fit of the Eq. (22) pre-
diction of the q-Weibull pdf (dotted curve), the q-exponential
pdf (dashed curve), and the Weibull pdf (solid curve) to the
corresponding data collected from other independent fits for
five values of RQ (black circles). See also the third column
of Table VI. For the sake of comparison, the corresponding
values of the fitted basic quantities B and ζ are presented in
Table VII for the q-Weibull, the q-exponential, and the Weibull
distributions.

TABLE V. Values of exponent αQ and quantity τQ(Q) obtained
from the fit of Eq. (15) to the empirical data (with about 5% accuracy)
representing companies shown in Fig. 4 in plots (a), (b), (c), and (d)
for RQ = 2, 5, 10, 30, 70.

Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)

RQ αQ τQ(Q) αQ τQ(Q) αQ τQ(Q) αQ τQ(Q)

2 5.0 1.15 14.0 1.27 7.8 1.256 12.2 1.34
5 3.8 3.12 2.4 2.79 3.0 2.85 3.0 2.85
10 2.0 4.58 1.9 4.6 2.0 4.39 2.20 5.09
30 − − 1.08 5.55 1.2 5.67 1.1 5.51
70 − − 0.55 5.39 0.5 3.5 0.5 4.08

TABLE VI. Values of exponent αQ and quantity τQ(Q) obtained
directly from the fit of Eq. (15) to the empirical data (with about 1%
accuracy) representing IBM company shown in Fig. 5 for RQ = 2, 5,
10, 30, and 70.

RQ Q αQ τQ(Q)

2 0.0014 1000 1.4286
5 0.0093 3.0 3.33
10 0.0164 1.9 5.0
30 0.0289 0.95 4.55
70 0.0393 0.47 3.85

These fits allow us to determine B and ζ and the corre-
sponding value of the calibration parameter τ was found from
an independent fit and shown in Tables II and III.

The inset plot shows the good agreement between the
prediction of the lower branch of equality Eq. (21) (solid
curve) and the data (black circles) obtained from the lower
branch of Eq. (14). Table VI gives values of exponent αQ for
five values of Q. In like manner we compare the q-Weibull
and q-exponential distributions.

Figure 6(b) shows a plot of τQ(Q) versus Q, where
τQ(Q) comes from the fourth column of Table VI. The plot
consists of a broken straight line or two crossing straight
lines. The corresponding Table VIII shows the parameters of
linear regressions as and bs , with s = L,R, that define the
dependence of both straight lines on RQ.

The inset plot uses Eq. (23) to present (i) the data points
(crosses, empty squares, and black circles) of τQ(0) for five
values of RQ (as above, τQ(Q) is given by Table VI) and (ii) the
dotted, dashed, and solid curves of τQ(0), using the analytical
form of τQ(Q) for arbitrary values of Q (limited by the frame
of the figure).

Thus, by proving the RQ-dependence of the superstatistics
ψQ(�Qt), we explain the empirical data collapse shown in
Figs. 4 and 5 and some of its consequences.

As stated in Sec. III B, the usual Weibull, the q-Weibull,
and q-exponential distributions provide an approximate de-
scription of single-variable empirical results and indicate that
both viewpoints, i.e., extreme and nonextensive (the result
of long-term dependence), are closely related. We cannot
exclude the possibility that they are “two sides of the same
coin” defining a kind of fluctuation-dissipation relation. There
is a significant advantage to using the Weibull distribution
at the level of bivariate distributions because there the q

distributions do not exist (cf. Sec. III C), i.e., q distributions
are not able to explain the dependence observed between
interevent continuous times.

V. APPLICATIONS AND CONCLUDING REMARKS

We here have proposed that we can describe universality
and superscaling in empirical data. Superscaling allows the
possibility of classifying relaxation processes in systems,
but its deeper physical meaning requires further study. We
describe data collapse and daily quotations from various
markets as having different timescales and use the bivariate
Weibull distribution to consider the dependence of subsequent
interevent times. We find that extreme events and their
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FIG. 6. Key dependence of quantities: (a) 1/αQ and (b) τQ(Q) vs.
RQ obtained, for instance, for the IBM company. Black circles in main
plots represent empirical data (shown in Table VI), while solid curves
are our theoretical predictions. The solid curve was obtained for plot
(a) by the fit of Eq. (22) to empirical data, where the fit parameters
B and ζ were shown in Table VII. The indirect empirical data for the
inset plot (i.e., BQ vs. Q) were found from the lower branch of Eq. (14)
by using αQ taken from Table VI, while η, ε̄, and τ from Table III for
the IBM company. The solid curve in this inset plot is the prediction
of the lower branch of Eq. (21) for mentioned above parameters B and
ζ as well as η and ε̄ taken from Table III. In plot (b) the broken line or
both solid straight lines are linear regressions (i.e., given by τQ(Q) =
as RQ + bs, where s = L for the left-hand side straight line and s =
R for the right-hand side straight line. In this approach we have
constraint RQ � −bR/aR . Herein, τQ=0(0) = aLτ + bL as RQ=0 =
τ . Multiplicative and additive calibration parameters as and bs

defining both straight lines are shown in Table VIII. Thus, we
have an additional interpretation of τQ(Q) as equal RQ up to some
multiplicative and additive calibration parameters. The solid curve
in the inset plot (i.e., τQ(0) vs. RQ) was obtained from Eq. (23),
where B and ζ comes from Table VII, while τQ(Q) was defined by
above given straight lines. Dotted curves (except thin vertical ones)
and empty squares together with dashed curves and crosses present
results obtained in the analogous way but basing on q Weibull and q

exponential, respectively.

dependence constitute a basis sufficient for the description
of threshold phenomena.

Note that using our microscopic model to simulate the
behavior of agents [32,33], we find results very close to those
predicted by our central expression, Eq. (15). An approach

TABLE VII. Universal parameter B and universal exponent ζ ,
defining dependence of BQ vs. Q, obtained from the good fit of all
formulas in Eq. (22) to the corresponding empirical data shown in
Fig. 6(a), for instance, for very representative IBM company.

pdf B ζ

q-Weibull 0.27194 ± 0.0685 1.0037 ± 0.1459
q-exp 0.1572 ± 0.0586 1.6912 ± 0.2626
Weibull 0.1028 ± 0.0446 2.2590 ± 0.3393

using agent-based modeling in this context was also recently
explored by other researchers [34–36].

Our model is analogous to the one-dimensional CTRW
valley model in that valley depth signifies loss or profit. Here
ψQ(�Qt) in the analytical closed form is the distribution of
times between events and the probability density of finding a
tagged particle in the adjacent valley with an depth greater
than Q at time lag �Qt . This analogy with the valley
model also indicates the form of exponent α±

Q given by
multibranch Eq. (14), where B±

Q is an analog of an inverse
temperature that also scales with Q and creates superscaling.
This allows the universal control and direction of losses and
profits, although exponent ζ in Eq. (21) remains an enigmatic
value. Our extension of the formalism shows that both the
exponential distribution and also the Weibull one model reveal
the landscape of a substrate leading to a decreasing power-law
of ψQ(�Qt) for long time lags �Qt . The construction of
ψQ(�Qt) separately for losses and profits is the initial step in a
preparation of the full CTRW formalism for financial markets.
The full formalism requires a simultaneous consideration of
both losses and profits, and this remains a challenge.

Our research opens the possibility of applying the for-
malism in research fields other than finance. One example
is in geophysics to describe seismic empirical data (see
Sec. V C). The formalism can be applied to a broad spectrum of
threshold phenomena, and we describe below two applications
of our approach that are both practically and theoretically
significant—see Secs. V(A) and V(B).

A. Application to risk estimation

The distribution of interevent times ψ±
Q(�Qt) is an essential

value in financial engineering because it enables us to calculate
risk.

The risk function W±
Q (t ; �t) is defined as the conditional

probability that a current single loss ε greater than the threshold
Q will occur within the next time interval �t under the
condition that the previous such loss occurred t days in the past.
Reference [12] shows that W±

Q (t ; �t) is related to ψ±
Q(�Qt)

TABLE VIII. Parameters of linear regressions as and bs , s =
L,R, defining dependence of both straight lines on RQ (with accuracy
about 1%), presented in Fig. 6(b) for the IBM company.

Parameters L R

as 0.435 − 0.019
bs 0.79 5.161
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FIG. 7. Comparison of two risk functions. The solid curves are
predictions of our Eq. (27) based on the Weibull distribution, while the
dashed curves the corresponding ones given by Eq. (6a) from Ref. [5]
based on q exponential. Apparently, both formula give the same
universal Zipf law behavior for the asymptotic long time t [cf. also
Eq. (28)]. The short-time behavior is driven by Eq. (29). Predictions
of both formulas are shown by dotted straight lines (oblique and
horizontal asymptotes, respectively).

by the generic formula

W±
Q (t ; �t) =

∫ t+�t

t
ψ±

Q(�Qt)d�Qt∫ ∞
t

ψ±
Q(�Qt)d�Qt

. (26)

Because ψ±
Q(�Qt) is given by Eq. (15) and both cumulative

distributions by Eq. (26), the risk function can be obtained in
a closed analytical form. The simple integration required by
Eq. (26) yields

W±
Q (t ; �t) = 1

−
�±(1±α±

Q,(t+�t)/τ±
Q (Q))

[(t+�t)/τ±
Q (Q)]

±α
±
Q

± exp
( − t+�t

τ±
Q (Q)

)
�±(1±α±

Q,t/τ±
Q (Q))

[t/τ±
Q (Q)]

±α
±
Q

± exp
( − t

τ±
Q (Q)

) . (27)

Although in principle both the “+” and “−” cases should
be considered, we limit our work to the “+” case because
it is able to accurately describe all the empirical data. From
Eq. (27) we obtain

W+
Q (t ; �t) ≈ α+

Q

t

�t
, min

(
t

τ+
Q (Q)

,
t

�t

)
� 1. (28)

It appears that only in an asymptotic long time does the risk
function tend to a universal Zipf law irrespective of the type
of market and the time horizon. On the other hand,

W+
Q (t ; �t) ≈ α+

Q

1 + α+
Q

�t

τ+
Q (Q)

,
t + �t

τ+
Q (Q)

� 1, (29)

is the time-independent quantity.
Figure 7 shows the predictions of Eq. (27) for the Weibull

distribution with parameters from the IBM company for RQ =
70 (solid curves) plotted versus t for three different values of
�t , which is considered a driving parameter. Note the expected

Weibull

q−exponential

t =  120
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2 5 10 20 50
0.001

0.005
0.010

0.050
0.100

0.500

RQ

W
Q+

FIG. 8. Comparison of two risk functions, for two sample selected
moments of time (well separated for better visualization, i.e., t = 120
and t = 600). The solid curves are predictions of our Eq. (27) based on
the Weibull distribution, while the dashed curves the corresponding
ones given by Eq. (6a) in Ref. [5] based on q exponential, both for
�t = 1.0. The dotted horizontal line is plotted, e.g., for probability
p = 0.01 (the confidence probability 1 − p = 0.99). Apparently, if
W+

Q is fixed at a given p value then, the longer time t forces a shorter
value of RQ (or Q; see the location of small circles and triangles).

asymptotic coincidence with the corresponding risk function
based on the q exponential given by Eq. (6a) in Ref. [5].

In addition, Fig. 7 shows the monotonic decreasing of the
risk function versus time t at fixed �t and RQ, and Fig. 8
shows it versus RQ at fixed �t and t . These are utilized below
in a numerical sampling that reveals such useful quantities for
financial analysis as |V aR|.

The algorithm of the numerical sampling is given in
Refs. [5,7,8]. We adapt it to our approach. To push the
algorithm, the initial zero-order value of the threshold Q is
required, and we obtain it by using Eqs. (1), (2), and (4).
Setting P (ε � Q) equal to probability p, we have

Q =

⎧⎪⎨
⎪⎩

ε̄′(− lnq ′ p)1/η,

ε̄ lnq

(
1
p

)
,

ε̄(− ln p)1/η,

(30)

where lnq(. . .) is a q logarithm, i.e., the inverse of a q

exponential. We now can set |V aR| = Q and finish this initial
step.

With the zero-order threshold Q time t can be drawn as a
stochastic variable from the distribution ψ+

Q(t = �Qt) given
by Eq. (15). Subsequently, Q and t enable us to calculate the
concrete value of risk function W+

Q (t ; �t) from Eq. (27) and
decide whether its value falls into the band p ± �p where
�p � p. If that is the case we can set |V aR| = Q and draw
the next time interval t from ψ+

Q(t = �Qt) for this value of Q.
Substituting these t and Q values into Eq. (27), we obtain a new
value of W+

Q (t ; �t). When this value is outside the band p ±
�p we multiply Q by factor 1 ± γ where γ � 1 depending
on whether it is greater than p + �p (we then choose “+”)
or lower than p − �p (we then choose “−”), respectively.
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FIG. 9. Comparison of two simulated absolute value-at-risk time
series: (i) based on the Weibull distribution (small black circles
connected by segments of solid straight line) and (ii) based on q

exponential (triangles connected by segments of dashed straight line)
both using our Eq. (27) for �t = 0.1. The time range of both series is
as those in Fig. 6 in Ref. [5], which is for the IBM stock between 2002
and 2008 for the confidence probability 1 − p = 0.99. Two horizontal
dotted lines (situated at an altitude of about 0.05) show the zero-order
|V aR| where no dependence between interevent times is present for
the Weibull and q-exponential distributions, respectively. Two pairs
of dashed-dotted horizontal lines show the most probable spreads of
simulated |VaR|-s for the Weibull and q-exponential distributions,
respectively. Apparently, our approach drastically reduces |V aR|,
i.e., the level of losses, in comparison with the zero-order |V aR| (the
single empty circle and triangle).

We repeat this step as many times as necessary, e.g., n+ + n−
times, to find the corresponding Q′ = Q(1 + γ )n+(1 − γ )n−

and the value of t (analogously as given above). Both Q′ and
t are then substituting into Eq. (27), which gives the value of
W+

Q′ (t ; �t) contained in the band. We now can see that the new
|V aR| is equal to Q′. In this way we obtain the series of |VaR|-s
at the proper points in time, i.e., at (t + |�t)-s. Figure 9 shows
that this series consists of fluctuating values that are below the
initial |V aR|. The most probable spread of this series, which
is denoted by pairs of dashed-dotted horizontal lines in Fig. 9,
occurs only over extremely long time periods.

B. Application to profit analysis

We model the empirical data collapse (cf. Fig. 4) using
superstatistics ψ+

Q(�Qt) given by Eq. (15) parametrized by a
single aggregated variable RQ and obtain, for example, the
scaling shape exponent 1/α+

Q as a power-law function of
ln RQ and the superscaling form of Eq. (22), which is
dependent upon universal exponent ζ and prefactor B+.

Note that ψ+
Q(�Qt) also accurately describes the rescaled

empirical statistics of excessive profits. Here Q defines the
threshold for excessive profits instead of excessive losses (see
the plots in Fig. 10). We thus can use the same superstatistics
to demonstrate the functional but not literal symmetry between
excessive losses and profits. The symmetry is not literal
because different control parameters, i.e., exponent α+

Q and
relaxation time τ+

Q (Q), are used. Because of large statistical er-
rors in the empirical data, we cannot empirically verify the uni-
versality of excessive profit behavior. For example, for RQ =
10 exponent 1.70 � α+

Q � 3.10 and 0.10 � τ+
Q (Q) � 0.25,

for RQ = 30 we have 0.90 � α+
Q � 1.50 and 0.12 � τ+

Q (Q) �
0.35, and finally for RQ = 70 we have 0.60 � α+

Q � 1.10
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FIG. 10. Statistics of interevent times between profit returns of daily closing prices for various markets (from stock exchange and forex to
resource market) and time periods. All empirical data (discrete marks with bars) were taken from Ref. [7]. Solid curves are predictions of our
Eq. (15) as it can be applied both for losses and profits. Dashed curves shown, for instance, in plots (a), (b), and (c) are fitted by q exponential
(remaining twelve plots are very similarly fitted therefore, the fits are not visualized herein). However, the possible empirical data collapse
would be incredible in this case because errors of empirical data points are too large.
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FIG. 11. Six rescaled statistics (representing Bak et al.’s unified
scaling law for earthquakes), for the single-region seismic empirical
data (small circles), of interevent times between successive earth-
quakes of magnitude stronger than the corresponding well defined
thresholds (from 1.5 to 7.5 in the Richter scale). The seismic single
regions are as follows: (a) the NEIC worldwide catalog for regions
with L � 180◦ for years 1973–2002, (b) NEIC with L � 90◦ (the
same years), (c) Southern California years 1984–2001, 1988–1991,
and 1995–1998, (d) Northern California years 1998–2002, (e) Japan
1995–1998 and New Zealand 1996–2001, (f) Spain years 1993–1997,
New Madrid 1975–2002, and Great Britain years 1991–2001. The
interevent times go from 2 min to about 1.5 years. Empirical curves
(small circles) were drawn from [15]—they are spread vertically for
better visibility. Solid curves are predictions of Eq. (31) describing
well these rescaled empirical statistics, which collapse well for
different regions and values of threshold Q.

and 0.08 � τ+
Q (Q) � 0.36, which exhibit ranges that are too

extended.

C. Application to seismic data

Another significant application of our approach is the
superposition,

ψ tot
Q (�Qt) = w−

Qψ−
Q(�Qt) + w+

Qψ+
Q(�Qt),

(31)
w−

Q + w+
Q = 1,

based on the Weibull distribution. When η = 1 (an exponen-
tial distribution) it accurate describes the rescaled seismic
empirical data [15] throughout the range of the variable
2 min. � �Qt <

∼ 1.5 year for values of Q in the range from
Q = 1.5 to Q = 7.5. The notation Mc instead of Q was used
in Ref. [15]. This exponential distribution leads to the widely
applicable Gutenberg-Richter law that describes the frequency
of earthquakes in a region with a magnitude larger than given
threshold value Q. Here this law can be achieved directly as
the reverse of the lower branch of Eq. (4).

Both the seismic single regions of L degrees in longitude
and L degrees in latitude were taken into account as well
as several other regions (see Fig. 11). Using Eq. (31) we
take into account two effects, (i) the large volatility clustering
described by ψ−

Q(�Qt) that causes avalanches of earthquakes
or aftershock sequences, and (ii) the small volatility clustering

TABLE IX. Values of ratio w−
Q/w+

Q, exponents α±
Q and relaxation

times τ±
Q (Q) obtained directly from the fit of Formula (31) to the

seismic empirical data (with accuracy about 5%) shown in Fig. 11.

Region w−
Q/w+

Q α−
Q; α+

Q τ−
Q (Q); τ+

Q (Q)

a 90/9 0.001; 7.0 1.0; 1.0
b 1000/1 0.00001; 7.0 1.0; 1.0
c 11000/9 0.00001; 7.0 1.0; 1.0
d 1400/1 0.00001; 7.0 1.0; 1.0
e 20/12 0.005; 6.0 1.0; 0.8
f 80/11 0.001; 4.0 1.0; 0.7

described by ψ+
Q(�Qt) that causes weak aftershock sequences.

Taking into account both effects is important although a
sufficiently precise determination of w−

Q and α−
Q is impossible

because exponent α−
Q, although still positive, is too small.

In addition, we see no Q-dependence of exponent α±
Q and

relaxation time τ±
Q (Q). Thus, it is sufficient to characterize

each region, (a)–(f), using single values of exponents α−
Q, α+

Q

and relaxation times τ−
Q (Q), τ+

Q (Q) (see Table IX). Thus,
using Eq. (13) and the lower branches of Eqs. (14) and (21)
for the decreasing value of scaling exponent ζ , we write

α±
Q = (B±)−1,

τ±
Q (Q)

τ±
Q (0)

= exp

(
±B±

Q

ε̄

)
, (32)

where constraint

τ±
Q (0) ∝ exp

(
∓B±

Q

ε̄

)
(33)

must be obeyed.
Seismic empirical data prove that scalings are a prominent

feature of the earthquake mechanism, which we still do not
understand. Our formula is well-suited to the empirical data
because it is driven by two power laws. For short interevent
times it is dominated by the Omori law [31,37] in which
ψ+

Q is self-damped by the upper incomplete γ function. For
long interevent times the power-law driven by Pareto-Lévy
exponents greater than 2 plays the most significant role
in which ψ−

Q is self-truncated by the lower incomplete γ

function—see Eqs. (15) and (16), and Fig. 11 for details.
It is our hope that this work will be a valuable contribution

to the research effort searching for universal properties not
confined to market behavior. The formalism we propose
accurately describes the universalities in empirical data and
allows us to classify quotes using a single scaling variable
that points out their similarities. These similarities suggest
that there is a root cause underlying the identical shape of
various distributions of interevent times in different timescales.
This should allow us to finally derive, for example, ab initio
equations describing financial market behavior.
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APPENDIX: DERIVATION OF ψ±
Q(�Q t)

To derive the distribution ψ±
Q(�Qt) we use the second

equality in Eq. (9),

ψ±
Q(�Qt) = −

∫ ∞
Q

ψ±
Q(�Qt |ε)d

(∫ ∞
ε

D(ε′)dε′)∫ ∞
Q

D(ε)dε
,

which we will then use in further transformations.
We base our next step on Eq. (11), which enables us to

rewrite the above equality in the form

ψ±
Q(�Qt) = 1

z(Q)

1

τQ(0)
I±
Q, (A1)

where auxiliary variable

z = z(ε)
def.=

∫ ∞

ε

D(ε′)dε′, (A2)

and integral

I±
Q

def.=
∫ τR−1

Q

0
z±1/α±

Q exp

(
−z±1/α±

Q
�Qt

τ±
Q (0)

)
dz

= A±
Q

∫ τR−1
Q

0
exp

(
−z±1/α±

Q
�Qt

τ±
Q (0)

)
d(z1±1/α±

Q ),

where A±
Q = 1

1±1/α±
Q

. By using the identity

d(z1±1/α±
Q ) = d

(
z±1/α±

Q
�Qt

τ±
Q (0)

)α±
Q(1/α±

Q±1)

×
(

τ±
Q (0)

�Qt

)1±1/α±
Q

, (A3)

we finally obtain from Eq. (A1) with help of Eqs. (A2) and
(A3),

ψ±
Q(�Qt) = 1

τ±
Q (Q)

α±
Q

[�Qt/τ±
Q (Q)]1±α±

Q

×�±
(

1 ± α±
Q,

�Qt

τ±
Q (Q)

)
, (A4)

where

�+
(

1 + α+
Q,

�Qt

τ+
Q (Q)

)
=

∫ �Qt

τ
+
Q

(Q)

0
uα+

Q exp(−u)du

is the lower incomplete gamma (Euler) function, where we
change the variables

u
def.= z1/α+

Q
�Qt

τ+
Q (0)

, (A5)

and

�−
(

1 − α−
Q,

�Qt

τ−
Q (Q)

)
=

∫ ∞
�Qt

τ
−
Q

(Q)

u−α−
Q exp(−u)du

is the upper incomplete gamma (Euler) function. We change
the variables such that they are complementary to Eq. (A5),

u
def.= z−1/α−

Q
�Qt

τ−
Q (0)

. (A6)

Hence,

d(u1±α±
Q ) = (1 ± α±

Q)u±α±
Qdu (A7)

is used in both “+” and “−” cases.
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