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Abstract

We present a scaling Ansatz for the distribution function of the shortest paths connecting

any two points on a percolating cluster which accounts for (i) the e�ect of the �nite size of

the system, and (ii) the dependence of this distribution on the site occupancy probability p.

We present evidence supporting the scaling Ansatz for the case of two-dimensional percolation.

c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The chemical distance or minimal path, ‘, between two sites is de�ned as the

shortest path on a percolating cluster connecting the two sites (Fig. 1). The quantity of

interest here is the conditional probability, P(‘|r), that two sites taken from the same

cluster, separated by geometrical distance r, are ‘ chemical distance away. The main

questions are (i) to determine the dependence of this probability P(‘|r) on the �nite

size of the system L and (ii) the behavior of P(‘|r) in the o�-critical regime (p 6= pc).

The motivation for this study comes from the fact that in many realistic problems

where the disordered media controls a transport process, dynamic properties such as

conductivity and di�usion can be expressed in terms of chemical distance, in case

of loopless aggregates, or for aggregates for which loops can be neglected [1]. For

example, in oil recovery the �rst passage time from the injection well to a production

well a distance r away is related to P(‘|r) (see [2]).
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Fig. 1. The minimal path between two sites is de�ned as the shortest path on a percolating cluster connecting the two sites.
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Fig. 2. The cluster of trees generated by the Leath algorithm. The trees are denoted by arrows with the

green head, stones denoted by the black circles. The starting point is an arrow with the black head. The

forest is generated with the probability p = 0:5. Courtesy of E.F. Taylor.

It is known that the average chemical distance 〈‘〉 scales as rdmin , where various

estimates of dmin are dmin ≈ 1:130± 0:005 [3] and dmin ≈ 1:1307± 0:0004 [4]. There

has been extensive theoretical and computer work done on studying the scaling of

P(‘|r) [5–7]. The complete scaling form of P(‘|r) which accounts for the �nite-size

e�ect, and o�-critical behavior has been studied in detail and reported in [8]. Here we

would like (i) to present the arguments which underlie the proposed Ansatz and (ii)

to describe the algorithm, which we used to generate percolating clusters.

2. Leath algorithm

The Leath algorithm [9–11] is known to be particularly useful for studying structural

and physical properties of single percolation clusters. The single clusters are generated

in the same way as the forest grow can be imagined (see Fig. 2 ). First, we start

with a single tree, whose seeds are spread to the nearest sites on the square lattice.

With some probability p trees grow on the nearest sites. With the probability 1−p the

site is occupied by a stone, and thus will be useless for growing. The trees from the

surrounding the starting point shell (which we call chemical shell) spread their seeds

to their nearest neighbors and so on. In each step, a new chemical shell is added. The
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process continues until no sites are available for growth or the desired number of shells

are generated.

We generate nd clusters and calculate the number of points n(‘; r) which are sepa-

rated from the origin by the geometrical distance r and belong to the certain chemical

shell ‘. We de�ne

P′(‘; r) =
n(‘; r)

ntot
; (1)

where ntot is the total amount of points in the nd clusters.

We also de�ne the probabilities P′(‘) and P′(r) of a point to have a certain chemical

and geometrical distance correspondingly to the starting point

P′(‘) =

∑L
r=0 n(‘; r)

ntot
and P′(r) =

∑‘max
‘=0 n(‘; r)

ntot
: (2)

Since the Leath algorithm corresponds to the process of selecting a random point

on the percolating lattice, those probabilities P′(‘; r), P′(‘), and P′(r) are equal to

the probabilities that a pair of randomly selected points has certain geometrical and

chemical distances, given that they belong to the same and, not necesseraly in�nite 1 ,

cluster. The conditional probability P′(‘|r) = P′(‘; r)=P′(r) is of special interest here,

and has a meaning that two randomly selected points, connected by a percolating path

and separated by geometrical distance r, have chemical distance ‘.

3. The scaling Ansatz

Next, we describe the Ansatz, proposed in [8], for the conditional probability distri-

bution function P′(‘|r), which includes the e�ect of the �nite size of the system and

o�-critical behavior. For �¿r,

P′(‘|r) ∼
1

rdmin

(

‘

rdmin

)

−g′‘

f1

(

‘

rdmin

)

f2

(

‘

Ldmin

)

f3

(

‘

�dmin

)

; (3)

where the scaling functions are f1(x)=exp(−ax
−�1), f2(x)=exp(−bx

�2) and f3(x)=

exp(−cx). Here � ∼ |p− pc|
−� is the correlation length.

The �rst function f1 accounts for the lower cut-o� due to the constraint ‘¿r, while

f2 and f3 account for the upper cut-o� due to the �nite-size e�ect and due to the

�nite-correlation length, respectively (see Fig. 3). Either f2 and f3 becomes irrelevant,

depending on which of the two values L or � is greater. For L¡�, f2 dominates the

upper cut-o�, otherwise f3 dominates. We assume the independence of the �nite-size

e�ect and the e�ect of the concentration of the vacant sites, so that Eq. (3) can be

represented as a product of the terms which are responsible for the �nite-size e�ect

(f2) and the e�ect of the concentration (f3). Our simulations support this assumption.

1We denote by P(‘; r), P(‘)=
∫

P(‘; r) dr, and P(r)=
∫

P(‘; r) d‘ the probabilities that a pair of randomly

selected points has certain geometrical and chemical distances, given that they belong to the same in�nite

cluster.
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Fig. 3. Log–log plot of P′(‘|r) for p = pc = 0:593 and for the system size L = 1024 and the distance

between wells r=64. The straight line regime has slope g′
‘
=2:14. The crossover of P′(‘|r) at ‘x ∼ rdmin is

governed by the function f1(x) and is due to the constraint ‘¿ r. The crossover of P′(‘|r) at ‘′x ∼ Ldmin

is governed by the function f2(x) and accounts for the �nite size of the system.

4. Evidence supporting the scaling Ansatz

4.1. The case of L→ ∞ and p= pc

In the case of L→ ∞ and p= pc, P(‘|r) can be obtained from the relation

P(‘|r)P(r) = P(r|‘)P(‘) = P(r; ‘) ; (4)

where the conditional probability P(r|‘) is the probability that two sites, separated

by chemical distance ‘, are a geometric distance r away and belong to the same

in�nite cluster. For isotropic media this probability distribution was studied extensively

(see [1,5–7,12,13]). In analogy with the theory of self-avoiding random walks (SAWs)

[14], it was proposed [1] that

P(r|‘) = Al

( r

‘�̃

)gr
f0

( r

‘�̃

)

; (5)

where A‘ ∼ 1=‘
�̃, �̃=1=dmin=0:88± 0:02, gr =2:2± 0:3 [15] for d=2 and the scaling

function f0(x) = exp(−ax
�̃) with �̃= (1− �̃)−1.

The analogy with SAW can be used also to express gr via other exponents (see [8]

for details):

gr = df + dmin − 1 ≈ 2:04: (6)

This value is within the error bars found numerically for gr in d= 2 and d= 3 [16].

The scaling Ansatz for P(‘|r) has been developed in [5–7]. Exactly at p= pc in the

in�nite system (L=∞), in analogy to (5),

P(‘|r) = Ar

(

‘

rdmin

)

−g‘

f1

(

‘

rdmin

)

; (7)
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where f1(x) ∼ exp(−ax−�1) is the scaling function corresponding to f0 and Ar ∼

1=rdmin is the normalization factor. Comparison of Eqs. (7) and (5) leads to the follow-

ing relation between exponents: �1=1=(dmin−1) and [17] g‘−1=(gr−1)�̃+(2−df)�̃.

The above relation is true in the case when we restrict the study to the case of the

in�nite cluster. Using Eq. (6) we �nd that g‘=2 for all d¿2. Note, that the numerical

value for g‘ ≈ 2:04 found in [8] is very close to this prediction. For the case when

two points do not necessarily belong to the in�nite cluster, it has been shown in [8]

P′(‘|r) = Ar

(

‘

rdmin

)

−g′‘

f1

(

‘

rdmin

)

; (8)

where g′‘ − g‘ = (2− df)�̃.

The latter relation between exponents g′‘ and g‘ has simple probabilistic meaning,

since a pair of two randomly selected points separated by a chemical distance ‘ should

belong to the cluster of chemical size ‘0¿‘. The probability of this event scales as

‘−��̃=2. Once two points belong to such a cluster, the probability that their chemical

distance is equal to ‘ scales the same way as on an in�nite cluster and is proportional

to ‘−g‘ . Hence the probability that two randomly selected points are separated by a

chemical distance ‘ is proportional to the product of these two probabilities ‘−g‘−��̃=2,

which, by de�nition, is ‘−g
′

‘ . Hence g′‘ = g‘ + ��̃=2.

4.2. The case of �nite L and p= pc

In the case of �nite L and p= pc, Eq. (3) reduces to

P′(‘|r) ∼
1

rdmin

(

‘

rdmin

)

−g′‘

f1

(

‘

rdmin

)

f2

(

‘

Ldmin

)

; (p= pc) : (9)

Numerical tests reveal that P′(‘|r) has a power-law behavior for rdmin¡‘¡Ldmin and

rapidly vanishes for ‘¡rdmin and for ‘¿Ldmin . Fig. 3 illustrates the above observations.

Fitting the tails of the distribution by stretched exponentials we �nd �1 ≈ 7:3 and

�2 ≈ 4:0.

4.3. The case of L→ ∞ and p 6= pc

Finally, in the case of L → ∞ and p 6= pc, the dependence of P
′(‘|r) on p is

obtained [8] for very large system size L and for several values of p 6= pc. In this

case, the upper cuto� of the distribution Eq. (3) is governed by f3 and the functional

form of the rescaled probability � is given by

�(‘=rdmin) ∼ f1

(

‘

rdmin

)

f3

(

‘

�dmin

)

: (10)

For large ‘, f1(x) approaches to 1 we are left with an exponential decay of �:

�(‘=rdmin) ∼ exp

(

−c
‘

�dmin

)

: (11)

The numerical tests in Ref. [8] con�rm this scaling form of �(‘=rdmin).
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The scaling form, Eq. (3), is limited to the case when �¿r. For �¡r, the �nite-size

e�ects can be neglected, the power-law regime vanishes, and the minimal path can be

divided into r=� independent blobs each of length �dmin , so that the distribution P′(‘|r)

approaches Gaussian form with mean r�dmin−1 and variance r�2dmin−1.

5. Summary

In summary, we have studied the scaling properties of the shortest paths distribution

for �xed two points on the percolating cluster which accounts for the �nite-size e�ect,

also o� criticality. We propose a plausible scaling hypothesis for the distribution, which

is supported by theoretical argument and tested by numerical simulation. The lower and

upper cut-o�s of the distribution has been numerically observed and �tted successfully

by stretched exponential function. O� the critical point the upper cuto�, due to the

�nite correlation length, becomes a pure exponential form. Finally, we note that when

the present approach is extended to study dynamics, new dynamic scaling exponents

are found to describe the scaling properties of the distributions of minimal traveling

time, traveling time, and traveling length of tracer particles [18].
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